Ekonometria - ćwiczenia 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ekonometria - ćwiczenia 1"

Transkrypt

1 Ekonometria - ćwiczenia 1 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 5 października 2012

2 1 Sprawy organizacyjne 2 Czym jest ekonometria? Dane ekonomiczne 3 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej 4 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych

3 Ćwiczenia: grupa piątek, , sala 108G grupa piątek, , sala 108G Informacje o zaliczeniu przedmiotu oraz polecanej literaturze w sylabusie, oraz na stronie Konsultacje: środy, g , sala 217M (inny termin po kontakcie mailowym) Kontakt:

4 Czym jest ekonometria? Dane ekonomiczne Ekonometria wykorzystuje metody statystyczne do szacowania siły zależności ekonomicznych, testowania teorii ekonomicznych oraz do oceny efektywności polityk publicznych i skutków zmian regulacji, na podstawie zgromadzonych danych. Najbardziej intuicyjnym i prawdopodobnie najczęściej używanym zastosowaniem ekonometrii jest prognozowanie wielkości makroekonomicznych, jednak zakres stosowalności omawianych m.in. podczas tego kursu metod jest znacznie szerszy i obejmuje chociażby ekonomię pracy edukacji, zdrowia, czy ekonomię polityczną.

5 Ekonometria a data mining Czym jest ekonometria? Dane ekonomiczne W odróżnieniu od ekonometrii, gdzie budowa modelu prowadzącego do odkrycia pewnych zależności jest poprzedzona obserwacją rzeczywistości i studiowaniem teorii ekonomicznej, data mining skupia się wyłącznie na mechanicznym wyszukiwaniu wzorców i podobieństw w dużych zbiorach danych. Obserwacja rzeczywistości Ekonometria Data mining Dane Dane Teoria ekonomiczna Teoria ekonomiczna Wnioski Hipotezy badawcze Hipotezy badawcze Modelowanie ekonometryczne Wnioski

6 Czym jest ekonometria? Dane ekonomiczne Podstawowa cecha odróżniająca dane ekonomiczne od danych wykorzystywanych np. w naukach przyrodniczych - dane ekonomiczne nie pochodzą z eksperymentu. Dane nieeksperymentalne bywają nazywane obserwacyjnymi, lub historycznymi (retrospektywnymi). Dane można podzielić według kilku kryteriów, m.in. 1 Ze względu na stopień agregacji: mikrodane - dane o pojedynczych jednostkach, podejmujących decyzje ekonomiczne np. firma, gospodarstwo domowe, makrodane - dane otrzymane w wyniku agregacji danych indywidualnych na poziomie regionu, kraju. 2 Moment pomiaru: zasób - wartość zmiennej mierzona jest w określonym punkcie czasu (np. liczba ludności), strumień - wartość zmiennej mierzona w pewnym przedziale czasu (np. PKB). 3 Możliwość pomiaru ilościowe - wartości zmiennych są wyrażone w jednostkach mierzalnych, jakościowe - zmienne przyjmują wartości niemierzalne.

7 Czym jest ekonometria? Dane ekonomiczne W praktyce najczęściej wykorzystywany jest następujący podział danych: 1 Dane przekrojowe - wyrażają stan zjawiska w ustalonym momencie czasu w odniesieniu do różnych obiektów np. PKB per capita w krajach UE w roku Szereg czasowy - dane przedstawiające zmienność badanego zjawiska w kolejnych jednostkach czasu np. PKB per capita w Polsce w latach Dane panelowe - złożenie szeregu czasowego i danych przekrojowych np. PKB per capita w krajach UE w latach

8 Przykład - dane przekrojowe Czym jest ekonometria? Dane ekonomiczne Źródło: Wooldridge J. (2009): Introductory Econometrics. A Modern Approach, 4e, South-Western CENAGE Learning.

9 Przykład - szereg czasowy Czym jest ekonometria? Dane ekonomiczne Źródło: Wooldridge J. (2009): Introductory Econometrics. A Modern Approach, 4e, South-Western CENAGE Learning.

10 Przykład - dane panelowe Czym jest ekonometria? Dane ekonomiczne Źródło: Wooldridge J. (2009): Introductory Econometrics. A Modern Approach, 4e, South-Western CENAGE Learning.

11 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej to formalny opis stochastycznej zależności wyróżnionej wielkości, zjawiska lub przebiegu procesu ekonomicznego (zjawisk, procesów) od czynników, które je kształtują, wyrażony w formie równania lub układu równań. y i = f (x 1i, x 2i,..., x ki ) +ε i } {{ } Model ekonomiczny ε i jest nazywany składnikiem lub zaburzeniem losowym. Można go postrzegać jako wszystkie pozostałe czynniki, mające potencjalnie wpływ na kształtowanie się zmiennej y.

12 Przykład - przestępczość - Becker (1968) - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej W bardzo znanym artykule, Gary Becker zaproponował teorię, zgodnie z którą decyzja o podjęciu działalności przestępczej jednostki wynika z zasady maksymalizacji indywidualnej użyteczności. Bardzo ogólnie, ten model ekonomiczny można zapisać jako: y = f (x 1, x 2, x 3, x 4, x 5, x 6, x 7 ), gdzie: y - liczba godzin poświęcanych na działalność przestępczą, x 1 - wynagrodzenie za godzinę gangsterki, x 2 - wynagrodzenie za godzinę legalnego zatrudnienia, x 3 - pozostały dochód, x 4 - prawdopodobieństwo zostania złapanym, x 5 - prawdopodobieństwo zostania skazanym w przypadku złapania, x 6 - oczekiwana długość wyroku, x 7 - wiek.

13 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Przykład - przestępczość - Becker (1968) - c.d. y = f (x 1, x 2, x 3, x 4, x 5, x 6, x 7 ), Przejście od powyższego modelu ekonomicznego do modelu ekonometrycznego wymaga kilku zabiegów: 1 Określenia lub przyjęcia założeń co do formy funkcyjnej f ( ). 2 Skonfrontowania założeń modelu ekonomicznego z dostępnością danych i obserwowalnością niektórych zmiennych.

14 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Klasyfikacja modeli ekonometrycznych: 1 Liczba równań w modelu modele jednorównaniowe modele wielorównaniowe 2 Postać analityczna zależności funkcyjnych modelu modele liniowe modele nieliniowe 3 Rola czynnika czasu w równaniach modelu modele statyczne modele dynamiczne 4 Charakter powiązań między nieopóźnionymi zmiennymi endogenicznymi w modelu wielorównaniowym modele proste modele rekurencyjne modele o równaniach współzależnych

15 Podstawy Sprawy organizacyjne - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Model regresji prostej: Model regresji wielorakiej: y i = β 0 + β 1 x 1i + ε i, i = 1, 2,..., n (1) y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + ε i, i = 1, 2,..., n (2) y - zmienna objaśniana (zależna, regresant), x 1, x 2,..., x k - zmienne objaśniające (niezależne, regresory), β 0, β 1,..., β k - parametry strukturalne modelu, ε - składnik losowy.

16 Przykład powraca - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Wróćmy do przykładu z przestępczością: y = f (x 1, x 2, x 3, x 4, x 5, x 6, x 7 ), gdzie: y - liczba godzin poświęcanych na działalność przestępczą, x 1 - wynagrodzenie za godzinę gangsterki, x 2 - wynagrodzenie za godzinę legalnego zatrudnienia, x 3 - pozostały dochód, x 4 - prawdopodobieństwo zostania złapanym, x 5 - prawdopodobieństwo zostania skazanym w przypadku złapania, x 6 - oczekiwana długość wyroku, x 7 - wiek. Zakładając, że f ( ) jest funkcją liniową, oraz że mamy informacje o wszystkich charakterystykach, model ekonometryczny przestępczości można zapisać jako: przest i = β 0 +β 1 haracz i +β 2 legalne i +β 3 dochod i +β 4 p zlap i +β 5 p skaz i +β 6 wyrok i +β 7 wiek i +ε i

17 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Zapis modelu w postaci macierzowej: y = Xβ + ε (3) y - wektor obserwacji zmiennej objaśnianej, o wymiarach n 1, x - macierz zaobserwowanych wartości zmiennych objaśniających, o wymiarach n (k + 1), β - wektor parametrów strukturalnych modelu, o wymiarach (k + 1) 1, ε - wektor składników losowych, o wymiarach n 1.

18 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej y = y 1 y 2. y n (n 1) β = 1 x 11 x x 1k 1 x 21 x x X = 2k x n1 x n2... x nk β 0 β 1. β k (k 1) ε = ε 1 ε 2. ε n (n 1) (n (k+1))

19 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Metoda najmniejszych kwadratów (ang. ordinary least squares OLS) jest najprostszym i najpopularniejszym sposobem szacowania parametrów strukturalnych liniowego modelu ekonometrycznego, która przy spełnieniu pewnych założeń, daje wyniki dobrej jakości. Model regresji w postaci macierzowej: Wartości teoretyczne: y = Xβ + ε (4) ŷ = X ˆβ (5) ŷ - wektor wartości teoretycznych zmiennej objaśnianej, ˆβ - wektor ocen (oszacowań) parametrów. Reszty z modelu: e = y ŷ = y X ˆβ (6) MNK polega na znalezieniu wektora parametrów strukturalnych, minimalizującego sumę kwadratów reszt: ˆβ = argmin e T e (7)

20 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Najważniejszy wzór na tym przedmiocie ˆβ = (X T X) 1 X T y

21 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Twierdzenie Gaussa-Markowa Jeżeli spełnione są poniższe założenia: Elementy macierzy X są nielosowe, nieskorelowane ze składnikiem losowym (ε), inaczej E(X T ε) = 0 Macierz zmiennych objaśniających X ma pełny rząd kolumnowy - rz(x) = k + 1 n Wartość oczekiwana składnika losowego wynosi zero - E(ε) = 0 Składnik losowy jest sferyczny - D 2 (ε) = σ 2 I Składnik losowy ma rozkład normlany - ε N(0, σ 2 ), to estymator KMNK jest BLUE (Best Linear Unbiased Estimator), tj. liniowym, nieobciążonym estymatorem o najmniejszej wariancji w swojej klasie.

22 Własności estymatorów Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych 1 Nieobciążenie wartość oczekiwana estymatora jest równa prawdziwej wartości parametru w populacji, tj. E( ˆβ) = β. 2 Efektywność najmniejsza wariancja w danej klasie estymatorów (np. w klasie estymatorów liniowych i nieobciążonych). 3 Zgodność stochastyczna zbieżność do prawdziwej wartości, gdy n, tj. lim n P( ˆβ n β < δ) = 1 δ > 0. Dodatkowo estymator jest liniowy, jeśli każda składowa wektora β jest liniową funkcją składowych wektora zmiennej losowej y.

23 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Macierz kowariancji: Estymator wariancji składnika losowego: D 2 ( ˆβ) = σ 2 (X T X) 1 (8) S 2 = e T e n (k + 1) = (y X ˆβ) T )(y X ˆβ) = yt y ˆβ T X T y n (k + 1) n (k + 1) (9) Estymator macierzy kowariancji: ˆD 2 ( ˆβ) = S 2 (X T X) 1 (10)

24 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Średni błąd szacunku: S j = d jj, j = 0, 1,..., k (11) Średni względny błąd szacunku: S w j = S j ˆβ 100, j = 0, 1,..., k (12) j

25 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Test istotności t-studenta Hipotezy Statystyka testowa Obszar odrzucenia hipotezy zerowej H 0 : β j = 0 H 1 : β j 0 (13) t = ˆβ j S j t n (k+1) (14) (, t n (k+1) > < t n (k+1), ) (15)

26 Operacje macierzowe w Excelu =TRANSPONUJ(zakres) transpozycja, =MACIERZ.ODW(zakres) odwracanie macierzy, =MACIERZ.ILOCZYN(macierz1;macierz2) mnożenie macierzy. Po wykonaniu formuły, wynik pojawia się tylko w 1 komórce. Należy zaznaczyć tę komórkę wraz z całym zakresem wyniku (np. jeśli transponujemy macierz 5x3 to zaznaczyć obszar 3x5), wcisnąć F2, a następnie Ctrl+Shift+Enter.

27 Zadanie M. Grossman i F. Chaloupka opublikowali w 1998 r. wyniki badań nad pytaniem, czy można na gruncie ekonomicznym znaleźć potwierdzenie uzależniających własności kokainy. Skonstruowali w tym celu jednorównaniowy liniowy model ekonometryczny, w którym zmienną objaśnianą była konsumpcja kokainy. Zgromadzone przez autorów dane miały charakter przekrojowo-czasowy i obejmowały zarówno indywidualne cechy młodych Amerykanów (płeć, rasę, dochody, miejsce zamieszkania), jak i ceny narkotyków w poszczególnych stanach Stanów Zjednoczonych. 1 Zaproponuj sposób weryfikacji hipotezy, że kokaina ma własności uzależniające. 2 Grossman i Chaloupka stwierdzili, że znak oszacowania parametru przy opóźnionej zmiennej objaśnianej jest dodatni. Zinterpretuj ten wynik. 3 Autorzy stwierdzili zależność konsumpcji kokainy od jej ceny. Dla zmiennych objaśniających przyjmujących wartości równe ich medianom, długookresowa cenowa elastyczność konsumpcji kokainy jest równa -1,35, natomiast natychmiastowy efekt jednorazowej zmiany ceny wynosi -0,50. Czy te wyniki są sprzeczne z wnioskami z punktu 2? 4 Oszacowanie parametru przy zmiennej zero-jedynkowej przyjmującej wartość 1 dla obszarów, na których marihuana nie jest zdelegalizowana i 0 w przeciwnym przypadku, przyjęło wartość dodatnią. Czy kokaina i marihuana są dobrami substytucyjnymi czy komplementarnymi? 5 Oszacowanie parametru przy zmiennej objaśniającej, opisującej wiek, od którego w danym stanie można legalnie pić alkohol, przyjęło wartość dodatnią. Czy kokaina i alkohol są dobrami substytucyjnymi czy komplementarnymi?

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1.

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. mgr mgr Krzysztof Czauderna Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

EKONOMETRIA PRZESTRZENNA

EKONOMETRIA PRZESTRZENNA EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1 EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Ekonometria_FIRJK Arkusz1

Ekonometria_FIRJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wybrane zagadnienia ekonometrii z wykorzystaniem programu Statistica. Marcin Kurpas

Wybrane zagadnienia ekonometrii z wykorzystaniem programu Statistica. Marcin Kurpas Wybrane zagadnienia ekonometrii z wykorzystaniem programu Statistica Marcin Kurpas UPGOW Uniwersytet Partnerem Gospodarki Opartej na Wiedzy Uniwersytet Śląski w Katowicach, ul. Bankowa 12, 40-007 Katowice,

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Analiza zdarzeń Event studies

Analiza zdarzeń Event studies Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.

Bardziej szczegółowo

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Darmowy fragment Darmowy fragment Darmowy fragment Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Wykłady z Ekonometrii

Wykłady z Ekonometrii Dr Adam Kucharski Spis treści 1 Ekonometria pojęcia podstawowe 2 1.1 Idea modelu ekonometrycznego............................ 2 1.2 Równanie stochastyczne a deterministyczne..................... 2 1.3

Bardziej szczegółowo

Materiał dla studentów

Materiał dla studentów Materiał dla studentów Metoda zmiennych instrumentalnych Nazwa przedmiotu: metody ekonometryczne, ekonometria stosowana Kierunek studiów: Metody Ilościowe w ekonomii i systemy informacyjne Studia I stopnia/studia

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Ćwiczenia 10. Analiza regresji. Część I.

Ćwiczenia 10. Analiza regresji. Część I. Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Ekonometria. Mieczys aw Sobczyk

Ekonometria. Mieczys aw Sobczyk Ekonometria Mieczys aw Sobczyk Metody ilościowe M. Sobczyk Ekonometria Ekonometria Mieczysław Sobczyk wydanie 1 WYDAWNICTWO C.H. BECK WARSZAWA 2012 Wydawca: Dorota Ostrowska-Furmanek Redakcja merytoryczna:

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Wydział Nauk Ekonomicznych i Zarządzania Kierunek Analityka Gospodarcza Studia stacjonarne I stopnia ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Zagadnienia ogólnoekonomiczne 1. Aktualna sytuacja na europejskim

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

PODSTAWY EKONOMETRII. z elementami algebry liniowej

PODSTAWY EKONOMETRII. z elementami algebry liniowej PODSTAWY EKONOMETRII z elementami algebry liniowej Eligiusz W. Nowakowski PODSTAWY EKONOMETRII z elementami algebry liniowej Recenzent prof. dr hab. Wiesław Sasin Redakcja tekstu Bogumił Paszkiewicz Projekt

Bardziej szczegółowo

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Bogusław GUZIK ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO W artykule sformułowano standardowy układ założeń stochastycznych

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część III Program szkolenia część III Model regresji liniowej Współczynnik korelacji

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Planowanie eksperymentu (optymalizacja procesów chemicznych)

Planowanie eksperymentu (optymalizacja procesów chemicznych) Planowanie eksperymentu (optymalizacja procesów chemicznych) dr inż. Agnieszka Gadomska-Gajadhur E-mail: agadomska@ch.pw.edu.pl Lab. Pawilon, nr tel. 34 54 63 Plan wykładu Dlaczego planujemy eksperymenty?

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Dylematy podwójnej metody najmniejszych kwadratów w mikromodelu ekonometrycznym

Dylematy podwójnej metody najmniejszych kwadratów w mikromodelu ekonometrycznym Jerzy W. Wiśniewski* Dylematy podwójnej metody najmniejszych kwadratów w mikromodelu ekonometrycznym Wstęp Parametry ekonometrycznych układów równań współzależnych najczęściej szacowane są podwójną metodą

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Marcin Błażejowski Wyższa Szkoła Bankowa w Toruniu

Marcin Błażejowski Wyższa Szkoła Bankowa w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Wyższa Szkoła Bankowa w Toruniu

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Brunon R. Górecki. Podstawowy kurs nowoczesnej ekonometrii

Brunon R. Górecki. Podstawowy kurs nowoczesnej ekonometrii Brunon R. Górecki Podstawowy kurs nowoczesnej ekonometrii SPIS TREŚCI Wstęp CZĘŚĆ I. KLASYCZNY MODEL REGRESJI LINIOWEJ.Wprowadzenie.. Czym jest ekonometria?.. Pojęcie modelu ekonometrycznego.3. Dane statystyczne.4.

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne i typograficzne Jacek Tarasiewicz Redakcja

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Proces badawczy schemat i zasady realizacji

Proces badawczy schemat i zasady realizacji Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 14 grudnia 2014 Metodologia i metoda badawcza Metodologia Zadania metodologii Metodologia nauka

Bardziej szczegółowo

Statystyka Małych Obszarów w badaniach próbkowych

Statystyka Małych Obszarów w badaniach próbkowych Statystyka Małych Obszarów w badaniach próbkowych Łukasz Wawrowski l.wawrowski@stat.gov.pl Urząd Statystyczny w Poznaniu SKN Estymator, UEP 5.03.2012 1 Wprowadzenie Podstawowe pojęcia Badanie 2 Estymator

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Prognozowanie z zastosowaniem wybranych metod ekonometrycznych.

Prognozowanie z zastosowaniem wybranych metod ekonometrycznych. POLITECHNIKA OPOLSKA WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI kierunek: Zarządzanie i Inżynieria Produkcji Przykładowy projekt Projekt z przedmiotu: Prognozowanie i symulacja w przedsiębiorstwie Prognozowanie

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

Badania eksploracyjne Badania opisowe Badania wyjaśniające (przyczynowe)

Badania eksploracyjne Badania opisowe Badania wyjaśniające (przyczynowe) Proces badawczy schemat i zasady realizacji Agata Górny Demografia Wydział Nauk Ekonomicznych UW Warszawa, 4 listopada 2008 Najważniejsze rodzaje badań Typy badań Podział wg celu badawczego Badania eksploracyjne

Bardziej szczegółowo

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Spis treści Wstęp... 9 Część 1. Klasyczny model regresji liniowej... 11 1. Wprowadzenie... 13 1.1. Czym jest ekonometria?...

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g Zadanie 1 Dla modelu DL dla zależności stopy wzrostu konsumpcji benzyny od stopy wzrostu dochodu oraz od stopy wzrostu cen benzyny w latach 1960 i 1995 otrzymaliśmy następujące oszacowanie parametrów.

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

Analiza danych z użyciem programu Gretl

Analiza danych z użyciem programu Gretl Analiza danych z użyciem programu Gretl Gretl Gretl to pakiet ekonometryczny stworzony przez Allina Cottrella z Uniwersytetu Wake Forest w Pó lnocnej Karolinie w Stanach Zjednoczonych Od roku 2000 pakiet

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych 291 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Politechnika Opolska Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych Streszczenie.

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/ Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok

Bardziej szczegółowo

Brunon R. Górecki. Podstawowy kurs nowoczesnej ekonometrii

Brunon R. Górecki. Podstawowy kurs nowoczesnej ekonometrii Brunon R. Górecki Podstawowy kurs nowoczesnej ekonometrii SPIS TREŚCI Wstęp CZĘŚĆ I. KLASYCZNY MODEL REGRESJI LINIOWEJ.Wprowadzenie.. Czym jest ekonometria?.. Pojęcie modelu ekonometrycznego.3. Dane statystyczne.4.

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

METODY ILOŚCIOWE W ZARZĄDZANIU

METODY ILOŚCIOWE W ZARZĄDZANIU 1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Opis efektów kształcenia i sposobów ich weryfikacji

Opis efektów kształcenia i sposobów ich weryfikacji PROGRAM PRZEDMIOTU Nazwa przedmiotu WNIOSKOWANIE STATYSTYCZNE Rok akademicki / 26, semestr zimowy, grupy UE 1 Prof. zw. dr hab. Andrzej Luszniewicz Wymagania wstępne Studenci wnioskowania statystycznego

Bardziej szczegółowo

estymacja wskaźnika bardzo niskiej intensywności pracy z wykorzystaniem modelu faya-herriota i jego rozszerzeń

estymacja wskaźnika bardzo niskiej intensywności pracy z wykorzystaniem modelu faya-herriota i jego rozszerzeń estymacja wskaźnika bardzo niskiej intensywności pracy z wykorzystaniem modelu faya-herriota i jego rozszerzeń Łukasz Wawrowski, Maciej Beręsewicz 12.06.2015 Urząd Statystyczny w Poznaniu, Uniwersytet

Bardziej szczegółowo