Ekonometria - ćwiczenia 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ekonometria - ćwiczenia 1"

Transkrypt

1 Ekonometria - ćwiczenia 1 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 5 października 2012

2 1 Sprawy organizacyjne 2 Czym jest ekonometria? Dane ekonomiczne 3 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej 4 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych

3 Ćwiczenia: grupa piątek, , sala 108G grupa piątek, , sala 108G Informacje o zaliczeniu przedmiotu oraz polecanej literaturze w sylabusie, oraz na stronie Konsultacje: środy, g , sala 217M (inny termin po kontakcie mailowym) Kontakt:

4 Czym jest ekonometria? Dane ekonomiczne Ekonometria wykorzystuje metody statystyczne do szacowania siły zależności ekonomicznych, testowania teorii ekonomicznych oraz do oceny efektywności polityk publicznych i skutków zmian regulacji, na podstawie zgromadzonych danych. Najbardziej intuicyjnym i prawdopodobnie najczęściej używanym zastosowaniem ekonometrii jest prognozowanie wielkości makroekonomicznych, jednak zakres stosowalności omawianych m.in. podczas tego kursu metod jest znacznie szerszy i obejmuje chociażby ekonomię pracy edukacji, zdrowia, czy ekonomię polityczną.

5 Ekonometria a data mining Czym jest ekonometria? Dane ekonomiczne W odróżnieniu od ekonometrii, gdzie budowa modelu prowadzącego do odkrycia pewnych zależności jest poprzedzona obserwacją rzeczywistości i studiowaniem teorii ekonomicznej, data mining skupia się wyłącznie na mechanicznym wyszukiwaniu wzorców i podobieństw w dużych zbiorach danych. Obserwacja rzeczywistości Ekonometria Data mining Dane Dane Teoria ekonomiczna Teoria ekonomiczna Wnioski Hipotezy badawcze Hipotezy badawcze Modelowanie ekonometryczne Wnioski

6 Czym jest ekonometria? Dane ekonomiczne Podstawowa cecha odróżniająca dane ekonomiczne od danych wykorzystywanych np. w naukach przyrodniczych - dane ekonomiczne nie pochodzą z eksperymentu. Dane nieeksperymentalne bywają nazywane obserwacyjnymi, lub historycznymi (retrospektywnymi). Dane można podzielić według kilku kryteriów, m.in. 1 Ze względu na stopień agregacji: mikrodane - dane o pojedynczych jednostkach, podejmujących decyzje ekonomiczne np. firma, gospodarstwo domowe, makrodane - dane otrzymane w wyniku agregacji danych indywidualnych na poziomie regionu, kraju. 2 Moment pomiaru: zasób - wartość zmiennej mierzona jest w określonym punkcie czasu (np. liczba ludności), strumień - wartość zmiennej mierzona w pewnym przedziale czasu (np. PKB). 3 Możliwość pomiaru ilościowe - wartości zmiennych są wyrażone w jednostkach mierzalnych, jakościowe - zmienne przyjmują wartości niemierzalne.

7 Czym jest ekonometria? Dane ekonomiczne W praktyce najczęściej wykorzystywany jest następujący podział danych: 1 Dane przekrojowe - wyrażają stan zjawiska w ustalonym momencie czasu w odniesieniu do różnych obiektów np. PKB per capita w krajach UE w roku Szereg czasowy - dane przedstawiające zmienność badanego zjawiska w kolejnych jednostkach czasu np. PKB per capita w Polsce w latach Dane panelowe - złożenie szeregu czasowego i danych przekrojowych np. PKB per capita w krajach UE w latach

8 Przykład - dane przekrojowe Czym jest ekonometria? Dane ekonomiczne Źródło: Wooldridge J. (2009): Introductory Econometrics. A Modern Approach, 4e, South-Western CENAGE Learning.

9 Przykład - szereg czasowy Czym jest ekonometria? Dane ekonomiczne Źródło: Wooldridge J. (2009): Introductory Econometrics. A Modern Approach, 4e, South-Western CENAGE Learning.

10 Przykład - dane panelowe Czym jest ekonometria? Dane ekonomiczne Źródło: Wooldridge J. (2009): Introductory Econometrics. A Modern Approach, 4e, South-Western CENAGE Learning.

11 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej to formalny opis stochastycznej zależności wyróżnionej wielkości, zjawiska lub przebiegu procesu ekonomicznego (zjawisk, procesów) od czynników, które je kształtują, wyrażony w formie równania lub układu równań. y i = f (x 1i, x 2i,..., x ki ) +ε i } {{ } Model ekonomiczny ε i jest nazywany składnikiem lub zaburzeniem losowym. Można go postrzegać jako wszystkie pozostałe czynniki, mające potencjalnie wpływ na kształtowanie się zmiennej y.

12 Przykład - przestępczość - Becker (1968) - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej W bardzo znanym artykule, Gary Becker zaproponował teorię, zgodnie z którą decyzja o podjęciu działalności przestępczej jednostki wynika z zasady maksymalizacji indywidualnej użyteczności. Bardzo ogólnie, ten model ekonomiczny można zapisać jako: y = f (x 1, x 2, x 3, x 4, x 5, x 6, x 7 ), gdzie: y - liczba godzin poświęcanych na działalność przestępczą, x 1 - wynagrodzenie za godzinę gangsterki, x 2 - wynagrodzenie za godzinę legalnego zatrudnienia, x 3 - pozostały dochód, x 4 - prawdopodobieństwo zostania złapanym, x 5 - prawdopodobieństwo zostania skazanym w przypadku złapania, x 6 - oczekiwana długość wyroku, x 7 - wiek.

13 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Przykład - przestępczość - Becker (1968) - c.d. y = f (x 1, x 2, x 3, x 4, x 5, x 6, x 7 ), Przejście od powyższego modelu ekonomicznego do modelu ekonometrycznego wymaga kilku zabiegów: 1 Określenia lub przyjęcia założeń co do formy funkcyjnej f ( ). 2 Skonfrontowania założeń modelu ekonomicznego z dostępnością danych i obserwowalnością niektórych zmiennych.

14 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Klasyfikacja modeli ekonometrycznych: 1 Liczba równań w modelu modele jednorównaniowe modele wielorównaniowe 2 Postać analityczna zależności funkcyjnych modelu modele liniowe modele nieliniowe 3 Rola czynnika czasu w równaniach modelu modele statyczne modele dynamiczne 4 Charakter powiązań między nieopóźnionymi zmiennymi endogenicznymi w modelu wielorównaniowym modele proste modele rekurencyjne modele o równaniach współzależnych

15 Podstawy Sprawy organizacyjne - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Model regresji prostej: Model regresji wielorakiej: y i = β 0 + β 1 x 1i + ε i, i = 1, 2,..., n (1) y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + ε i, i = 1, 2,..., n (2) y - zmienna objaśniana (zależna, regresant), x 1, x 2,..., x k - zmienne objaśniające (niezależne, regresory), β 0, β 1,..., β k - parametry strukturalne modelu, ε - składnik losowy.

16 Przykład powraca - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Wróćmy do przykładu z przestępczością: y = f (x 1, x 2, x 3, x 4, x 5, x 6, x 7 ), gdzie: y - liczba godzin poświęcanych na działalność przestępczą, x 1 - wynagrodzenie za godzinę gangsterki, x 2 - wynagrodzenie za godzinę legalnego zatrudnienia, x 3 - pozostały dochód, x 4 - prawdopodobieństwo zostania złapanym, x 5 - prawdopodobieństwo zostania skazanym w przypadku złapania, x 6 - oczekiwana długość wyroku, x 7 - wiek. Zakładając, że f ( ) jest funkcją liniową, oraz że mamy informacje o wszystkich charakterystykach, model ekonometryczny przestępczości można zapisać jako: przest i = β 0 +β 1 haracz i +β 2 legalne i +β 3 dochod i +β 4 p zlap i +β 5 p skaz i +β 6 wyrok i +β 7 wiek i +ε i

17 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej Zapis modelu w postaci macierzowej: y = Xβ + ε (3) y - wektor obserwacji zmiennej objaśnianej, o wymiarach n 1, x - macierz zaobserwowanych wartości zmiennych objaśniających, o wymiarach n (k + 1), β - wektor parametrów strukturalnych modelu, o wymiarach (k + 1) 1, ε - wektor składników losowych, o wymiarach n 1.

18 - definicja Klasyfikacja modeli ekonometrycznych Jednorównaniowy liniowy model ekonometryczny Zapis modelu w postaci macierzowej y = y 1 y 2. y n (n 1) β = 1 x 11 x x 1k 1 x 21 x x X = 2k x n1 x n2... x nk β 0 β 1. β k (k 1) ε = ε 1 ε 2. ε n (n 1) (n (k+1))

19 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Metoda najmniejszych kwadratów (ang. ordinary least squares OLS) jest najprostszym i najpopularniejszym sposobem szacowania parametrów strukturalnych liniowego modelu ekonometrycznego, która przy spełnieniu pewnych założeń, daje wyniki dobrej jakości. Model regresji w postaci macierzowej: Wartości teoretyczne: y = Xβ + ε (4) ŷ = X ˆβ (5) ŷ - wektor wartości teoretycznych zmiennej objaśnianej, ˆβ - wektor ocen (oszacowań) parametrów. Reszty z modelu: e = y ŷ = y X ˆβ (6) MNK polega na znalezieniu wektora parametrów strukturalnych, minimalizującego sumę kwadratów reszt: ˆβ = argmin e T e (7)

20 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Najważniejszy wzór na tym przedmiocie ˆβ = (X T X) 1 X T y

21 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Twierdzenie Gaussa-Markowa Jeżeli spełnione są poniższe założenia: Elementy macierzy X są nielosowe, nieskorelowane ze składnikiem losowym (ε), inaczej E(X T ε) = 0 Macierz zmiennych objaśniających X ma pełny rząd kolumnowy - rz(x) = k + 1 n Wartość oczekiwana składnika losowego wynosi zero - E(ε) = 0 Składnik losowy jest sferyczny - D 2 (ε) = σ 2 I Składnik losowy ma rozkład normlany - ε N(0, σ 2 ), to estymator KMNK jest BLUE (Best Linear Unbiased Estimator), tj. liniowym, nieobciążonym estymatorem o najmniejszej wariancji w swojej klasie.

22 Własności estymatorów Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych 1 Nieobciążenie wartość oczekiwana estymatora jest równa prawdziwej wartości parametru w populacji, tj. E( ˆβ) = β. 2 Efektywność najmniejsza wariancja w danej klasie estymatorów (np. w klasie estymatorów liniowych i nieobciążonych). 3 Zgodność stochastyczna zbieżność do prawdziwej wartości, gdy n, tj. lim n P( ˆβ n β < δ) = 1 δ > 0. Dodatkowo estymator jest liniowy, jeśli każda składowa wektora β jest liniową funkcją składowych wektora zmiennej losowej y.

23 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Macierz kowariancji: Estymator wariancji składnika losowego: D 2 ( ˆβ) = σ 2 (X T X) 1 (8) S 2 = e T e n (k + 1) = (y X ˆβ) T )(y X ˆβ) = yt y ˆβ T X T y n (k + 1) n (k + 1) (9) Estymator macierzy kowariancji: ˆD 2 ( ˆβ) = S 2 (X T X) 1 (10)

24 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Średni błąd szacunku: S j = d jj, j = 0, 1,..., k (11) Średni względny błąd szacunku: S w j = S j ˆβ 100, j = 0, 1,..., k (12) j

25 Estymator KMNK Założenia i własności Estymator wariancji składnika losowego Testy istotności zmiennych Test istotności t-studenta Hipotezy Statystyka testowa Obszar odrzucenia hipotezy zerowej H 0 : β j = 0 H 1 : β j 0 (13) t = ˆβ j S j t n (k+1) (14) (, t n (k+1) > < t n (k+1), ) (15)

26 Operacje macierzowe w Excelu =TRANSPONUJ(zakres) transpozycja, =MACIERZ.ODW(zakres) odwracanie macierzy, =MACIERZ.ILOCZYN(macierz1;macierz2) mnożenie macierzy. Po wykonaniu formuły, wynik pojawia się tylko w 1 komórce. Należy zaznaczyć tę komórkę wraz z całym zakresem wyniku (np. jeśli transponujemy macierz 5x3 to zaznaczyć obszar 3x5), wcisnąć F2, a następnie Ctrl+Shift+Enter.

27 Zadanie M. Grossman i F. Chaloupka opublikowali w 1998 r. wyniki badań nad pytaniem, czy można na gruncie ekonomicznym znaleźć potwierdzenie uzależniających własności kokainy. Skonstruowali w tym celu jednorównaniowy liniowy model ekonometryczny, w którym zmienną objaśnianą była konsumpcja kokainy. Zgromadzone przez autorów dane miały charakter przekrojowo-czasowy i obejmowały zarówno indywidualne cechy młodych Amerykanów (płeć, rasę, dochody, miejsce zamieszkania), jak i ceny narkotyków w poszczególnych stanach Stanów Zjednoczonych. 1 Zaproponuj sposób weryfikacji hipotezy, że kokaina ma własności uzależniające. 2 Grossman i Chaloupka stwierdzili, że znak oszacowania parametru przy opóźnionej zmiennej objaśnianej jest dodatni. Zinterpretuj ten wynik. 3 Autorzy stwierdzili zależność konsumpcji kokainy od jej ceny. Dla zmiennych objaśniających przyjmujących wartości równe ich medianom, długookresowa cenowa elastyczność konsumpcji kokainy jest równa -1,35, natomiast natychmiastowy efekt jednorazowej zmiany ceny wynosi -0,50. Czy te wyniki są sprzeczne z wnioskami z punktu 2? 4 Oszacowanie parametru przy zmiennej zero-jedynkowej przyjmującej wartość 1 dla obszarów, na których marihuana nie jest zdelegalizowana i 0 w przeciwnym przypadku, przyjęło wartość dodatnią. Czy kokaina i marihuana są dobrami substytucyjnymi czy komplementarnymi? 5 Oszacowanie parametru przy zmiennej objaśniającej, opisującej wiek, od którego w danym stanie można legalnie pić alkohol, przyjęło wartość dodatnią. Czy kokaina i alkohol są dobrami substytucyjnymi czy komplementarnymi?

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1.

Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. mgr mgr Krzysztof Czauderna Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

EKONOMETRIA PRZESTRZENNA

EKONOMETRIA PRZESTRZENNA EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1 EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania

Bardziej szczegółowo

Wiadomości ogólne o ekonometrii

Wiadomości ogólne o ekonometrii Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria

Bardziej szczegółowo

1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja.

1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja. 1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja. Zadanie 1. Celem zadania jest oszacowanie modelu opisującego

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Rozdział 1. Modelowanie ekonometryczne

Rozdział 1. Modelowanie ekonometryczne 1.1. Istota modelu ekonometrycznego i jego elementy składowe Istotą modelowania ekonometrycznego jest budowa modelu wyjaśniającego mechanizm zmian zachodzących w badanym wycinku rzeczywistości. Przedmiotem

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Statystyka SYLABUS A. Informacje ogólne

Statystyka SYLABUS A. Informacje ogólne Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina

Bardziej szczegółowo

EKONOMETRIA prowadzący: Piotr Piwowarski

EKONOMETRIA prowadzący: Piotr Piwowarski EKONOMETRIA prowadzący: Piotr Piwowarski Termin konsultacji: poniedziałek 13:15 14:45 wtorek 13:15 14:45 pokój 1101/1102 jedenaste piętro e-mail: piotr.piwowarski@poczta.umcs.lublin.pl strona internetowa:

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Ekonometria_FIRJK Arkusz1

Ekonometria_FIRJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Wybrane zagadnienia ekonometrii z wykorzystaniem programu Statistica. Marcin Kurpas

Wybrane zagadnienia ekonometrii z wykorzystaniem programu Statistica. Marcin Kurpas Wybrane zagadnienia ekonometrii z wykorzystaniem programu Statistica Marcin Kurpas UPGOW Uniwersytet Partnerem Gospodarki Opartej na Wiedzy Uniwersytet Śląski w Katowicach, ul. Bankowa 12, 40-007 Katowice,

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania

Bardziej szczegółowo

Analiza zdarzeń Event studies

Analiza zdarzeń Event studies Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Darmowy fragment Darmowy fragment Darmowy fragment Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Ekonometria_EkonJK Arkusz1

Ekonometria_EkonJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr 3/5 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Ćwiczenia 10. Analiza regresji. Część I.

Ćwiczenia 10. Analiza regresji. Część I. Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

2.2 Autokorelacja Wprowadzenie

2.2 Autokorelacja Wprowadzenie 2.2 Autokorelacja 2.2.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Regresja kwantylowa W standardowej Metodzie Najmniejszych Kwadratów modelujemy warunkową średnią zmiennej objaśnianej: E( yi Xi) = μ ( Xi) Pokazaliśmy,

Bardziej szczegółowo

Ekonometria. Robert Pietrzykowski.

Ekonometria. Robert Pietrzykowski. Ekonometria Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące Prowadzący Zasady zaliczenia Konsultacje Inne 2 Sprawy ogólne czyli co nas czeka Zaliczenie

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Metody opracowania obserwacji 2 Kod modułu 04-A-MOO-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy

Bardziej szczegółowo

Wykłady z Ekonometrii

Wykłady z Ekonometrii Dr Adam Kucharski Spis treści 1 Ekonometria pojęcia podstawowe 2 1.1 Idea modelu ekonometrycznego............................ 2 1.2 Równanie stochastyczne a deterministyczne..................... 2 1.3

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Analiza wariancji i kowariancji

Analiza wariancji i kowariancji Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Ekonometria. Mieczys aw Sobczyk

Ekonometria. Mieczys aw Sobczyk Ekonometria Mieczys aw Sobczyk Metody ilościowe M. Sobczyk Ekonometria Ekonometria Mieczysław Sobczyk wydanie 1 WYDAWNICTWO C.H. BECK WARSZAWA 2012 Wydawca: Dorota Ostrowska-Furmanek Redakcja merytoryczna:

Bardziej szczegółowo

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 Szymon Bargłowski, sb39345 MODEL 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 2 C t = b 1 b 2 PKB t b 3 Invest t 1 b 4 G t 2 3 Invest t = d 1 d 2 C t d 3 R t 3 gdzie: G - wydatki

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Materiał dla studentów

Materiał dla studentów Materiał dla studentów Metoda zmiennych instrumentalnych Nazwa przedmiotu: metody ekonometryczne, ekonometria stosowana Kierunek studiów: Metody Ilościowe w ekonomii i systemy informacyjne Studia I stopnia/studia

Bardziej szczegółowo