Algorytmy z powrotami

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy z powrotami"

Transkrypt

1 Algorytmy z powrotami Algorytmy z powrotami są wykorzystywane do rozwiązywania problemów, w których z określonego zbioru jest wybierana sekwencja obiektów tak, aby spełniała ona określone kryteria. Klasycznym przykładem jest rozwiązanie problemu n-królowych. Zadaniem jest ustawienie n-królowych na szachownicy n n w taki sposób, aby się wzajemnie nie szachowały. Sekwencją w tym problemie jest n pozycji, na których są umieszczone królowe, zbiorem dla każdego wyboru jest n 2 możliwych pól na szachownicy. Kryterium jest takie, że królowe nie mogą się wzajemnie szachować. Algorytmy z powrotami są zmodyfikowanym przeszukiwaniem drzewa ( z korzeniem ) w głąb. Na początku odwiedzamy korzeń, a poźniej po przejściu do węzła przeglądane są wszystkie węzły potomne. Generalnie przeszukiwanie nie wymaga określonego porządku odwiedzania węzłów, ale wygodniej jest gdy przeszukiwane są węzły od lewej do prawej. Przykład przeszukiwania drzewa w głąb z węzłami ponumerowanymi w kolejności ich odwiedzania:

2 Węzły są ponumerowane w kolejności ich odwiedzania. Jak widać podczas wyszukiwania w głąb przechodzi się po ścieżce tak głęboko, jak jest to możliwe, aż do osiągnięcia ślepego zaułka. Następnie wracamy do węzła z niodwiedzonymi węzłami potomnymi i znów przechodzimy w głąb tak daleko, jak jest to możliwe. Rozważmy ustawienie 4 królowych na szachownicy 4 4. Problem można rozwiązać przez ustawienie królowych w kolejnych wierszach i sprawdzanie, która kombinacja kolumn daje prawidłowe rozwiązanie. Daje to = 256 potencjalnych rozwiazań. Można tworzyć potencjalne rozwiązania przez tworzenie drzewa: w węzłach drzewa z poziomu 1 będą zapisane kolumny wybrane dla pierwszej królowej, w węzłach poziomu 2 wybrane kolumny dla drugiej królowej, etc. Ścieżka od węzła głównego do liścia jest potencjalnym rozwiazaniem. Liść to jest węzeł bez węzłów potomnych. Drzewo takie nazywamy drzewem przestrzeni stanów. Fragment drzewa przestrzeni stanów pokazano poniżej:

3 Całe drzewo ma 256 liści, po jednym dla każdego potencjalnego rozwiązania. W każdym węźle przechowywana jest para liczb <i,j>, oznaczająca, że królowa z wiersza i jest umieszczona w kolumnie j. Aby określić rozwiązanie, węzły są odwiedzane zgodnie z metodą przeszukiwania w głąb, w którym węzły pochodne są odwiedzane od strony lewej do prawej. Pierwsze sprawdzane scieżki to: [<1.1><2.1><3.1><4.1>] [<1.1><2.1><3.1><4.2>] [<1.1><2.1><3.1><4.3>] [<1.1><2.1><3.1><4.4>] [<1.1><2.1><3.2><4.1>] Algorytm z powrotami jest algorytmem, w którym po zorientowaniu się, że węzeł prowadzi do ślepego zaułka, wracamy do węzła nadrzędnego i kontynuujemy wyszukiwanie od następnego węzła. Węzeł nazywamy nieobiecującym, gdy w czasie jego odwiedzania można określić, że nie może on doprowadzić do rozwiązania (przykład poniżej). W przeciwnym razie węzeł jest nazywany obiecującym. Algorytm z powrotami polega na wykonywaniu przeszukiwania w głąb drzewa przestrzeni stanów, aby sprawdzić czy węzeł jest obiecujący, czy nie. Jeżeli węzeł nie jest obiecujący, wracamy do węzła nadrzędnego.

4 Ogólny algorytm z powrotami: void checknode (node v) { node u; if (promising(v)) if(istnieje rozwiązanie dla v) drukuj rozwiązanie; else for(każdy węzeł pochodny u węzła v) checknode(u); Algorytm z powrotami jest identyczny jak przeszukiwanie w głąb, poza tym, że węzły pochodne są odwiedzane tylko w przypadku, gdy węzeł macierzysty jest obiecujący i nie znaleziono w nim rozwiązania Dla problemu n-królowych funkcja promising zwraca false, jeżeli węzeł i dowolny z jego przodków oznaczają umieszczenie królowej w tej samej kolumnie lub przekątnej (oznaczenie x na rys.).

5 Algorytm z powrotami sprawdza 27 węzłów w celu odszukania rozwiązania, bez zastosowania tego algorytmu trzeba sprawdzić 155 wezłów w celu odszukania tego samego rozwiązania. Nieefektywność w ogólnym algorytmie z powrotami (procedura checknode) wynika z faktu, że sprawdzamy czy węzeł jest obiecujący, po przekazaniu go do procedury. Rekordy aktywacji wezłów nieobiecujących są niepotrzebnie odkładane na stos rekordów aktywacji. Algorytm ze sprawdzeniem czy wezeł jest obiecujący, przed wywołaniem rekurencyjnym, wyglądałby następujaco:

6 void expand (node v) { node u; for (każdy węzeł pochodny u węzła v) if (promising(u)) if (istnieje rozwiazanie dla u) drukuj rozwiazanie; else expand(u); Wersja poprzednia jest łatwiejsza do zrozumienia, gdyż wszystkie operacje są wykonywane w checknode tzn. : sprawdzanie czy węzeł jest obiecujący; jeżeli jest obiecujący to czy zawiera rozwiązanie; drukowanie rozwiązania. Problem n-królowych Funkcja sprawdzająca, czy węzeł jest obiecujący, musi sprawdzać, czy dwie królowe są w tej samej kolumnie lub na tej samej przekątnej. Sprawdzenie kolumny to: col(i) = col(k) gdzie col(i) jest kolumną w której jest umieszczona królowa z i-tego wiersza. Sprawdzenie przekątnej to: col(i) - col(k) = i k lub col(i) - col(k) = k i

7 Przykładowo: col(6) col(3) = 4-1 = 3 = 6-3 col(6) col(2) = 4-8 = -4 = 2-6 Algorytm z powrotami dla problemu n-królowych Problem: umieść n królowych na szachownicy w taki sposób, żeby żadne dwie królowe nie znalazły się w tym samym wierszu, tej samej kolumnie oraz na tych samych przekątnych. Dane wejściowe: dodatnia liczba całkowita n. Wynik: wszystkie możliwe sposoby na umieszczenie n królowych na szachownicy n n tak, aby się wzajemnie nie szachowały. Każdy wynik cząstkowy składa się z tablicy liczb całkowitych col, indeksowanych od 1 do n, gdzie col(i) jest kolumną, w której umieszczona została królowa z wiersza i.

8 void queens (index i) { index j; if (promising(i) ) if(i= = n) cout<< od col[i] do col[n]; else for(j=1;j<=n;j++){//sprawdzenie czy królow col[i+1] = j; //w i+1-tym wierszu moze queens(i+1); //byc ustawiona w kazdej //z n kolumn bool promising (index i) { index k; bool switch; k=1; switch = true; //Sprawdź czy jakas //krolowa szachuje królową while(k<i && switch){ //w i-tym wierszu if(col[i]==col[k] abs(col[i]-col[k])==i-k) switch = false; k++; return switch; Algorytm powyższy tworzy wszystkie rozwiązania problemu n- królowych. Przerobienie programu tak, aby zatrzymywał się po znalezieniu pierwszego rozwiazania, jest proste. W analizie algorytmu należy określić ilość sprawdzonych węzłów jako funkcję wartości n, czyli liczby królowych. Górną granicę liczby węzłów w drzewie przestrzeni stanów można dośc łatwo policzyć.

9 Drzewo zawiera 1 węzeł na poziomie 0, n węzłów na poziomie 1, n 2 węzłów na poziomie 2 oraz n n na poziomie n. Całkowita liczba węzłów wynosi 1+n+n 2 +n 3 + +n n = (n n+1 1) / (n 1) Przykladowo, dla n=8 mamy ( ) / (8 1) = węzłów Analiza ta jest nie w pełni użyteczna bo zadaniem algorytmu z powrotami jest uniknięcie sprawdzania wielu z tych węzłów. Można również określić górną granicę ilości węzłów obiecujących (dla n=8). Pierwsza królowa może być umieszczona w dowolnej z ośmiu kolumn, druga może być umieszczona w jednej z siedmiu kolumn. Po ustawieniu drugiej królowej dla trzeciej zostanie do wyboru sześć kolumn. Dlatego mamy co najwyżej: ! = obiecujących węzłów. Ogólnie dla dowolnego n mamy co nawyżej 1 + n + n(n-1) + n(n-1)(n-2) + + n! obiecujących węzłów. Analiza ta nie jest pełna, gdyż po pierwsze nie bierze pod uwagę sprawdzania przekątnych, po drugie całkowita liczba odwiedzanych węzłów zawiera zarówno węzły obiecujące, jak i nieobiecujące. Najprostszą metodą byloby uruchomienie programu na komputerze i zliczanie odwiedzanych węzłów.

10 n Algorytm A Algorytm B Algorytm z powrotami Liczba węzłów Liczba potencjalnych Liczba węzłów Liczba sprawdzanych rozwiązań n! sprawdzanych znalezionych (bez powrotów) (rozne kolumny) (z powrotami) węzłów obiec Oczywiście, uruchamianie algorytmu w celu określenia jego efektywności nie jest faktyczną analizą. Zadaniem analizy jest określenie jak efektywny jest algorytm, jeszcze przed jego uruchomieniem. Co można zrobić w takiej sytuacji? Algorytmy Monte-Carlo Drzewa przestrzeni stanów dla algorytmów z powrotami mają wykładniczo lub szybciej roznąca liczbę węzłów. Warto zauważyć, że jeśli mamy dwa przypadki z taką samą wartością n, jeden z nich może wymagać sprawdzenia kilku węzłów, natomiast inne wymagają sprawdzenia całego drzewa przestrzeni stanów. Jeżeli oszacujemy, jak efektywny jest dany algorytm z powrotami dla danego przypadku, możemy zdecydować, czy zastosowanie go jest sensowne. Algorytm Monte-Carlo to algorytm probabilistyczny. Jest to taki algorytm, w którym następna wykonywana instrukcja jest czasami określana w sposób losowy, zgodnie z pewnym rozkładem losowym.

11 Algorytm deterministyczny to taki, w którym przedstawiony przypadek nie może mieć miejsca. Algorytm Monte-Carlo pozwala oszacować spodziewaną wartość zmiennej losowej, zdefiniowanej w przestrzeni próbek, na podstawie średniej wartości losowych próbek z tej przestrzeni. Nie ma gwarancji, że to oszacowanie jest bliskie właściwej wartości oczekiwanej, ale prawdopodobieństwo, że jest bliskie, zwiększa się ze wzrostem czasu działania algorytmu (ilosci uruchomień algorytmu). Jak wykorzystać algorytm Monte-Carlo do oszacowania efektywności algorytmu z powrotami? Generujemy w drzewie typową ścieżkę, składajacą się z węzłów, które powinny być sprawdzone w danym przypadku, a nastepnie szacujemy liczbę węzłów, odgałęziających się od tej ścieżki. Oszacowanie to daje w wyniku szacunkową liczbę węzłów, które należy sprawdzić w celu znalezienia wszystkich rozwiązań. Inaczej mówiąc, jest to szacunkowa liczba węzłów w przeciętnym drzewie stanów. Muszą być spełnione dwa warunki: we wszystkich węzłach na tym samym poziomie drzewa przestrzeni stanów powinna być używana ta sama funkcja określająca, czy węzeł jest obiecujący węzły na tym samym poziomie w drzewie przestrzeni stanów muszą mieć taka samą liczbę potomków. Algorytm dla n-królowych spełnia te warunki. Technika Monte-Carlo wymaga losowego generowania obiecującego potomka węzła, zgodnie z rozkładem normalnym, czyli generowania liczb losowych. Sposób realizacji: niech m 0 będzie liczbą obiecujących potomków korzenia losowo generujemy obiecujący węzeł pochodny na poziomie 1. Niech m 1 będzie liczbą obiecujących potomków tego węzła.

12 losowo wygeneruj obiecujący węzeł dla węzła uzyskanego w poprzednim kroku. Niech m 2 będzie liczbą obiecujących potomków tego węzła. Losowo wygeneruj obiecujący węzeł dla węzła uzyskanego w poprzednim kroku. Niech m i będzie liczbą obiecujących potomków tego węzła. Proces jest kontynuowany, dopóki nie zostaną znalezione żadne obiecujące węzły potomne. m i jest szacunkową średnią liczbą obiecujących węzłów na poziomie i. Niech t i = całkowita liczba potomków węzła na poziomie i Wszystkie t i węzłów zostaje sprawdzone i tylko m i obiecujacych węzłów potomnych ma sprawdzone węzły potomne. Szacunkowa liczba węzłów sprawdzonych przez algorytm z powrotami w celu wyszukania wszystkich rozwiązań wynosi 1+ t 0 + m 0 t 1 + m 0 m 1 t 2 + m 0 m 1 m i-1 t i +... Ogólny algorytm obliczający tą średnią może wygladać następująco ( mprod = m 0 m 1 m i-1 ). Szacowanie Monte-Carlo Problem: oszacuj efektywność algorytmu z powrotami, korzystając z algorytmu Monte Carlo. Dane wejściowe: problem rozwiazywany przez algorytm z powrotami. Wynik: szacunkowa liczba węzłów w przyciętym drzewie przestrzeni stanów generowanych przez algorytm, który jest liczbą węzłów, jaką musi sprawdzić algorytm w celu znalezienia wszystkich rozwiązań danego przypadku.

13 int estimate () { node v; int m,mprod,t,numnodes; v = korzeń drzewa stanów; numnodes = 1; m=1; mprod=1; while (m!=0) { t=liczba potomków v; mprod=mprod*m; numnodes=numnodes+mprod*t; m=liczba obiecujacych potomków v; if (m!=0) v=losowo wybrany obiecujacy potomek v; return numnodes; Dla algorytmu problemu n-królowych może to wyglądać. Oszacowanie metodą Monte Carlo dla algorytmu z powrotami problem n-królowych Problem: oszacowanie efektywności algorytmu Dane wejściowe: dodatnia wartość całkowita n Wynik: szacunkowa liczba węzłów w przyciętym drzewie przestrzeni stanów, generowanym przez algorytm liczba węzłów, jakie muszą zostać sprawdzone przez algorytm przed wyszukaniem wszystkich sposobów na ustawienie n królowych na szachownicy n n tak, aby się wzajemnie nie szachowały.

14 int estimate_n_queens (int n) { index i,j,col[1..n]; int m,mprod,numnodes; set_of_index prom_children; i=0; numnodes=1; m=1; mprod=1; while (m!=0 && i!=n) { mprod=mprod*m; numnodes=numnodes+mprod*n;//liczba wezłów t i++; // wynosi n m=0; prom_children= ; //Inicjalizacja zbioru for(j=1;j<=n;j++){ //obiecujacych potomkow col[i]=j; //pustym zbiorem if(promising(i)){ //Okreslenie obiecuj. m++; //potomkow. prom_children=prom_children {j; if (m!=0){ j= losowy wybór z prom_children; col[i]=j; return numnodes; Algorytm Monte Carlo można uruchomić wielokrotnie i jako właściwą wartość wykorzystać średnią z otrzymanych wyników. Trzeba zauwazyć, że choć prawdopobieństwo uzyskania dobrego oszacowania jest wysokie przy wielokrotnym uruchomieniu to nigdy nie mamy gwarancji, że jest to dobre oszacowanie.

15 Oszacowanie uzyskiwane dla dowolnego przypadku zastosowania metody Monte Carlo jest prawdziwe tylko dla tego pojedynczego przypadku. Zdarza się, że gdy mamy dwa różne przypadki dla takiej samej wartości n, jeden może wymagać sprawdzenia niewielkiej liczby węzłów, natomiast drugi przejrzenia całego drzewa przestrzeni stanów.

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Przykładowe B+ drzewo

Przykładowe B+ drzewo Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne:

Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne: Strona 1 z 17 Typy danych 1. Dane tekstowe rozmaite słowa zapisane w różnych alfabetach: Rozwój metod badawczych pozwala na przesunięcie granicy poznawania otaczającego coraz dalej w głąb materii: 2. Dane

Bardziej szczegółowo

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych 1 Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Alexander Denisjuk Prywatna Wyższa Szkoła Zawodowa w Giżycku

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie

Bardziej szczegółowo

Wykład 8. Drzewa AVL i 2-3-4

Wykład 8. Drzewa AVL i 2-3-4 Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Znajdowanie wyjścia z labiryntu

Znajdowanie wyjścia z labiryntu Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:

liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak: Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za

Bardziej szczegółowo

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %).

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %). Powrót Twój wynik: 4 punktów na 6 możliwych do uzyskania (6667 %). Nr Opcja Punkty Poprawna Odpowiedź Rozważmy algorytm AVLSequence postaci: 1 Niech drzewo będzie rezultatem działania algorytmu AVLSequence

Bardziej szczegółowo

Metoda podziału i ograniczeń

Metoda podziału i ograniczeń Seminarium: Algorytmy heurystyczne Metoda podziału i ograniczeń Mateusz Łyczek Wrocław, 16 marca 011 r. 1 Metoda podziału i ograniczeń Metoda podziału i ograniczeń służy do rozwiązywania problemów optymalizacyjnych.

Bardziej szczegółowo

dodatkowe operacje dla kopca binarnego: typu min oraz typu max:

dodatkowe operacje dla kopca binarnego: typu min oraz typu max: ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu

Bardziej szczegółowo

Rozwiązanie. #include #include using namespace std;

Rozwiązanie. #include <cstdlib> #include <iostream> using namespace std; Programowanie C++ Zadanie 1 Napisz program do obliczenia sumy i iloczynu ciągu liczb zakooczonego liczbą zero. Zakładamy, że ciąg zawiera co najmniej jedną liczbę (założenie to jest konieczne przy obliczeniu

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Drzewa czerwono-czarne.

Drzewa czerwono-czarne. Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST) Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Definicja pliku kratowego

Definicja pliku kratowego Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Abstrakcyjne struktury danych - stos, lista, drzewo

Abstrakcyjne struktury danych - stos, lista, drzewo Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

WYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5

WYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 WYKŁAD 10 Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 Tomasz Zieliński ZMIENNE O ZŁOŻONEJ BUDOWIE (1) Zmienne

Bardziej szczegółowo

5.9 Modyfikacja gry Kółko i krzyżyk

5.9 Modyfikacja gry Kółko i krzyżyk 274 5.9 Modyfikacja gry Kółko i krzyżyk Zajmiemy się obecnie grą, której plansza jest widoczna na rys. 5.17 (aplikacja Do15.bpr). Rysunek 5.17: Plansza do gry śuma do 15 Jej celem jest zaznaczenie cyfr,

Bardziej szczegółowo

Budowa i generowanie planszy

Budowa i generowanie planszy Gra Saper została napisana w. Jest dostępna w każdej wersji systemu Windows. Polega na odkrywaniu zaminowanej planszy tak, aby nie trafić na minę. Gra działa na bardzo prostej zasadzie i nie wymaga zaawansowanego

Bardziej szczegółowo

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wieczorowe Studia Licencjackie Wrocław, 28.11.2006 Wstęp do programowania Wykład nr 9 (w oparciu o notatki K. Lorysia z modyfikacjami) Sortowanie szybkie (Quicksort) Sortowanie przez scalanie opierało

Bardziej szczegółowo

Jak zawsze wyjdziemy od terminologii. While oznacza dopóki, podczas gdy. Pętla while jest

Jak zawsze wyjdziemy od terminologii. While oznacza dopóki, podczas gdy. Pętla while jest Pętle Pętla to pewien fragment kodu, który jest wykonywany wielokrotnie. Wyobraź sobie taką sytuację. Piszesz program do szyfrowania danych. Dane są szyfrowane kolejno bajt po bajcie. Załóżmy, że plik

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

Języki i techniki programowania Ćwiczenia 2

Języki i techniki programowania Ćwiczenia 2 Języki i techniki programowania Ćwiczenia 2 Autor: Marcin Orchel Spis treści: Język C++... 5 Przekazywanie parametrów do funkcji... 5 Przekazywanie parametrów w Javie.... 5 Przekazywanie parametrów w c++...

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu

Bardziej szczegółowo

Algorytmy sortujące i wyszukujące

Algorytmy sortujące i wyszukujące Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2 Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, /15

Bazy danych. Andrzej Łachwa, UJ, /15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Programowanie obiektowe i C++ dla matematyków

Programowanie obiektowe i C++ dla matematyków Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... 22 XI 2011 Uwaga! Ponieważ już sobie powiedzieliśmy np. o wskaźnikach i referencjach, przez które nie chcemy przegrzebywać

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Zajęcia nr 2 Programowanie strukturalne. dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej

Zajęcia nr 2 Programowanie strukturalne. dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej Zajęcia nr 2 Programowanie strukturalne dr inż. Łukasz Graczykowski mgr inż. Leszek Kosarzewski Wydział Fizyki Politechniki Warszawskiej Pętla while #include using namespace std; int main ()

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania wykład 6 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2017/2018 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie)

Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Algorytmy i złożoności Wykład 5. Haszowanie (hashowanie, mieszanie) Wprowadzenie Haszowanie jest to pewna technika rozwiązywania ogólnego problemu słownika. Przez problem słownika rozumiemy tutaj takie

Bardziej szczegółowo

7a. Teoria drzew - kodowanie i dekodowanie

7a. Teoria drzew - kodowanie i dekodowanie 7a. Teoria drzew - kodowanie i dekodowanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7a. wteoria Krakowie) drzew - kodowanie i

Bardziej szczegółowo

Wykład 5 Listy leniwe

Wykład 5 Listy leniwe Wykład 5 Listy leniwe Listy leniwe Funkcjonały dla list leniwych Przykład: generowanie liczb pierwszych metodą sita Eratostenesa Algorytmy przeszukiwania przestrzeni stanów Przykład: problem ośmiu hetmanów

Bardziej szczegółowo

Wybrane algorytmy tablicowe

Wybrane algorytmy tablicowe Wybrane algorytmy tablicowe Algorytmy i struktury danych Wykład 2. Rok akademicki: 2009/2010 Sortowanie przez wybieranie for (int i = 0; i < liczby.length - 1; i++) k = i; for (int j = i; j < liczby.length;

Bardziej szczegółowo

Liczby całkowite i rzeczywiste

Liczby całkowite i rzeczywiste Wykład 4(20 marzec 2014r.) Liczby całkowite i rzeczywiste Paulina Rogowiecka Klaudia Kamińska Adrianna Znyk 1 Spis treści: Czynniki pierwsze metoda próbnych dzieleń Pierwszość liczby naturalnej algorytmy

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru. Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4

Bardziej szczegółowo

Liczby losowe i pętla while w języku Python

Liczby losowe i pętla while w języku Python Liczby losowe i pętla while w języku Python Mateusz Miotk 17 stycznia 2017 Instytut Informatyki UG 1 Generowanie liczb losowych Na ogół programy są spójne i prowadzą do przewidywanych wyników. Czasem jednak

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

8. Wektory. Przykłady Napisz program, który pobierze od użytkownika 10 liczb, a następnie wypisze je w kolejności odwrotnej niż podana.

8. Wektory. Przykłady Napisz program, który pobierze od użytkownika 10 liczb, a następnie wypisze je w kolejności odwrotnej niż podana. 8. Wektory Przykłady 8.1. Napisz program, który pobierze od użytkownika 10 liczb, a następnie wypisze je w kolejności odwrotnej niż podana. Uwaga! Kod poniżej. To zadanie można rozwiązać przy użyciu wiedzy

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

do instrukcja while (wyrażenie);

do instrukcja while (wyrażenie); Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania wykład 7 Agata Półrola Wydział Matematyki i Informatyki UŁ sem. zimowy 2016/2017 Losowanie liczb całkowitych Dostępne biblioteki Najprostsze losowanie liczb całkowitych można wykonać za pomocą funkcji

Bardziej szczegółowo

Detekcja zakończenia i obraz stanu globalnego

Detekcja zakończenia i obraz stanu globalnego Detekcja zakończenia i obraz stanu globalnego Zakres ćwiczenia Celem ćwiczenia jest utrwalenie umiejętności zdobytych w czasie poprzednich zajęć oraz zwiększenie znajomości funkcji biblioteki PVM. Przedstawienie

Bardziej szczegółowo

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z

Bardziej szczegółowo

Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)

Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1) Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Wykład 5 Podstawowe techniki programownia w przykładach Janusz Szwabiński Plan wykładu: Metoda babilońska wyliczania pierwiastka Liczby pierwsze i sito Eratostenesa Metoda bisekcji

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo