WpłyW parametrycznej niepewności modelu na zmiany WspółczynnikóW Wzmocnień automatycznej stabilizacji samolotu

Wielkość: px
Rozpocząć pokaz od strony:

Download "WpłyW parametrycznej niepewności modelu na zmiany WspółczynnikóW Wzmocnień automatycznej stabilizacji samolotu"

Transkrypt

1 WpłyW parametrycznej niepewności modelu na zmiany WspółczynnikóW Wzmocnień automatycznej stabilizacji samolotu Jerzy Graffstein Instytut Lotnictwa Streszczenie Jakość automatycznej stabilizacji dla wybranych praw sterowania jest zależna od wartości współczynników wzmocnienia. W pracy zaproponowano metodykę syntezy praw sterowania wykorzystującą całkowo-kwadratowy wskaźnik jakości. Przy tak przyjętej metodzie decydujący wpływ na wartość omawianych współczynników ma dynamika sterowanego obiektu i otaczające go środowisko. Poprawność wyznaczenia tych wartości zależy od jakości matematycznego modelu rozważanego obiektu. Wskazano czynniki determinujące niepewność modelu. Pokazano wpływ wy branych właściwości obiektu na zmiany wartości parametrów automatycznej stabilizacji. Omówiono sposób wyliczania zakresu zmian tych parametrów. Przedstawiono i omówiono przykłady wyników obliczeń zakresu zmian badanych współczynników dla różnego stopnia niepewności modelu. WSTĘP Sposób działania automatycznej stabilizacji i jej efektywność zależy w sposób istotny od struktury praw sterowania i wartości współczynników wzmocnienia. Dla przyjętej formy praw sterowania decydujący wpływ na wartość współczynników ma dynamika automatycznie stabilizowanego obiektu. Poprawność wyznaczenia tych współczynników dla rozważanej metody zależy od jakości matematycznego modelu ruchu danego obiektu. Przy ocenie matematycznego modelu bierzemy przede wszystkim pod uwagę zgodność z zachowaniem rzeczywistego obiektu podobieństwo reakcji wywołanej zmianami wartości sterujących. Do istotniejszych źródeł powodujących niezgodności z rzeczywistym obiektem należy zaliczyć: uproszczenia matematycznego opisu modelu dynamiki określane jako niepewność strukturalna, błędy identyfikacji modelu wpływające na wartości parametrów matematycznych równań nazywane niepewnością parametryczną, pominięcie oddziaływań o charakterze wewnętrznych zakłóceń pochodzących od różnego rodzaju systemów pokładowych np. urządzenia pilotażowo-nawigacyjne, układ sterowania, układ napędu, itp., uproszczenia opisu wpływu zakłóceń zewnętrznych pochodzących od warunków otoczenia np. ruch powietrza, oblodzenie, opady itp. WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 65

2 Wymagania stawiane przy tworzeniu matematycznego modelu dotyczą uzyskania najlepszej dokładności odwzorowania reakcji nie tylko na sygnały sterujące ale również na zakłócenia zewnętrzne i wewnętrzne. Badając wpływ różnych źródeł niezgodności modelu na wartości współczynników praw sterowania należy uwzględnić najbardziej niekorzystne przypadki ale jednocześnie takie, które mogą wystąpić w rzeczywistych warunkach. metoda Wyliczania WSPóŁczynnikóW PraW STeroWania automatycznie STabilizoWaneGo SamoloTu Sterowanie stabilizujące ruch samolotu w rozważanym przypadku odbywa się w czterech kanałach: pochylania, odchylania, przechylania i prędkości według poniżej przedstawionych praw sterowania: Ogólny, nieliniowy model dynamiki ruchu zapisany w formie [7], [10], [3]: (macierze opisano w [7], [10]) można poddać linearyzacji wokół chwilowego punk - tu równowagi, określonego przez wektory x 0 i u 0 tak, że f (x 0, u 0 ) = 0 i wybranego w otoczeniu typowych warunków eksploatacji. Otrzymany model liniowy o postaci, dobrze odzwierciedla zachowanie rozważanego obiektu w pewnym otoczeniu punktu (x 0, u 0 ). Gdzie x = [U, V, W, P, Q, R, z 1, F, Q, W] T wektor zmiennych stanu, u = [d L, d H, d L, d T ] T wektor sterowań (kątowe położenia trzech powierzchni sterowych i położenie manetki gazu) oraz macierze stanu: a = [A ij ] iî{1,...,n}, jî{1,...,n} Î R [n n] i sterowania b = [B ij ] iî{1,...,n}, jî{1,...,m} Î R [n m] są określone jako odpowiednie pochodne cząstkowe f = [f 1,,f n ] T przy czym przybliżone wartości ich elementów można obliczyć z zależności [4], [7]: (1) (2) (3) (4) (5) (5) Wykorzystując zlinearyzowany matematyczny model dynamiki samolotu rozwiązano algebraiczne równanie Riccatiego [1], [4] i [9]: (6) spełniające warunek minimalizacji całkowego wskaźnika jakości [7]: gdzie Q w i R w oraz N w są dodatnio określonymi wagowymi macierzami. Odzwierciedlają one z jednej strony udział w procesie jakość sterowania (np. wielkość uchybu i czas regulacji) a z dru - giej strony ilości energii wydatkowanej w procesie sterowania. W pracy przyjęto, że macierze Q w i R w oraz N w posiadają tylko nie zerowe elementy diagonalne i są wyliczane wg zależności: (7) 66 PRACE INSTYTUTU LOTNICTWA Nr 202

3 gdzie: x imax maksymalny zakres zmian i-tej wartości zmiennej stanu, u imax maksymalny zakres zmian i-tej wartości zmiennej sterującej. Wyliczona z równania (7) symetryczna macierz P pozwala na wyznaczenie współczynników k WS zgodnie z: Zgodnie z (9) wyliczone współczynniki wzmocnień praw sterowania automatycznej stabilizacji samolotu o nominalnych parametrach masowych (1050 kg) i aerodynamicznych lecącego poziomo na wysokości 200 m, z prędkością 50 m/s zamieszczono w tabeli 1. Podane wartości wykorzystano w pracy jako punkt odniesienia dla omawianych badań. Tab. 1. Współczynniki wzmocnień (8) (9) Współpraca układu automatycznej stabilizacji ruchu samolotu z elementami stanowiącymi jego wyposażenie została w sposób schematyczny pokazana na rysunku 1. Rys. 1. Ogólny schemat funkcjonowania automatycznej stabilizacji lotu Zgodnie z przedstawioną strukturą uchyb stanowi różnicę pomiędzy zmiennymi zadanymi a wartościami zmierzonymi przez systemy pomiarowe. Na podstawie wartości tych uchybów WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 67

4 prawa sterowania wyznaczają sygnały służące do sterowania układami wykonawczymi. Wspomniane układy zapewniają odpowiednie położenie kątowe powierzchni sterowych samolotu i regulację układu napędowego. Na zachowanie się obiektu automatycznie stabilizowanego mają wpływ zakłócenia pochodzące od niepewności modelu (oznaczone symbolem D) i czynniki pochodzące od otoczenia, w którym odbywa się ruch obiektu. WPŁyW ParameTryczneJ niepewności modelu na WSPólczynniki Wzmocnień PrzykŁady elementarne Parametryczna niepewność modelu spowodowana jest ograniczoną dokładnością identyfikacji matematycznego modelu i błędami pochodzącymi z przyjętych uproszczeń. Należy przede wszystkim uwzględnić błędy identyfikacji wartości sił i momentów sił aerodynamicznych i masowych oraz sterujących. Wynika to z problemów związanych z określeniem współczynników pochodnych aerodynamicznych C ajk oraz momentów bezwładności J ij, masy m, położenia środka masy x cs dla rozważanego obiektu. W równaniu (5) opisującym matematyczny model ruchu samolotu następujące macierze są funkcjami wyżej wymienionych parametrów:,,. Tego typu zależności po zlinearyzowaniu modelu (5) wywołują zmiany elementów macierzy stanu a i b. To pociąga za sobą odpowiednie zmiany współczynników k WS wyliczanych z równań (6) do (9). Na dynamikę stabilizowanego obiektu mają wpływ różnego rodzaju czynniki: odkształcenia konstrukcji płata skrzydła, stateczników oraz powierzchni sterowych powodujące zmianę charakterystyk aerodynamicznych samolotu, zmiany wielkości parametrów masowych samolotu wynikające ze zużycia paliwa oraz jego przemieszczania a także niedokładnej znajomości położenia dodatkowych ładunków w różnych obszarach samolotu [7], różnice pomiędzy zmiennymi sterującymi zadawanymi a realizowanymi wynikające z od - kształceń, luzów i niedokładności mechanicznych elementów systemów wykonawczych oraz opóźnienia reakcji serwomechanizmów [5], błędy i opóźnienia systemów pomiarowo-wyliczających [6], zakłócenia pochodzące od pracy układu napędowego. Ponadto na obiekt działają zewnętrzne zakłócenie wpływające na przebieg ruchu między innymi przemieszczanie się otaczającego powietrza, które w zależności od charakteru określane jest jako np. wiatr lub turbulencja. Rys. 2. Wpływ niepewności modelu (zmienne masowe) na współczynniki wzmocnienia 68 PRACE INSTYTUTU LOTNICTWA Nr 202

5 Pełna lista wszystkich parametrów wpływających w różnym stopniu na zmiany współczynników wzmocnienia jest dłuższa od podanej powyżej [7]. Większość najistotniejszych czynników można podzielić na trzy oddzielne grupy: zmienne opisujące ruch obiektu, zmiany i niedokładności charakterystyk aerodynamicznych oraz zmiany i błędy danych masowych. Rys. 3. Wpływ niepewności modelu (zmienne aerodynamiczne) na współczynniki wzmocnienia W początkowym etapie pracy badano wrażliwość współczynników wzmocnienia na nie - pewność modelu oddzielnie dla poszczególnych odchyleń wartości aerodynamicznych i ma sowych. Przykładowe wyniki takich obliczeń pokazano na wykresach (rys. 2 3) gdzie błąd wybranych parametrów mieścił się przeważnie w przedziale Widoczne jest duże zróżnicowanie oddziaływania na wzmocnienia nie tylko co do wartości ale i kształtu przebiegu Występuje nieliniowy charakter a także zmiany w przybliżeniu liniowe. Pokazana na wykresie zmiany masy samolotu (rys. 2) wywołują nieliniowe zachowanie współczynników wzmocnienia dla współczynnika widoczny jest punkt siodłowy. Naj - większą wrażliwość na zmiany masy odnotowuje się dla współczynnika. Błędy momentów bezwładności wywołują w przybliżeniu liniowe zmiany wzmocnień w zilustrowanych kanałach: pochylania, przechylania i odchylania. Zmiany współczynników spowodowane niepewnością modelu aerodynamicznego mają także w przybliżeniu linowy charakter. Analiza stopnia wpływu tego ostatniego typu niepewności modelu wskazuje na bardzo duże zróżnicowanie. Współ - czynnik ulega dużym wahaniom wywołanym zmianami pochodnej aerodynamicznej (momentu odchylania po wychyleniu lotek), ale jest znacznie mniej wrażliwy na błędy pochodnej (momentu odchylania po prędkości przechylania). Przed stawio ne wyżej przykłady po - zwalają na ogólne zorientowanie się w jaki sposób elementy niepewności modelu wpływają na parametry automatycznej stabilizacji. Nie zaprezentowano kompletu uzyskanych wyników ponieważ wymaga to zamieszczenia zbyt dużej ilości wykresów (240 charakterystyk) co prze - kracza sensowną objętość artykułu. metoda i PrzykŁady zintegrowanego badania zmian WSPóŁczynnikóW Wzmocnienia dla ParameTryczneJ niepewności modelu Oddzielne badanie wpływu poszczególnych parametrów modelu na zmianę współczynników wzmocnienia [7] nie pozwala na jednoczesne oszacowanie zakresu zmian tych współczynników w wyniku istnienia niepewności w rzeczywistych warunkach stabilizowanego lotu. Z drugiej strony podejście globalne polegające na badaniu wszystkich czynników niepewności jednocześnie jest zadaniem skomplikowanym. Przystępując do próby rozwiązania omawianego zadania WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 69

6 analizowano oddziaływanie całej grupy parametrów aerodynamicznych i całej grupy masowej oraz obu tych grup jednocześnie. W ten sposób kolejne współczynniki można opisać jako funkcje: Ostatecznie w dalszej części pracy ograniczono się do analizy jednoczesnego (zintegrowanego) wpływu całej wybranej grupy zmiennych aerodynamicznych i masowych. Istnieje pewna ilość metod, które mogą posłużyć do wyliczenie największych zmian współczynników wzmocnienia jakie wystąpią dla danego poziomu niepewności modelu. Jedną z nich opisano w pracy [2] ale w pracy wybrano metodę polegającą na przebadaniu wszystkich możliwych kombinacji wartości minimalnych i maksymalnych badanych parametrów. Ta metoda stanowi kompromis pomiędzy stopniem złożoności i jakością wyników. W powyższej metodzie posługujemy się wartością maksymalnego odchylenia od wartości nominalnej każdego badanego parametru określonych symbolem. Jest to spodziewany błąd z jakim wyznaczono współczynniki aerodynamiczne i dane masowe na drodze obliczeniowej albo eksperymentalnej (dmuchania tunelowe lub badania w locie oraz badania naziemne). W dalszych rozważaniach rozpatrywano różne poziomy tego błędu z przedziału Obliczenia z wykorzystaniem przyjętej metody dla wszystkich 15 współczynników wzmocnie - nia praw sterowania (1-4) przeprowadzono na przykładzie niedużego samolotu o masie 1050 kg i lecącego na wysokości 200 m z prędkością 50 m/s. Rys. 4. Rozkład wartości współczynników i dla grupy zmiennych aerodynamicznych 70 PRACE INSTYTUTU LOTNICTWA Nr 202

7 Rys. 5. Rozkład wartości współczynników i dla grupy zmiennych masowych wzmocnienia W dalszej części pracy pokazano na wybranych przykładach maksymalne zakresy zmian współczynników zależne od wielkości błędu wybranych parametrów aerodynamicznych i masowych. Do dalszych rozważań wybrano 10 współczynników aerodynamicznych, masę samolotu, przesunięcie środka masy wzdłuż osi x i 4 momenty bezwładności (10): dla których ilość możliwych niepowtarzających się kombinacji uwzględnianych w obliczeniach dla każdego współczynnika wzmocnienia w przyjętej metodzie wynosiła N = Oddzielnie badany wpływ błędów grupy parametrów masowych wymaga N = 64 kombinacji a dla analizowanej grupy współczynników aerodynamicznych ilość ta wynosi N = Charakterystyczną cechą otrzymanych wyników jest nierównomierny rozkład wartości współczynników oraz ograniczona ilość poziomów w zależności od badanego współczynnika. Rys. 6. Rozkład wartości współczynników i dla obu grup jednocześnie WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 71

8 Rys. 7. Procentowe zmiany wybranych współczynników w funkcji obu grup jednocześnie Na rysunku 4 pokazano uzyskane za pomocą przyjętej metody (dla ) wartości współczynnika od zmian parametrów aerodynamicznych skupione w trzech obszarach. Ten sam współczynnik (rys. 5) dla zmiennych masowych grupuje swoje wartości w dwóch obszarach, ale dla badanych jednocześnie obu typów parametrów (rys. 6) skupiony jest w 4 strefach. Drugi z przykładowo pokazanych współczynników posiada bardziej regularny obraz z większą liczbą wartości (rys. 6). Dla obu współczynników obserwowana jest podobna prawidłowość najmniej poziomów wartości osiągają dla zmian parametrów masowych, więcej dla aerodynamicznej a najwięcej dla przypadku jednoczesnych zmian w obu grupach. Rys. 8. Procentowe zmiany wybranych współczynników w funkcji zmiennych aerodynamicznych 72 PRACE INSTYTUTU LOTNICTWA Nr 202

9 Rys. 9. Procentowe zmiany wybranych współczynników w funkcji zmiennych masowych W rozważanej metodzie procentowe zmiany wartości poszczególnych współczynników wzmocnienia w funkcji poziomu niepewności modelu (dla założonego przedziału zmian) przyjmują w zależności od wybranego współczynnika różne przebiegi i szeroką gamę maksymalnych wartości. Dla skrajnych przypadków pokazanych na wykresie (rys. 8) maksymalna zmiana współczynnika jest poniżej 0.3% a dla współczynnika osiąga 1100% (rys. 8). Jednoczesne zmiany w obu badanych grupach powodują wzrost maksymalnych wartość współczynników a w skrajnym przypadku do poziomu 1300% (rys. 7). Wyraźnie mniejsze wahania badanych współczynników wywołują niedokładności parametrów masowych wszystkie maksymalne wartości poniżej 72% (rys. 9). Procentowe zmiany badanych wielkości wskazują w wielu przypadkach na brak symetrii względem osi Oy. Szczególnie wyraźnie obserwuje się to zjawisko na przykładzie współczynników (rys. 7 i 8). Takie zachowanie powoduje konieczność analizy zmian współczynników oddzielnie dla błędów z ich dolnego i oddzielnie dla górnego zakresu. Rys. 10. Porównanie zmian współczynników: i w funkcji różnych grup zmiennych WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 73

10 Rys. 11. Porównanie zmian współczynników: i w funkcji różnych grup zmiennych Porównanie zmian na rysunkach 10 i 11 wybranych współczynników świadczy o dużym zróżnicowaniu wrażliwości parametrów stabilizacji na niepewność modelu. Błędy parametrów aerodynamicznych mają dominujący wpływ i nadają przebiegom wzmocnień charakter nieliniowy. Udział parametrów masowych w przebiegach wzmocnień jest mniejszy i bardziej zróżnicowany, dla współczynnika przy dodatnich zmianach parametrów nie obserwuje się wpływu. Biorąc pod uwagę częściej spotykany zakres błędów parametrów masowych i aerodynamicznych mieszczący się w przedziale maksymalne procentowe zmiany wszystkich współczynników wzmocnień z wyjątkiem jednego nie przekraczają 100%. Zaprezentowana metoda pozwala na uzyskanie najszerszego zakresu zmian współczynników wzmocnień przy uwzględnieniu najbardziej niekorzystnych sytuacji, które mogą wystąpić w rzeczywistych warunkach dla wybranego obiektu. WnioSki ( K V Φ ) W oparciu o analizę wyników uzyskanych z cyfrowych obliczeń można wyciągnąć następujące wnioski stanowiące istotne wskazówki przy analizie algorytmów automatycznej stabilizacji ruchu samolotu: 1. Parametryczna niepewność modelu posiada zróżnicowany wpływ na wartości współczynników wzmocnień w całym ich zbiorze i poszczególnych kanałach automatycznej stabilizacji. 2. Zwiększenie ilości badanych czynników niepewności powoduje znaczny wzrost ilości kombinacji i niezbędnych obliczeń. 3. Jednoczesne uwzględnienie obu grup parametrów powoduje zwiększenie zakresu zmian analizowanych wzmocnień w porównaniu z przedziałami otrzymywanymi oddzielnie dla każdej z badanych grup. 4. Dla wszystkich wzmocnień wpływ błędów parametrów masowych jest mniejszy niż danych aerodynamicznych. 5. W badaniach skutków niepewności modelu na wartości współczynników wzmocnień niezbędna jest analiza wpływu oddzielnie dla błędów z ich dolnego i oddzielnie dla górnego zakresu. 74 PRACE INSTYTUTU LOTNICTWA Nr 202

11 literatura [1] athans m., Falb P.: Sterowanie optymalne, wstęp do teorii i jej zastosowania. WNT, Warszawa [2] avanzini G.: Trajectory tracking for a helicopter model. The Aeronautical Journal, No. 2, 2000, pp [3] baarspul m.: Review of Flight Simulation Techniques. Progress in Aerospace Sciences, vol. 27, No.1, Pergamon Press, [4] Graffstein J., krawczyk m.: Możliwości uproszczeń układu automatycznego sterowania małym samolotem bezpilotowym. Zeszyty Naukowe Politechniki Rzeszowskiej, Mechanika Nr 56, T 2, Rzeszów, [5] Graffstein J.: Wpływ dynamiki układu wykonawczego na ruch automatycznie sterowanego obiektu. Materiały XI Ogólnopolskiej Konferencji Mechanika w lotnictwie, PTMTiS, Warszawa [6] Graffstein J.: Wpływ dynamiki pomiaru prędkości kątowej na ruch automatycznie sterowanego obiektu. Monografia Automatyzacja i eksploatacja systemów sterowania i łączności, Gdynia [7] Graffstein J.: Wpływ charakterystyk obiektu i przebiegu jego ruchu na parametry układu stabilizacji lotu. Materiały XI Ogólnopolskiej Konferencji Mechanika w lotnictwie, PTMTiS, Warszawa, 2008, s [8] Graffstein J.: Metoda sterowania samolotem i jej dokładność podczas ruchu wzdłuż zadanej trajektorii. Zeszyty Naukowe Akademia Marynarki Wojennej, Nr 177B Gdynia, 2009, s [9] kaczorek T.: Teoria sterowania. PWN. Warszawa, t. 1, 2, [10]Maryniak J.: Ogólny model matematyczny sterowanego samolotu. Mechanika w Lotnictwie, PTMTiS, Warszawa J. Graffstein an influence of model ParameTric uncertainty on Gain FacTorS VariaTion in aircraft automatic STabilizaTion Abstract A quality of automatic stabilisation, assessed for selected control laws, depends on gain parameters values. In the method of control law synthesis with integral quadratic quality index is proposed. In case of such a method, the dynamics of considered object and environment has a decisive impact on values of discussed parameters. Correctness of assessment of these values depends on the quality of mathematical model of the object. Factors generating the model uncertainty are identified. An influence of selected features of the object on variations of automatic stabilisation parameters is showed. Method for computing the range of these parameters variations are discussed. Results of computations of the range of parameters variations are presented for several levels of model uncertainty. WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 75

wpływ wybranych zmiennych stanu na dokładność toru lotu samolotu podczas automatycznie wykonywanego manewru

wpływ wybranych zmiennych stanu na dokładność toru lotu samolotu podczas automatycznie wykonywanego manewru wpływ wybranych zmiennych stanu na dokładność toru lotu samolotu podczas automatycznie wykonywanego manewru Jerzy Graffstein Instytut Lotnictwa Streszczenie W pracy przedstawiono ideę działania automatycznego

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

DObóR PARAmETRóW manewru ANTYkOLizYjNEgO i jego PRzEbiEg

DObóR PARAmETRóW manewru ANTYkOLizYjNEgO i jego PRzEbiEg PRACE instytutu LOTNiCTWA 224, s. 31-43, Warszawa 2012 DObóR PARAmETRóW manewru ANTYkOLizYjNEgO i jego PRzEbiEg Jerzy GraffSteIN Instytut Lotnictwa Streszczenie Wybór rodzaju manewru antykolizyjnego zależy

Bardziej szczegółowo

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

LAB-EL LB-760A: regulacja PID i procedura samostrojenia

LAB-EL LB-760A: regulacja PID i procedura samostrojenia Page 1 of 5 Copyright 2003-2010 LAB-EL Elektronika Laboratoryjna www.label.pl LAB-EL LB-760A: regulacja PID i procedura samostrojenia Nastawy regulatora PID W regulatorze LB-760A poczynając od wersji 7.1

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów Laboratorium Metod Optymalizacji 216 Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów 1. Za pomocą funkcji lsqcurvefit dobrać parametry a i b funkcji: Posiadając następujące dane pomiarowe:

Bardziej szczegółowo

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH Problemy Kolejnictwa Zeszyt 149 89 Dr inż. Adam Rosiński Politechnika Warszawska WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH SPIS TREŚCI 1. Wstęp. Optymalizacja procesu

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Paweł GÓRSKI 1), Emil KOZŁOWSKI 1), Gracjan SZCZĘCH 2) 1) Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

SYMULACYJNE BADANIE SKUTECZNOŚCI AMUNICJI ODŁAMKOWEJ

SYMULACYJNE BADANIE SKUTECZNOŚCI AMUNICJI ODŁAMKOWEJ Dr inż. Maciej PODCIECHOWSKI Dr inż. Dariusz RODZIK Dr inż. Stanisław ŻYGADŁO Wojskowa Akademia Techniczna SYMULACYJNE BADANIE SKUTECZNOŚCI AMUNICJI ODŁAMKOWEJ Streszczenie: W referacie przedstawiono wyniki

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 5 212 EWA DZIAWGO ANALIZA WŁASNOŚCI OPCJI SUPERSHARE Wprowadzenie Proces globalizacji rynków finansowych stwarza

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA OBLICZANIE POCZĄTKOWEJ WYSOKOŚCI METACENTRYCZNEJ PODCZAS OPERACJI BALASTOWYCH Zajęcia laboratoryjne z przedmiotu:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Regulacja adaptacyjna w anemometrze stałotemperaturowym

Regulacja adaptacyjna w anemometrze stałotemperaturowym 3 Prace Instytutu Mechaniki Górotworu PAN Tom 8, nr 1-4, (2006), s. 3-7 Instytut Mechaniki Górotworu PAN Regulacja adaptacyjna w anemometrze stałotemperaturowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport. Luty 2015. Automatyzacja statku 1.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport. Luty 2015. Automatyzacja statku 1. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport Automatyzacja statku 1 WPROWADZENIE M. H. Ghaemi Luty 2015 Automatyzacja statku 1. Wprowadzenie 1 Kierunek:

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15 PRACE instytutu LOTNiCTWA 213, s. 204-211, Warszawa 2011 MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15 RySzaRd ChaChuRSkI, MaRCIN GapSkI Wojskowa Akademia

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2

INSTRUKCJA DO ĆWICZENIA NR 2 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wyposażenie Samolotu

Wyposażenie Samolotu P O L I T E C H N I K A R Z E S Z O W S K A im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Wyposażenie Samolotu Instrukcja do laboratorium nr 2 Przyrządy żyroskopowe

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Cel ćwiczenia WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Celem cwiczenia jest wyznaczenie współczynników oporu powietrza c x i oporu toczenia f samochodu metodą wybiegu. Wprowadzenie

Bardziej szczegółowo

m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda.

m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda. msg M 1-1 - Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda. Zagadnienia: prawa dynamiki Newtona, równania dynamiczne ruchu, siły tarcia, moment sił, moment bezwładności, opis kinematyczny

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 1 dodr. (PWN).

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI Inżynieria Rolnicza 6(131)/2011 OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI Leonard Woroncow, Ewa Wachowicz Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy przedstawiono wyniki

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Projekt 1 Wymiarowanie (sizing) analiza trendów, wyznaczenie konstrukcyjnej masy startowej.

Projekt 1 Wymiarowanie (sizing) analiza trendów, wyznaczenie konstrukcyjnej masy startowej. Projekt 1 Wymiarowanie (sizing) analiza trendów, wyznaczenie konstrukcyjnej masy startowej. Niniejszy projekt obejmuje wstępne wymiarowanie projektowanego samolotu i składa się z następujących punktów

Bardziej szczegółowo

Sterowanie układem zawieszenia magnetycznego

Sterowanie układem zawieszenia magnetycznego Politechnika Śląska w Gliwicach Wydział: Automatyki, Elektroniki i Informatyki Kierunek: Automatyka i Robotyka Specjalność: Komputerowe systemy sterowania Sterowanie układem zawieszenia magnetycznego Maciej

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

2. Metoda impulsowa pomiaru wilgotności mas formierskich.

2. Metoda impulsowa pomiaru wilgotności mas formierskich. J. BARYCKI 2 T. MIKULCZYŃSKI 2 A. WIATKOWSKI 3 R. WIĘCŁAWEK 4 1,3 Ośrodek Badawczo-Rozwojowy Elementów i Układów Pneumatyki 2,4 Instytut Technologii Maszyn i Automatyzacji Politechniki Wrocławskiej Zaprezentowano

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Metoda pomiaru błędu detektora fazoczułego z pierścieniem diodowym

Metoda pomiaru błędu detektora fazoczułego z pierścieniem diodowym Bi u l e t y n WAT Vo l. LXI, Nr 3, 2012 Metoda pomiaru błędu detektora fazoczułego z pierścieniem diodowym Bronisław Stec, Czesław Rećko Wojskowa Akademia Techniczna, Wydział Elektroniki, Instytut Radioelektroniki,

Bardziej szczegółowo

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych ĆWICZENIE NR.6 Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych 1. Wstęp W nowoczesnych przekładniach zębatych dąży się do uzyskania małych gabarytów w stosunku do

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM

1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM 1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM 1.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP obowiązujących w Laboratorium

Bardziej szczegółowo

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+)

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+) Autor: Piotr Fabijański Koreferent: Paweł Fabijański Zadanie Obliczyć napięcie na stykach wyłącznika S zaraz po jego otwarciu, w chwili t = (0 + ) i w stanie ustalonym, gdy t. Do obliczeń przyjąć następujące

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

PODSTAWY AUTOMATYKI IV. URZĄDZENIA GRZEJNE W UKŁADACH AUTOMATYCZNEJ REGULACJI

PODSTAWY AUTOMATYKI IV. URZĄDZENIA GRZEJNE W UKŁADACH AUTOMATYCZNEJ REGULACJI PODSTAWY AUTOMATYKI IV. URZĄDZENIA GRZEJNE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 4 BADANIE TERMOSTATYCZNYCH GŁOWIC GRZEJNIKOWYCH Rzeszów 2001 2 1. WPROWADZENIE Termostatyczne zawory grzejnikowe

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4 Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4 Prowadzący: prof. nadzw. Tomasz Stręk Spis treści: 1.Analiza przepływu

Bardziej szczegółowo

ANALIZA PRZEPŁYWU W TUNELU AERODYNAMICZNYM PO MODERNIZACJI

ANALIZA PRZEPŁYWU W TUNELU AERODYNAMICZNYM PO MODERNIZACJI Dr inż. Waldemar DUDDA Dr inż. Jerzy DOMAŃSKI Uniwersytet Warmińsko-Mazurski w Olsztynie ANALIZA PRZEPŁYWU W TUNELU AERODYNAMICZNYM PO MODERNIZACJI Streszczenie: W opracowaniu przedstawiono wyniki symulacji

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i Materiały Nr 9 9 Piotr NIKLAS* pomiar częstotliwości, składowe harmoniczne, automatyka elektroenergetyczna

Bardziej szczegółowo

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo