WpłyW parametrycznej niepewności modelu na zmiany WspółczynnikóW Wzmocnień automatycznej stabilizacji samolotu

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WpłyW parametrycznej niepewności modelu na zmiany WspółczynnikóW Wzmocnień automatycznej stabilizacji samolotu"

Transkrypt

1 WpłyW parametrycznej niepewności modelu na zmiany WspółczynnikóW Wzmocnień automatycznej stabilizacji samolotu Jerzy Graffstein Instytut Lotnictwa Streszczenie Jakość automatycznej stabilizacji dla wybranych praw sterowania jest zależna od wartości współczynników wzmocnienia. W pracy zaproponowano metodykę syntezy praw sterowania wykorzystującą całkowo-kwadratowy wskaźnik jakości. Przy tak przyjętej metodzie decydujący wpływ na wartość omawianych współczynników ma dynamika sterowanego obiektu i otaczające go środowisko. Poprawność wyznaczenia tych wartości zależy od jakości matematycznego modelu rozważanego obiektu. Wskazano czynniki determinujące niepewność modelu. Pokazano wpływ wy branych właściwości obiektu na zmiany wartości parametrów automatycznej stabilizacji. Omówiono sposób wyliczania zakresu zmian tych parametrów. Przedstawiono i omówiono przykłady wyników obliczeń zakresu zmian badanych współczynników dla różnego stopnia niepewności modelu. WSTĘP Sposób działania automatycznej stabilizacji i jej efektywność zależy w sposób istotny od struktury praw sterowania i wartości współczynników wzmocnienia. Dla przyjętej formy praw sterowania decydujący wpływ na wartość współczynników ma dynamika automatycznie stabilizowanego obiektu. Poprawność wyznaczenia tych współczynników dla rozważanej metody zależy od jakości matematycznego modelu ruchu danego obiektu. Przy ocenie matematycznego modelu bierzemy przede wszystkim pod uwagę zgodność z zachowaniem rzeczywistego obiektu podobieństwo reakcji wywołanej zmianami wartości sterujących. Do istotniejszych źródeł powodujących niezgodności z rzeczywistym obiektem należy zaliczyć: uproszczenia matematycznego opisu modelu dynamiki określane jako niepewność strukturalna, błędy identyfikacji modelu wpływające na wartości parametrów matematycznych równań nazywane niepewnością parametryczną, pominięcie oddziaływań o charakterze wewnętrznych zakłóceń pochodzących od różnego rodzaju systemów pokładowych np. urządzenia pilotażowo-nawigacyjne, układ sterowania, układ napędu, itp., uproszczenia opisu wpływu zakłóceń zewnętrznych pochodzących od warunków otoczenia np. ruch powietrza, oblodzenie, opady itp. WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 65

2 Wymagania stawiane przy tworzeniu matematycznego modelu dotyczą uzyskania najlepszej dokładności odwzorowania reakcji nie tylko na sygnały sterujące ale również na zakłócenia zewnętrzne i wewnętrzne. Badając wpływ różnych źródeł niezgodności modelu na wartości współczynników praw sterowania należy uwzględnić najbardziej niekorzystne przypadki ale jednocześnie takie, które mogą wystąpić w rzeczywistych warunkach. metoda Wyliczania WSPóŁczynnikóW PraW STeroWania automatycznie STabilizoWaneGo SamoloTu Sterowanie stabilizujące ruch samolotu w rozważanym przypadku odbywa się w czterech kanałach: pochylania, odchylania, przechylania i prędkości według poniżej przedstawionych praw sterowania: Ogólny, nieliniowy model dynamiki ruchu zapisany w formie [7], [10], [3]: (macierze opisano w [7], [10]) można poddać linearyzacji wokół chwilowego punk - tu równowagi, określonego przez wektory x 0 i u 0 tak, że f (x 0, u 0 ) = 0 i wybranego w otoczeniu typowych warunków eksploatacji. Otrzymany model liniowy o postaci, dobrze odzwierciedla zachowanie rozważanego obiektu w pewnym otoczeniu punktu (x 0, u 0 ). Gdzie x = [U, V, W, P, Q, R, z 1, F, Q, W] T wektor zmiennych stanu, u = [d L, d H, d L, d T ] T wektor sterowań (kątowe położenia trzech powierzchni sterowych i położenie manetki gazu) oraz macierze stanu: a = [A ij ] iî{1,...,n}, jî{1,...,n} Î R [n n] i sterowania b = [B ij ] iî{1,...,n}, jî{1,...,m} Î R [n m] są określone jako odpowiednie pochodne cząstkowe f = [f 1,,f n ] T przy czym przybliżone wartości ich elementów można obliczyć z zależności [4], [7]: (1) (2) (3) (4) (5) (5) Wykorzystując zlinearyzowany matematyczny model dynamiki samolotu rozwiązano algebraiczne równanie Riccatiego [1], [4] i [9]: (6) spełniające warunek minimalizacji całkowego wskaźnika jakości [7]: gdzie Q w i R w oraz N w są dodatnio określonymi wagowymi macierzami. Odzwierciedlają one z jednej strony udział w procesie jakość sterowania (np. wielkość uchybu i czas regulacji) a z dru - giej strony ilości energii wydatkowanej w procesie sterowania. W pracy przyjęto, że macierze Q w i R w oraz N w posiadają tylko nie zerowe elementy diagonalne i są wyliczane wg zależności: (7) 66 PRACE INSTYTUTU LOTNICTWA Nr 202

3 gdzie: x imax maksymalny zakres zmian i-tej wartości zmiennej stanu, u imax maksymalny zakres zmian i-tej wartości zmiennej sterującej. Wyliczona z równania (7) symetryczna macierz P pozwala na wyznaczenie współczynników k WS zgodnie z: Zgodnie z (9) wyliczone współczynniki wzmocnień praw sterowania automatycznej stabilizacji samolotu o nominalnych parametrach masowych (1050 kg) i aerodynamicznych lecącego poziomo na wysokości 200 m, z prędkością 50 m/s zamieszczono w tabeli 1. Podane wartości wykorzystano w pracy jako punkt odniesienia dla omawianych badań. Tab. 1. Współczynniki wzmocnień (8) (9) Współpraca układu automatycznej stabilizacji ruchu samolotu z elementami stanowiącymi jego wyposażenie została w sposób schematyczny pokazana na rysunku 1. Rys. 1. Ogólny schemat funkcjonowania automatycznej stabilizacji lotu Zgodnie z przedstawioną strukturą uchyb stanowi różnicę pomiędzy zmiennymi zadanymi a wartościami zmierzonymi przez systemy pomiarowe. Na podstawie wartości tych uchybów WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 67

4 prawa sterowania wyznaczają sygnały służące do sterowania układami wykonawczymi. Wspomniane układy zapewniają odpowiednie położenie kątowe powierzchni sterowych samolotu i regulację układu napędowego. Na zachowanie się obiektu automatycznie stabilizowanego mają wpływ zakłócenia pochodzące od niepewności modelu (oznaczone symbolem D) i czynniki pochodzące od otoczenia, w którym odbywa się ruch obiektu. WPŁyW ParameTryczneJ niepewności modelu na WSPólczynniki Wzmocnień PrzykŁady elementarne Parametryczna niepewność modelu spowodowana jest ograniczoną dokładnością identyfikacji matematycznego modelu i błędami pochodzącymi z przyjętych uproszczeń. Należy przede wszystkim uwzględnić błędy identyfikacji wartości sił i momentów sił aerodynamicznych i masowych oraz sterujących. Wynika to z problemów związanych z określeniem współczynników pochodnych aerodynamicznych C ajk oraz momentów bezwładności J ij, masy m, położenia środka masy x cs dla rozważanego obiektu. W równaniu (5) opisującym matematyczny model ruchu samolotu następujące macierze są funkcjami wyżej wymienionych parametrów:,,. Tego typu zależności po zlinearyzowaniu modelu (5) wywołują zmiany elementów macierzy stanu a i b. To pociąga za sobą odpowiednie zmiany współczynników k WS wyliczanych z równań (6) do (9). Na dynamikę stabilizowanego obiektu mają wpływ różnego rodzaju czynniki: odkształcenia konstrukcji płata skrzydła, stateczników oraz powierzchni sterowych powodujące zmianę charakterystyk aerodynamicznych samolotu, zmiany wielkości parametrów masowych samolotu wynikające ze zużycia paliwa oraz jego przemieszczania a także niedokładnej znajomości położenia dodatkowych ładunków w różnych obszarach samolotu [7], różnice pomiędzy zmiennymi sterującymi zadawanymi a realizowanymi wynikające z od - kształceń, luzów i niedokładności mechanicznych elementów systemów wykonawczych oraz opóźnienia reakcji serwomechanizmów [5], błędy i opóźnienia systemów pomiarowo-wyliczających [6], zakłócenia pochodzące od pracy układu napędowego. Ponadto na obiekt działają zewnętrzne zakłócenie wpływające na przebieg ruchu między innymi przemieszczanie się otaczającego powietrza, które w zależności od charakteru określane jest jako np. wiatr lub turbulencja. Rys. 2. Wpływ niepewności modelu (zmienne masowe) na współczynniki wzmocnienia 68 PRACE INSTYTUTU LOTNICTWA Nr 202

5 Pełna lista wszystkich parametrów wpływających w różnym stopniu na zmiany współczynników wzmocnienia jest dłuższa od podanej powyżej [7]. Większość najistotniejszych czynników można podzielić na trzy oddzielne grupy: zmienne opisujące ruch obiektu, zmiany i niedokładności charakterystyk aerodynamicznych oraz zmiany i błędy danych masowych. Rys. 3. Wpływ niepewności modelu (zmienne aerodynamiczne) na współczynniki wzmocnienia W początkowym etapie pracy badano wrażliwość współczynników wzmocnienia na nie - pewność modelu oddzielnie dla poszczególnych odchyleń wartości aerodynamicznych i ma sowych. Przykładowe wyniki takich obliczeń pokazano na wykresach (rys. 2 3) gdzie błąd wybranych parametrów mieścił się przeważnie w przedziale Widoczne jest duże zróżnicowanie oddziaływania na wzmocnienia nie tylko co do wartości ale i kształtu przebiegu Występuje nieliniowy charakter a także zmiany w przybliżeniu liniowe. Pokazana na wykresie zmiany masy samolotu (rys. 2) wywołują nieliniowe zachowanie współczynników wzmocnienia dla współczynnika widoczny jest punkt siodłowy. Naj - większą wrażliwość na zmiany masy odnotowuje się dla współczynnika. Błędy momentów bezwładności wywołują w przybliżeniu liniowe zmiany wzmocnień w zilustrowanych kanałach: pochylania, przechylania i odchylania. Zmiany współczynników spowodowane niepewnością modelu aerodynamicznego mają także w przybliżeniu linowy charakter. Analiza stopnia wpływu tego ostatniego typu niepewności modelu wskazuje na bardzo duże zróżnicowanie. Współ - czynnik ulega dużym wahaniom wywołanym zmianami pochodnej aerodynamicznej (momentu odchylania po wychyleniu lotek), ale jest znacznie mniej wrażliwy na błędy pochodnej (momentu odchylania po prędkości przechylania). Przed stawio ne wyżej przykłady po - zwalają na ogólne zorientowanie się w jaki sposób elementy niepewności modelu wpływają na parametry automatycznej stabilizacji. Nie zaprezentowano kompletu uzyskanych wyników ponieważ wymaga to zamieszczenia zbyt dużej ilości wykresów (240 charakterystyk) co prze - kracza sensowną objętość artykułu. metoda i PrzykŁady zintegrowanego badania zmian WSPóŁczynnikóW Wzmocnienia dla ParameTryczneJ niepewności modelu Oddzielne badanie wpływu poszczególnych parametrów modelu na zmianę współczynników wzmocnienia [7] nie pozwala na jednoczesne oszacowanie zakresu zmian tych współczynników w wyniku istnienia niepewności w rzeczywistych warunkach stabilizowanego lotu. Z drugiej strony podejście globalne polegające na badaniu wszystkich czynników niepewności jednocześnie jest zadaniem skomplikowanym. Przystępując do próby rozwiązania omawianego zadania WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 69

6 analizowano oddziaływanie całej grupy parametrów aerodynamicznych i całej grupy masowej oraz obu tych grup jednocześnie. W ten sposób kolejne współczynniki można opisać jako funkcje: Ostatecznie w dalszej części pracy ograniczono się do analizy jednoczesnego (zintegrowanego) wpływu całej wybranej grupy zmiennych aerodynamicznych i masowych. Istnieje pewna ilość metod, które mogą posłużyć do wyliczenie największych zmian współczynników wzmocnienia jakie wystąpią dla danego poziomu niepewności modelu. Jedną z nich opisano w pracy [2] ale w pracy wybrano metodę polegającą na przebadaniu wszystkich możliwych kombinacji wartości minimalnych i maksymalnych badanych parametrów. Ta metoda stanowi kompromis pomiędzy stopniem złożoności i jakością wyników. W powyższej metodzie posługujemy się wartością maksymalnego odchylenia od wartości nominalnej każdego badanego parametru określonych symbolem. Jest to spodziewany błąd z jakim wyznaczono współczynniki aerodynamiczne i dane masowe na drodze obliczeniowej albo eksperymentalnej (dmuchania tunelowe lub badania w locie oraz badania naziemne). W dalszych rozważaniach rozpatrywano różne poziomy tego błędu z przedziału Obliczenia z wykorzystaniem przyjętej metody dla wszystkich 15 współczynników wzmocnie - nia praw sterowania (1-4) przeprowadzono na przykładzie niedużego samolotu o masie 1050 kg i lecącego na wysokości 200 m z prędkością 50 m/s. Rys. 4. Rozkład wartości współczynników i dla grupy zmiennych aerodynamicznych 70 PRACE INSTYTUTU LOTNICTWA Nr 202

7 Rys. 5. Rozkład wartości współczynników i dla grupy zmiennych masowych wzmocnienia W dalszej części pracy pokazano na wybranych przykładach maksymalne zakresy zmian współczynników zależne od wielkości błędu wybranych parametrów aerodynamicznych i masowych. Do dalszych rozważań wybrano 10 współczynników aerodynamicznych, masę samolotu, przesunięcie środka masy wzdłuż osi x i 4 momenty bezwładności (10): dla których ilość możliwych niepowtarzających się kombinacji uwzględnianych w obliczeniach dla każdego współczynnika wzmocnienia w przyjętej metodzie wynosiła N = Oddzielnie badany wpływ błędów grupy parametrów masowych wymaga N = 64 kombinacji a dla analizowanej grupy współczynników aerodynamicznych ilość ta wynosi N = Charakterystyczną cechą otrzymanych wyników jest nierównomierny rozkład wartości współczynników oraz ograniczona ilość poziomów w zależności od badanego współczynnika. Rys. 6. Rozkład wartości współczynników i dla obu grup jednocześnie WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 71

8 Rys. 7. Procentowe zmiany wybranych współczynników w funkcji obu grup jednocześnie Na rysunku 4 pokazano uzyskane za pomocą przyjętej metody (dla ) wartości współczynnika od zmian parametrów aerodynamicznych skupione w trzech obszarach. Ten sam współczynnik (rys. 5) dla zmiennych masowych grupuje swoje wartości w dwóch obszarach, ale dla badanych jednocześnie obu typów parametrów (rys. 6) skupiony jest w 4 strefach. Drugi z przykładowo pokazanych współczynników posiada bardziej regularny obraz z większą liczbą wartości (rys. 6). Dla obu współczynników obserwowana jest podobna prawidłowość najmniej poziomów wartości osiągają dla zmian parametrów masowych, więcej dla aerodynamicznej a najwięcej dla przypadku jednoczesnych zmian w obu grupach. Rys. 8. Procentowe zmiany wybranych współczynników w funkcji zmiennych aerodynamicznych 72 PRACE INSTYTUTU LOTNICTWA Nr 202

9 Rys. 9. Procentowe zmiany wybranych współczynników w funkcji zmiennych masowych W rozważanej metodzie procentowe zmiany wartości poszczególnych współczynników wzmocnienia w funkcji poziomu niepewności modelu (dla założonego przedziału zmian) przyjmują w zależności od wybranego współczynnika różne przebiegi i szeroką gamę maksymalnych wartości. Dla skrajnych przypadków pokazanych na wykresie (rys. 8) maksymalna zmiana współczynnika jest poniżej 0.3% a dla współczynnika osiąga 1100% (rys. 8). Jednoczesne zmiany w obu badanych grupach powodują wzrost maksymalnych wartość współczynników a w skrajnym przypadku do poziomu 1300% (rys. 7). Wyraźnie mniejsze wahania badanych współczynników wywołują niedokładności parametrów masowych wszystkie maksymalne wartości poniżej 72% (rys. 9). Procentowe zmiany badanych wielkości wskazują w wielu przypadkach na brak symetrii względem osi Oy. Szczególnie wyraźnie obserwuje się to zjawisko na przykładzie współczynników (rys. 7 i 8). Takie zachowanie powoduje konieczność analizy zmian współczynników oddzielnie dla błędów z ich dolnego i oddzielnie dla górnego zakresu. Rys. 10. Porównanie zmian współczynników: i w funkcji różnych grup zmiennych WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 73

10 Rys. 11. Porównanie zmian współczynników: i w funkcji różnych grup zmiennych Porównanie zmian na rysunkach 10 i 11 wybranych współczynników świadczy o dużym zróżnicowaniu wrażliwości parametrów stabilizacji na niepewność modelu. Błędy parametrów aerodynamicznych mają dominujący wpływ i nadają przebiegom wzmocnień charakter nieliniowy. Udział parametrów masowych w przebiegach wzmocnień jest mniejszy i bardziej zróżnicowany, dla współczynnika przy dodatnich zmianach parametrów nie obserwuje się wpływu. Biorąc pod uwagę częściej spotykany zakres błędów parametrów masowych i aerodynamicznych mieszczący się w przedziale maksymalne procentowe zmiany wszystkich współczynników wzmocnień z wyjątkiem jednego nie przekraczają 100%. Zaprezentowana metoda pozwala na uzyskanie najszerszego zakresu zmian współczynników wzmocnień przy uwzględnieniu najbardziej niekorzystnych sytuacji, które mogą wystąpić w rzeczywistych warunkach dla wybranego obiektu. WnioSki ( K V Φ ) W oparciu o analizę wyników uzyskanych z cyfrowych obliczeń można wyciągnąć następujące wnioski stanowiące istotne wskazówki przy analizie algorytmów automatycznej stabilizacji ruchu samolotu: 1. Parametryczna niepewność modelu posiada zróżnicowany wpływ na wartości współczynników wzmocnień w całym ich zbiorze i poszczególnych kanałach automatycznej stabilizacji. 2. Zwiększenie ilości badanych czynników niepewności powoduje znaczny wzrost ilości kombinacji i niezbędnych obliczeń. 3. Jednoczesne uwzględnienie obu grup parametrów powoduje zwiększenie zakresu zmian analizowanych wzmocnień w porównaniu z przedziałami otrzymywanymi oddzielnie dla każdej z badanych grup. 4. Dla wszystkich wzmocnień wpływ błędów parametrów masowych jest mniejszy niż danych aerodynamicznych. 5. W badaniach skutków niepewności modelu na wartości współczynników wzmocnień niezbędna jest analiza wpływu oddzielnie dla błędów z ich dolnego i oddzielnie dla górnego zakresu. 74 PRACE INSTYTUTU LOTNICTWA Nr 202

11 literatura [1] athans m., Falb P.: Sterowanie optymalne, wstęp do teorii i jej zastosowania. WNT, Warszawa [2] avanzini G.: Trajectory tracking for a helicopter model. The Aeronautical Journal, No. 2, 2000, pp [3] baarspul m.: Review of Flight Simulation Techniques. Progress in Aerospace Sciences, vol. 27, No.1, Pergamon Press, [4] Graffstein J., krawczyk m.: Możliwości uproszczeń układu automatycznego sterowania małym samolotem bezpilotowym. Zeszyty Naukowe Politechniki Rzeszowskiej, Mechanika Nr 56, T 2, Rzeszów, [5] Graffstein J.: Wpływ dynamiki układu wykonawczego na ruch automatycznie sterowanego obiektu. Materiały XI Ogólnopolskiej Konferencji Mechanika w lotnictwie, PTMTiS, Warszawa [6] Graffstein J.: Wpływ dynamiki pomiaru prędkości kątowej na ruch automatycznie sterowanego obiektu. Monografia Automatyzacja i eksploatacja systemów sterowania i łączności, Gdynia [7] Graffstein J.: Wpływ charakterystyk obiektu i przebiegu jego ruchu na parametry układu stabilizacji lotu. Materiały XI Ogólnopolskiej Konferencji Mechanika w lotnictwie, PTMTiS, Warszawa, 2008, s [8] Graffstein J.: Metoda sterowania samolotem i jej dokładność podczas ruchu wzdłuż zadanej trajektorii. Zeszyty Naukowe Akademia Marynarki Wojennej, Nr 177B Gdynia, 2009, s [9] kaczorek T.: Teoria sterowania. PWN. Warszawa, t. 1, 2, [10]Maryniak J.: Ogólny model matematyczny sterowanego samolotu. Mechanika w Lotnictwie, PTMTiS, Warszawa J. Graffstein an influence of model ParameTric uncertainty on Gain FacTorS VariaTion in aircraft automatic STabilizaTion Abstract A quality of automatic stabilisation, assessed for selected control laws, depends on gain parameters values. In the method of control law synthesis with integral quadratic quality index is proposed. In case of such a method, the dynamics of considered object and environment has a decisive impact on values of discussed parameters. Correctness of assessment of these values depends on the quality of mathematical model of the object. Factors generating the model uncertainty are identified. An influence of selected features of the object on variations of automatic stabilisation parameters is showed. Method for computing the range of these parameters variations are discussed. Results of computations of the range of parameters variations are presented for several levels of model uncertainty. WPŁYW PARAMETRYCZNEJ NIEPEWNOŚCI MODELU NA ZMIANY... 75

wpływ wybranych zmiennych stanu na dokładność toru lotu samolotu podczas automatycznie wykonywanego manewru

wpływ wybranych zmiennych stanu na dokładność toru lotu samolotu podczas automatycznie wykonywanego manewru wpływ wybranych zmiennych stanu na dokładność toru lotu samolotu podczas automatycznie wykonywanego manewru Jerzy Graffstein Instytut Lotnictwa Streszczenie W pracy przedstawiono ideę działania automatycznego

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

DObóR PARAmETRóW manewru ANTYkOLizYjNEgO i jego PRzEbiEg

DObóR PARAmETRóW manewru ANTYkOLizYjNEgO i jego PRzEbiEg PRACE instytutu LOTNiCTWA 224, s. 31-43, Warszawa 2012 DObóR PARAmETRóW manewru ANTYkOLizYjNEgO i jego PRzEbiEg Jerzy GraffSteIN Instytut Lotnictwa Streszczenie Wybór rodzaju manewru antykolizyjnego zależy

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

LAB-EL LB-760A: regulacja PID i procedura samostrojenia

LAB-EL LB-760A: regulacja PID i procedura samostrojenia Page 1 of 5 Copyright 2003-2010 LAB-EL Elektronika Laboratoryjna www.label.pl LAB-EL LB-760A: regulacja PID i procedura samostrojenia Nastawy regulatora PID W regulatorze LB-760A poczynając od wersji 7.1

Bardziej szczegółowo

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G PRACE instytutu LOTNiCTWA 221, s. 115 120, Warszawa 2011 ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G i ROZDZiAŁU 10 ZAŁOżEń16 KONWENCJi icao PIotr

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI OBLICZEŃ W PRZYPADKU MODELI NIELINIOWO ZALEŻNYCH OD PARAMETRÓW

WYZNACZANIE NIEPEWNOŚCI OBLICZEŃ W PRZYPADKU MODELI NIELINIOWO ZALEŻNYCH OD PARAMETRÓW WYZNACZANIE NIEPEWNOŚCI OBLICZEŃ W PRZYPADKU MODELI NIELINIOWO ZALEŻNYCH OD PARAMETRÓW TOMASZ PUSTY 1, JERZY WICHER 2 Automotive Industry Institute (PIMOT) Streszczenie W artykule podjęto problem określenia

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Paweł GÓRSKI 1), Emil KOZŁOWSKI 1), Gracjan SZCZĘCH 2) 1) Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów Laboratorium Metod Optymalizacji 216 Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów 1. Za pomocą funkcji lsqcurvefit dobrać parametry a i b funkcji: Posiadając następujące dane pomiarowe:

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH Problemy Kolejnictwa Zeszyt 149 89 Dr inż. Adam Rosiński Politechnika Warszawska WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH SPIS TREŚCI 1. Wstęp. Optymalizacja procesu

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

SYMULACYJNE BADANIE SKUTECZNOŚCI AMUNICJI ODŁAMKOWEJ

SYMULACYJNE BADANIE SKUTECZNOŚCI AMUNICJI ODŁAMKOWEJ Dr inż. Maciej PODCIECHOWSKI Dr inż. Dariusz RODZIK Dr inż. Stanisław ŻYGADŁO Wojskowa Akademia Techniczna SYMULACYJNE BADANIE SKUTECZNOŚCI AMUNICJI ODŁAMKOWEJ Streszczenie: W referacie przedstawiono wyniki

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

Trajektoria rzuconego ukośnie granatu w układzie odniesienia skręcającego samolotu

Trajektoria rzuconego ukośnie granatu w układzie odniesienia skręcającego samolotu Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Termin: 10 XI 2009 Zadanie: Trajektoria rzuconego ukośnie granatu w układzie odniesienia skręcającego samolotu

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

MODELOWANIE STEROWANIA ZBIORNIKIEM AKUMULACYJNYM W INSTALACJI UDOJOWEJ

MODELOWANIE STEROWANIA ZBIORNIKIEM AKUMULACYJNYM W INSTALACJI UDOJOWEJ Inżynieria Rolnicza 1(119)/2010 MODELOWANIE STEROWANIA ZBIORNIKIEM AKUMULACYJNYM W INSTALACJI UDOJOWEJ Henryk Juszka, Stanisław Lis, Marcin Tomasik Katedra Energetyki i Automatyzacji Procesów Rolniczych,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA 71 DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA dr hab. inż. Roman Partyka / Politechnika Gdańska mgr inż. Daniel Kowalak / Politechnika Gdańska 1. WSTĘP

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 21

INSTRUKCJA DO ĆWICZENIA NR 21 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15 PRACE instytutu LOTNiCTWA 213, s. 204-211, Warszawa 2011 MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15 RySzaRd ChaChuRSkI, MaRCIN GapSkI Wojskowa Akademia

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA OBLICZANIE POCZĄTKOWEJ WYSOKOŚCI METACENTRYCZNEJ PODCZAS OPERACJI BALASTOWYCH Zajęcia laboratoryjne z przedmiotu:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

Symulacja pracy silnika prądu stałego

Symulacja pracy silnika prądu stałego KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Symulacja pracy silnika prądu stałego Opracował: Dr inż. Roland Pawliczek Opole 016

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 5 212 EWA DZIAWGO ANALIZA WŁASNOŚCI OPCJI SUPERSHARE Wprowadzenie Proces globalizacji rynków finansowych stwarza

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport. Luty 2015. Automatyzacja statku 1.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport. Luty 2015. Automatyzacja statku 1. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport Automatyzacja statku 1 WPROWADZENIE M. H. Ghaemi Luty 2015 Automatyzacja statku 1. Wprowadzenie 1 Kierunek:

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Podstawy Automatyki. Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2016 Literatura Zieliński C.: Podstawy projektowania układów cyfrowych. PWN, Warszawa, 2003 Traczyk W.:

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

NIEPEWNOŚĆ W OKREŚLENIU PRĘDKOŚCI EES ZDERZENIA SAMOCHODÓW WYZNACZANEJ METODĄ EKSPERYMENTALNO-ANALITYCZNĄ

NIEPEWNOŚĆ W OKREŚLENIU PRĘDKOŚCI EES ZDERZENIA SAMOCHODÓW WYZNACZANEJ METODĄ EKSPERYMENTALNO-ANALITYCZNĄ NIEPEWNOŚĆ W OKREŚLENIU PRĘDKOŚCI EES ZDERZENIA SAMOCHODÓW WYZNACZANEJ METODĄ EKSPERYMENTALNO-ANALITYCZNĄ Karol SZTWIERTNIA 1, Marek GUZEK, Janusz JANUŁA 3 Streszczenie Przedmiotem artykułu jest niepewność

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Wyposażenie Samolotu

Wyposażenie Samolotu P O L I T E C H N I K A R Z E S Z O W S K A im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Wyposażenie Samolotu Instrukcja do laboratorium nr 2 Przyrządy żyroskopowe

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2

INSTRUKCJA DO ĆWICZENIA NR 2 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA

SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA Airflow Simulations and Load Calculations of the Rigide with their Influence on

Bardziej szczegółowo

Manipulatory i roboty mobilne AR S1 semestr 5

Manipulatory i roboty mobilne AR S1 semestr 5 Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Cel ćwiczenia WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Celem cwiczenia jest wyznaczenie współczynników oporu powietrza c x i oporu toczenia f samochodu metodą wybiegu. Wprowadzenie

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

Regulacja adaptacyjna w anemometrze stałotemperaturowym

Regulacja adaptacyjna w anemometrze stałotemperaturowym 3 Prace Instytutu Mechaniki Górotworu PAN Tom 8, nr 1-4, (2006), s. 3-7 Instytut Mechaniki Górotworu PAN Regulacja adaptacyjna w anemometrze stałotemperaturowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu

Bardziej szczegółowo

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych ĆWICZENIE NR.6 Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych 1. Wstęp W nowoczesnych przekładniach zębatych dąży się do uzyskania małych gabarytów w stosunku do

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda.

m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda. msg M 1-1 - Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda. Zagadnienia: prawa dynamiki Newtona, równania dynamiczne ruchu, siły tarcia, moment sił, moment bezwładności, opis kinematyczny

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Wyznaczenie współczynnika restytucji

Wyznaczenie współczynnika restytucji 1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących

Bardziej szczegółowo