WŁAŚCIWOŚCI IMMOBILIZACYJNE PRODUKTÓW HYDRATACJI ALKALICZNIE AKTYWOWANYCH SZKIEŁ GLINOKRZEMIANOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "WŁAŚCIWOŚCI IMMOBILIZACYJNE PRODUKTÓW HYDRATACJI ALKALICZNIE AKTYWOWANYCH SZKIEŁ GLINOKRZEMIANOWYCH"

Transkrypt

1 AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Materiałów Budowlanych AUTOREFERAT WŁAŚCIWOŚCI IMMOBILIZACYJNE PRODUKTÓW HYDRATACJI ALKALICZNIE AKTYWOWANYCH SZKIEŁ GLINOKRZEMIANOWYCH mgr inż. Renata Żak PROMOTOR PRACY: Prof. dr hab. inż. Jan Deja Kraków 2014

2 1. WPROWADZENIE Jednym z ubocznych, ale bardzo groźnych skutków rozwoju cywilizacji oraz przemysłu jest wzrost ilości odpadów komunalnych i przemysłowych. Rozwój wielu technologii uzależniony jest od możliwości zagospodarowania powstających w nich odpadów. Szczególnie wiele trudności sprawia gospodarka odpadami niebezpiecznymi zawierającymi metale ciężkie. Ciągły wzrost liczby ludności na świecie, urbanizacja, jak również szybki rozwój różnorakich gałęzi przemysłu, prowadzi do powstania olbrzymich ilości niebezpiecznych odpadów. Działalność człowieka prowadzi często do zachwiania równowagi w rozmieszczeniu występujących w środowisku naturalnym substancji chemicznych, co może stać się przyczyną powstania zagrożeń zarówno dla ludzi, jak i dla całych ekosystemów. Problem ten stawia przed przedstawicielami wielu dziedzin nauki, np. technologii chemicznej, chemii, biologii zadania dotyczące zagospodarowania oraz stabilizacji i utylizacji niebezpiecznych odpadów. Spośród składników toksycznych odprowadzanych do ekosystemów do najbardziej niebezpiecznych i trwałych zalicza się jony metali ciężkich, takie jak np. Pb 2+, Cd 2+, Zn 2+, Hg 2+, CrO 2-4, czy AsO 2-4. Kationy i aniony te mają zazwyczaj szkodliwy wpływ na prawidłowe funkcjonowanie organizmu ludzkiego, ale również środowiska naturalnego. Postępowanie z odpadami niebezpiecznymi zawierającymi metale ciężkie stanowi duży problem gospodarczy i ekologiczny, bowiem wiąże się z możliwością niekontrolowanego wymywania substancji toksycznych ze składowisk do gleb, wód podziemnych i powierzchniowych, a w konsekwencji ze skażeniem środowiska naturalnego. Z uwagi na fakt, iż bardzo ważnym elementem rozwoju technologii związanym z utylizacją substancji toksycznych jest stosowanie rozwiązań bezpiecznych, jak i skutecznych oraz tanich, poszukuje się łatwo dostępnych metod unieszkodliwiania odpadów niebezpiecznych. Spośród licznych metod unieszkodliwiania odpadów zawierających metale ciężkie na szczególną uwagę zasługuje ich immobilizacja w matrycach materiałów budowlanych, czy w kompozytach opartych na spoiwach mineralnych. W procesie immobilizacji odpadów niebezpiecznych zawierających metale ciężkie stosowane są zarówno cementy powszechnego użytku (cementy CEM I CEM V), ale również spoiwa o bardzo ograniczonej zawartości klinkieru. Coraz częściej do wytwarzania zaczynów stosuje się dodatki mineralne, tj. granulowany żużel wielkopiecowy, popiół lotny krzemionkowy lub wapienny, popiół z palenisk fluidalnych. Wspomniane dodatki, posiadające właściwości pucolanowe lub pucolanowe-hydrauliczne, uczestniczą w procesie hydratacji, jak również sprzyjają kształtowaniu mikrostruktury korzystnej do immobilizacji metali ciężkich z odpadów. Wysoki potencjał unieruchomienia, dostępność, niskie koszty, ale również brak problemów z wykorzystaniem produktu decydują o tym, iż do immobilizacji metali ciężkich z powodzeniem stosować można materiały budowlane. Materiały budowlane wykorzystywane do procesu immobilizacji to głównie szkło, zaczyn cementowy, spoiwa żużlowo- alkaliczne, materiały bitumiczne, czy ceramika czerwona. Spośród wyżej wymienionych materiałów, na uwagę zasługują szła glinokrzemianowe, gdyż podczas alkalicznej hydratacji tych szkieł dochodzi do zapoczątkowania licznych procesów zarówno fizycznych, jak i chemicznych, których wynikiem są hydraty występujące w postaci uwodnionych krzemianów i glinianów wapnia oraz sodu. Duże znaczenie w procesie immobilizacji przypisuje się zwłaszcza uwodnionym krzemianom wapnia, czyli tzw. fazie C-S-H (rys. 1), których jedną z najważniejszych właściwości jest zdolność zatrzymywania i wymiany w swej strukturze obcych jonów. Ich właściwości immobilizacyjne związane są tetraedry krzemotlenowe ponadto z małą przepuszczalnością fazy C-S-H, utrudniającą migrację zabsorbowanych substancji. Struktura warstwa poliedrów CaOx porowatości Rys. 1. Budowa folii C-S-H według modelu Feldmana i Seredy 1

3 uwodnionych krzemianów wapnia jest jedną z najistotniejszych właściwości decydujących o migracji roztworu zawierającego metale ciężkie, a w konsekwencji o przepuszczalności i zdolności immobilizacyjnej matrycy. Z uwagi na dużą powierzchnię właściwą fazy C-S-H, posiada ona duży potencjał sorpcyjny. Metale ciężkie ulegają procesowi adsorpcji na tej powierzchni, a niektóre z nich mogą tworzyć roztwory stałe w uwodnionych krzemianach wapnia. C-S-H zapewnia również wysoką wartość ph fazy ciekłej, co skutkuje powstaniem słabo rozpuszczalnych związków metali ciężkich. W procesie immobilizacji metali ciężkich w matrycach spoiwowych nie można także pominąć roli uwodnionych glinokrzemianów wapnia oraz sodu, jak również zeolitów. Ich budowa chemiczna, różniąca się zdecydowanie od budowy uwodnionych krzemianów wapnia umożliwia przyłączanie jedno-i dwuwartościowych jonów. Mogą to być zarówno kationy jak i aniony. W ostatnim dziesięcioleciu wzrosło zainteresowanie fazami typu C-A-S-H (rys. 2) i N-A-S-H (rys. 3) w procesie immobilizacji metali ciężkich. Matryce geopolimerowe stanowią atrakcyjny materiał do unieszkodliwiania odpadów niebezpiecznych, jednakże jeszcze słabo poznany. Sposób unieruchomienia większości jonów w znacznej mierze nie jest jeszcze w pełni zrozumiały i stanowi obszar intensywnych badań. Wiedza chemiczna sugeruje jednak istnienie kilku mechanizmów immobilizacji jonów metali ciężkich. Należą do nich głównie: sorpcja, inkorporacja chemiczna, do której zaliczyć należy kompleksowanie powierzchni, wytrącanie nowych związków chemicznych i współstrącanie, ale również mikroi makroenkapsulacja (fizyczna oraz chemiczna). Rys. 3. Model struktury żelu N-A-S-H Rys. 2. Model struktury żelu C-S-H zawierającego Al 2. CEL I ZAKRES PRACY Chemizm procesów towarzyszących unieszkodliwianiu metali ciężkich, standaryzacja procedur badawczych oraz efektywność immobilizacji są przedmiotem szeroko prowadzonych analiz. Jednak wyniki tych badań budzą nadal wiele kontrowersji, a w związku z tym stanowią temat wymagający dalszych oraz intensywnych studiów. W związku z powyższym, zasadnicze wyzwania niniejszej pracy sprowadzały się do uzyskania odpowiedzi na kilka istotnych pytań: a) Czy matryce modelowych produktów alkalicznej hydratacji szkieł wapniowoglinokrzemianowych mogą spełniać rolę środowiska stabilizującego metale ciężkie? b) W jaki sposób immobilizują one metale ciężkie w swojej strukturze? c) Czy istnieje możliwość określenia odpowiedniej metody i mechanizmu immobilizacji metali ciężkich w uwodnionych krzemianach oraz glinokrzemianach wapnia i sodu? Chociażby częściowe uzyskanie odpowiedzi na postawione pytania, ułatwiłoby prace nad nowymi technologiami, które pozwoliłyby na efektywniejsze wykorzystanie różnych odpadów z produkcji przemysłowej. 2

4 Podstawowym celem realizowanych w pracy badań było określenie immobilizacyjnego potencjału uwodnionych krzemianów wapnia (C-S-H), uwodnionych glinokrzemianów wapnia (C-A-S-H), a także uwodnionych glinokrzemianów sodu (N-A-S-H). Ważnym celem było również zbadanie właściwości strukturalnych i mikrostrukturalnych wyjściowych matryc alkalicznej hydratacji szkieł wapniowo-glinokrzemianowych zawierających jony metali ciężkich, a następnie dokonanie porównawczej oceny właściwości pomiędzy poszczególnymi produktami. Wytyczone cele miały za zadanie poszerzyć stan wiedzy na temat słabo uporządkowanych uwodnionych krzemianów i glinokrzemianów wapnia oraz uwodnionych glinokrzemianów sodu. Jednocześnie ze sformułowaniem celu pracy, po analizie danych literaturowych na temat procesów immobilizacyjnych w matrycach materiałów budowlanych, określono tezę pracy. Zasadnicza teza pracy sprowadziła się do stwierdzenia, że ze względu na właściwości strukturalne i mikrostrukturalne modelowych produktów hydratacji alkalicznie aktywowanych szkieł wapniowo-glinokrzemianowych mogą one stanowić efektywne matryce immobilizujące metale ciężkie. Kierując się założeniami, tzw. pętli Demminga (PDCA), która zakłada cztery etapy działania: plan - planuj, do - wykonaj, check - sprawdź i act działaj za priorytet niniejszej pracy przyjęto: I ETAP BADAŃ Syntezę modelowych układów C-S-H, C-A-S-H i N-A-S-H w reakcji współstrącenia składników z roztworu alkalicznego o różnych stosunkach molowych CaO/SiO 2 (1,0 i 1,7) i Al 2 O 3 /SiO 2 (1,0 i 1,5) oraz różnych czasach hydratacji (7 i 28 dni), Określenie składu fazowego i właściwości mikrostrukturalnych wyjściowych matryc uwodnionych krzemianów wapnia, uwodnionych glinokrzemianów wapnia oraz uwodnionych glinokrzemianów sodu (XRD, IR, NMR, DTA/TG, SEM/EDS, TEM), II ETAP BADAŃ Immobilizację kationów i anionów metali ciężkich o różnej ich %-owej zawartości (Zn 2+, Pb 2+, Cd 2+, Cr 3+ i CrO 2-4 ) przez modelowe matryce C-S-H, C-A-S-H i N-A-S-H, Badanie właściwości strukturalnych i mikrostrukturalnych modelowych matryc C-S-H, C-A-S-H i N-A-S-H zawierających jony metali ciężkich (badania XRD, DTA/TG, SEM/EDS, TEM, NMR, IR, ICP), Określenie stopnia immobilizacji metali ciężkich w modelowych produktach hydratacji szkieł glinokrzemianowych (test ML). I ETAP BADAŃ 3. Charakterystyka C-S-H, C-A-S-H i N-A-S-H Do badań, w warunkach laboratoryjnych, celem otrzymania modelowych produktów hydratacji szkieł glinokrzemianowych, takich jak żele: C-S-H, C-A-S-H oraz N-A-S-H, zastosowano surowce chemicznie czyste w postaci: Ca(NO 3 ) 2 4H 2 O cz.d.a. jako nośnik jonów Ca 2+, Na 2 Si 3 O 7 cz.d.a. - nośnik jonów Si 4+ oraz Al(NO 3 ) 3 9H 2 O cz.d.a., będący nośnikiem jonów Al 3+. W celu przeprowadzenia syntezy żeli C-S-H, C-A-S-H oraz N-A-S-H, oprócz substratów głównych, użyto aktywator alkaliczny w postaci 2M roztworu NaOH. Do oznaczeń składu fazowego modelowych żeli C-S-H, C-A-S-H i N-A-S-H zastosowano dyfraktometrię rentgenowską XRD. Przeprowadzono również szereg badań hydratów przy użyciu IR oraz DTA/TG. Badania morfologii uwodnionych krzemianów wapnia oraz uwodnionych glinokrzemianów wapnia i sodu wykonano przy użyciu elektronowego mikroskopu skaningowego SEM. Użyto mikroskopu wyposażonego w analizator rentgenowski składu pierwiast- 3

5 CSH CSH CSH I (0,307) CSH CSH CSH CSH C-1,7-28 C-1,7-7 kowego w mikroobszarach (EDS). Wybrane, reprezentatywne wizualizacje mikrostruktury wzbogacono rezultatami analizy składu pierwiastkowego. C-1,7-28 C-1,0-7 Rys. 4. Dyfraktogramy żeli C-S-H o stosunkach molowych C/S równych 1,0 i 1,7 uzyskane w wyniku 7 i 28 dniowej hydratacji: CSH faza C-S-H 2Ө CuKα Na rys. 4 przedstawiono wybrane wyniki badań składu fazowego modelowych żeli C-S-H przeprowadzonych metodą XRD. Otrzymane zestawienia dyfraktogramów wskazują na powstanie amorficznych uwodnionych krzemianów wapnia typu (C-S-H), charakteryzujących się wysokim stopniem amorficzności, o czym świadczy podniesienie tła w zakresie kątów C CuKα. Wyniki otrzymane metodą dyfrakcji promieniowania rentgenowskiego XRD pozwalają stwierdzić, że fazy typu C-S-H oraz N-A-S-H także zawierają dużo produktów amorficznych. C-A- S-H w zależności od stosunku molowego Al 2 O 3 /SiO 2 posiada fazy amorficzne albo krystaliczne. W zależności od rodzaju i właściwości użytych składników, ich wzajemnych proporcji: (Si+Ca) dla żelu C-S-H i (Si+Al) dla struktur zeolitopodobnych oraz warunków, w jakich prowadzony jest proces hydratacji, wśród produktów powstających podczas reakcji, oprócz fazy amorficznej i submikrokrystalicznej, stwierdzono obecność zeolitów w C-A-S-H i N-A- S-H, takich jak, np. stratlyngit 2CaO Al 2 O 3 SiO 2 8H 2 O, wairakit CaAl 2 Si 4 O 12 2H 2 O, czy cowlesyt CaAl 2 Si 3 O 10 6H 2 O. Przeprowadzone badania potwierdzają, iż w obecności dużej ilości jonów Ca 2+ i wartości ph > 12 tworzy się faza C-A-S-H, a nie żel N-A-S-H. Rodzaj końcowego produktu hydratacji zależy od warunków reakcji (czas, aktywator), ale przede wszystkim od procentowej zawartości tlenków, takich jak: SiO 2, CaO i Al 2 O 3. Stosunek molowy Al 2 O 3 /SiO 2 ma istotny wpływ na powstałe modelowe produkty hydratacji szkieł glinokrzemianowych. W przypadku mniejszej zawartości Al 2 O 3, wśród modelowych produktów hydratacji dominują produkty amorficzne. Wyniki otrzymane metodą spektroskopii w podczerwieni, aczkolwiek wykazały znaczne podobieństwo uporządkowania bliskiego zasięgu w strukturze uwodnionych krzemianów wapnia oraz glinokrzemianów wapnia i sodu o różnym składzie chemicznym, ujawniły różnice, stanowiące cenne uzupełnienie i potwierdzenie składu fazowego. Przebieg pasm wskazuje na tworzenie się wiązań typu Si-O-Si, świadczących o zaawansowaniu procesu kondensacji anionu krzemotlenowego, czy obecności wiązań Al-O-Si w materiale zawierającym jony Al 3+. Wybrane obrazy mikrostruktury (SEM) wraz z analizą pierwiastkową w punkcie (EDS) dla żeli C-S-H, C-A-S-H oraz N-A-S-H przedstawione zostały na rysunkach 5-6. (a) C-1, (1) (2) (b) CA-1,0-7 (c) CA-1,0-28 Rys. 5. SEM. Morfologia żeli: (a) C-S-H o stos. mol. C/S równym 1,0 po 28 dniach hydratacji z przykładową analizą EDS w punkcie (1) i (2), (b)-(c) C-A-S-H o stos. mol. A/S = 1,0 po 7 i 28 dniach hydratacji 4

6 N-1, (1) (2) 2 Rys. 6. SEM. Morfologia żeli N-A-S-H o stosunku molowym A/S równym 1,0 po 28 dniach hydratacji z przykładową analizą EDS w punkcie (1) i (2) Uwodnione krzemiany wapnia, uwodnione glinokrzemiany wapnia i uwodnione glinokrzemiany sodu wykazują zróżnicowaną morfologię, która uzależniona jest od warunków powstawania, a więc czasu syntezy, rodzaju i stosunku molowego substratów, czy obecności aktywatora. Analizowane produkty hydratacji szkieł glinokrzemianowych są w głównej mierze produktami amorficznymi lub submikrokrystalicznymi. Na ogół cechują się niskim stopniem uporządkowania struktury i składają się z izometrycznych tworów, stanowiących dość jednorodną i gąbczastą masę. Porządkowanie struktury uzewnętrznia się poprzez pojawienie się form włóknistych i płytkowych. Zgodnie z klasyfikacją wprowadzoną przez Diamond a, C-S-H o stosunku molowym C/S = 1,0 (typowe dla spoiw żużlowo-alkalicznych) po czasie hydratacji 7 i 28 dni, tworzą formy charakterystyczne dla C-S-H II (rys. 5). Wykształcone C-S-H występują w postaci cienkich włókien lub płytek, pomarszczonych folii, tworzących formy przestrzenne określane jako plaster pszczeli (wg Diamond a) albo układ siatkowy (wg Tylora a). II ETAP BADAŃ Określenie wpływu dodatku jonów metali ciężkich na syntezę i charakterystykę struktury oraz mikrostruktury C-S-H, C-A-S-H oraz N-A-S-H, traktowano jako główny cel drugiej części pracy. W związku z powyższym, do zsyntezowanych modelowych faz C-S-H, C-A-S-H i N-A-S-H dodano metale ciężkie celem otrzymania matryc uwodnionych krzemianów wapnia i glinokrzemianów wapnia oraz sodu z wbudowanymi w ich strukturę jonami metali ciężkich. Łącznie zsyntezowano 160 modelowych próbek produktów alkalicznej hydratacji szkieł glinokrzemianowych zawierających różne ilości jonów Zn 2+, Cd 2+, Pb 2+, Cr 3+ i CrO Badano immobilizację jonów Zn 2+, Pb 2+, Cd 2+, Cr 3+ i CrO 4 2- w wyżej wymienionych fazach. W grupie analizowanych kationów znalazły się zarówno takie, dla których w procesie immobilizacji przeważają mechanizmy wymiany jonowej, np. Zn 2+, Pb 2+, Cd 2+ oraz takie, dla których dominuje chemisorpcja, np. Cr 3+. Na schemacie (rys. 7) przedstawiono tok postępowania w procesie immobilizacji metali ciężkich przez C-S-H, C-A-S-H i N-A-S-H. 5

7 (1) żel C-S-H C/S = 1,0 i 1,7 t = 7 i 28 dni T = 20 2 C (2) żel C-A-S-H A/S = 1,0 i 1,5 t = 7 i 28 dni T = 20 2 C (3) żel N-A-S-H A/S = 1,0 i 1,5 t = 7 i 28 dni T = 20 2 C rozwór soli metalu ciężkiego (50 ml) odsączanie podciśnieniowe (przemycie 5xH 2 O) roztwór osad mieszanie (mieszadło magnetyczne) (t =48h, T = 20 2 C) analiza ilościowa ICP-AES suszenie próżniowe (eksykator) rozdrabnianie (moździerz agatowy) osad badania struktury i mikrostruktury matryc C-S-H, C-A-S-H i N-A-S-H zawierających jony metali ciężkich przesiewanie (sito o boku oczka 0,063 mm) metoda ML (test ługowalności) analiza ilościowa ICP-AES Rys. 7. Schemat blokowy procesu immobilizacji metali ciężkich przez C-S-H, C-A-S-H i N-A-S-H 4. Badanie struktury i mikrostruktury faz C-S-H, C-A-S-H i N-A-S-H zawierających jony metali ciężkich Badania nad immobilizacją związków metali ciężkich w modelowych fazach C-S-H, C-A-S-H i N-A-S-H przeprowadzono celem określenia wpływu związków ołowiu(ii), kadmu(ii), cynku(ii) i chromu(iii) i (VI) na syntezę, a także właściwości uwodnionych krzemianów wapnia oraz uwodnionych glinokrzemianów wapnia i sodu. Badania techniką XRD Na rys. 8 przedstawiono zestawienia wybranych dyfraktogramów rentgenowskich C-S-H, C-A-S-H i N-A-S-H syntezowanych bez (próbka referencyjna 0 ), jak również z dodatkiem jonów metali ciężkich Pb 2+ (w ilości 0,5% i 1% masowy). Dyfraktogramy otrzymanych modelowych produktów alkalicznej hydratacji szkieł glinokrzemianowych typu C-S-H, z dodatkiem jonów metali ciężkich, wskazują na ich wysoki stopień amorficzności (rys. 8a). Jednakże, co istotne, oprócz refleksów charakterystycznych dla żeli C-S-H ( 0 próbka), rentgenowska analiza fazowa dla próbek C-S-H z dodatkiem jonów metali ciężkich (próbki 1 2 ) wskazała na szereg refleksów (np. przy kącie 29,34, 32,11, 36,10 i 54,15 2Ө), będących wynikiem wbudowania metali ciężkich. 6

8 (a) C-S-H-Pb (b) C-A-S-H-Pb CSH C-S-H, C- C-S-H, Pb Pb 10(Si 10O 7)(OH) 2 (c) C-A-S-H-Pb CAH (d) N-A-S-H-Pb CASH C-A-S-H CASH C-A-S-H, CAH - Ca 4Al 7Si 20O 54 14H 2O, Al - bajeryt Al(OH) 3, S - stratlyngit 2CaO Al 2O 3 SiO 2 8H 2O, W wairakit CaAl 2Si 4O 12 2H 2O, C cowlesyt CaAl 2Si 3O 10 6H 2O NASH N-A-S-H, Pb - 2PbO SiO 2 xh 2O, Z - zeolit X-Pb, NA - N-A-S-H, Y zeolit Y, B bajeryt, E ephesyt, T tetranatrolit Rys. 8. Zestawienie dyfraktogramów: (a) uwodnionych krzemianów wapnia, (b)-(c) uwodnionych glinokrzemianów wapnia, (d) uwodnionych glinokrzemianów sodu, syntezowanych bez dodatków (próbka ref.- 0) oraz z 0,5 % (1) i 1 % (2) dodatkiem kationów ołowiu Pb 2+ Niezależnie od stosunku molowego C/S (1,0, czy 1,7) oraz czasu naturalnego dojrzewania próbek C-S-H, na dyfraktogramach C-S-H z dodatkiem jonów metali ciężkich zaobserwowano istnienie faz amorficznych uwodnionych krzemianów wapnia (zauważalne charakterystyczne podwyższenie tła w zakresie Ө CuKα ), jak również form C-S-H występujących w postaci submikrokrystalicznej oznaczonych na dyfraktogramach jako C - uwodnione krzemiany wapnia (rys. 8a). Interpretacja dyfraktogramów uwodnionych krzemianów wapnia o stosunku molowym C/S równym 1,0 charakterystycznych dla zaczynów ze spoiw żużlowo-alkalicznych i czasie dojrzewania próbek równym 7 i 28 dni wraz z wprowadzonymi do ich struktury jonami ołowiu pozwala na stwierdzenie, iż wpływ jonów Pb 2+ na skład fazowy C-S-H jest bardzo różny. Niemniej jednak, w strukturze C-S-H zaobserwować można zmiany wywołane powstaniem/wytrąceniem się nowych związków chemicznych występujących w postaci PbO 0,33H 2 O (C/S = 1,0-7 dni hydratacji). Ponadto, w obecności kationów Si 4+ wytrącają się związki typu Pb 10 (Si 2 O 7 ) 3 (OH) 2 - refleks odpowiadający odległości międzypłaszczyznowej równej 0,186 nm (rys. 8c). Opis składu fazowego modelowych produktów alkalicznej hydratacji szkieł glinokrzemianowych typu C-A-S-H, podobnie jak C-S-H i N-A-S-H rodzi wiele trudności wynikają- 7

9 cych z amorficznej postaci produktów zaobserwowanych głównie dla próbek przy stosunku molowym C/S i A/S równym 1,0. Różnice pomiędzy poszczególnymi dyfraktogramami (przy tym samym stosunku molowym A/S) są nieznaczne. Obecność podwyższonego tła w zakresie kąta 2Ө równych potwierdza obecność amorficznej fazy C-A-S-H jako głównego produktu po immobilizacji metali ciężkich. Badania składu fazowego metodą rentgenowskiej analizy fazowej XRD uwodnionych glinokrzemianów wapnia typu C-A-S-H z 0,5% i 1% dodatkiem jonów metali ciężkich, pozwoliły zaobserwować, iż większość jonów metali ciężkich uległa sorpcji powierzchniowej. Wprowadzenie jonów ołowiu Pb 2+ do uwodnionych glinokrzemianów wapnia w postaci Pb(NO 3 ) 2 4H 2 O nie spowodowało zmian na dyfraktogramach (rys. 8b). W badanych próbkach (C-A-S-H o stosunku molowym A/S = 1,0 i 1,5 oraz czasie hydratacji równym 7 i 28 dni) nie stwierdzono związków ołowiu wykrywalnych rentgenograficznie. Nie można jednak wykluczyć ich obecności. W tym przypadku faza C-A-S-H z 0,5 % i 1% dodatkiem ołowiu ma charakter amorficznego żelu. Zwraca uwagę powstanie dodatkowych faz występujących w postaci wodorotlenku glinu, tzw. bajerytu Al(OH) 3. Zauważalny jest zanik intensywnych refleksów przy odległości międzypłaszczyznowej równej: 1-0,303 nm, 2-0,277 nm, 3 0,388 nm, 0,230 nm, 4-0,186 nm, pochodzących odpowiednio od: 1 C-A-S-H - Ca 4 Al 7 Si 20 O 54 14H 2 O (CAH), 2 - stratlingitu (S), 3 NaOH (N) oraz 4 - wairakitu (W) kosztem powstania amorficznych faz uwodnionych glinokrzemianów wapnia typu C-A-S-H. Przeprowadzone analizy XRD potwierdzają, że produktami reakcji po procesie immobilizacji metali ciężkich w modelowych matrycach uwodnionych glinokrzemianów sodu są głównie amorficzne substancje żelowe występujące w postaci fazy N-A-S-H. Jak wynika z przeprowadzonych badań XRD, żelowa faza N-A-S-H jest wysoce reaktywna (szczególnie przy stosunku A/S równym 1,5). Na rozpatrywanych dyfraktogramach (rys. 8d) zauważalne są również fazy uwodnionych glinokrzemianów wapnia typu N-A-S-H, takie jak: ephesyt (E) oraz krystaliczne formy tych faz powszechnie uznawane za zeolity: zeolit Y oznaczony na dyfraktogramach jako (Y), tetranatrolit (T), paranatrolit (P), czy też faujasyt-na (F). Występują również krystaliczne wtrącenia tlenku glinu w postaci bajerytu (B) - Al 2 O 3 3H 2 O. Jednakże w porównaniu do wyjściowych próbek N-A-S-H - 0, stopień amorficzności powstałych produktów hydratacji jest zdecydowanie mniejszy. W mniejszych ilościach powstają również inne fazy, będące wynikiem immobilizacji, a ich powstawanie i rodzaj zależne są od stosunku ilości jonów glinu do ilości jonów krzemu. Zrozumienie dokładnego mechanizmu immobilizacji metali ciężkich w matrycach geopolimerowych typu N-A-S-H jest trudne i dalej budzi wiele wątpliwości. Niemniej jednak, większość poznanych hipotez dotyczących procesu immobilizacji metali ciężkich przez geopolimery opiera się na procesie: rozpuszczania, przemieszczania, a także ponownego wytrącania (kondensacji) nowych związków chemicznych występujących często w postaci akwa-kompleksów. Jony Pb 2+ w N-A- S-H powodują utworzenie nierozpuszczalnych faz występujących w postaci związków chemicznych, takich jak, np.: PbO SiO 2 xh 2 O. Na dyfraktogramach (rys. 8d) zaobserwowano pojawienie się refleksów, pochodzących od form zeolitowych, w których występuje ołów zeolit X,Pb. W tej sytuacji mówić można o stabilizacji ołowiu przez uwodnione glinokrzemiany sodu, w której przeważa mechanizm polegający na dodaniu ołowiu do powstałej matrycy N-A-S-H. Ponadto, uwagę zwraca, iż we wszystkich analizowanych próbkach N-A-S-H po immobilizacji ołowiem wytracają się niewielkie ilości związku chemicznego występującego w postaci 2PbO SiO 2 xh 2 O (rys. 8d). 8

10 Wyniki badań spektroskopowych (IR) Immobilizacja jonów metali ciężkich w strukturze uwodnionych krzemianów wapnia i uwodnionych glinokrzemianów wapnia oraz sodu może mieć wpływ na postać ich widm absorpcyjnych, czego dowodem są wybrane zestawienia widm MIR (zestawienia widm w zakresie liczb falowych: cm -1 oraz cm -1 ). Zmiany te dotyczą głównie pasm związanych z drganiami wiązań Si-O(Si,Al), zachodzących w tetraedrach lub mostkach krzemotlenowych i glinotlenowych zakres cm -1 oraz pasm związanych z drganiami grup OH - - zakres cm -1. Wybrane zestawienia widm IR w zakresie środkowej podczerwieni (MIR) dla uwodnionych glinokrzemianów sodu po immobilizacji kationów i anionów metali ciężkich przedstawiono na rys. 9. (a) Cd 2+ Pasma związane z drganiami wiązań ν (O-H) (H 2 O) (d) (b) Cr 3+ (c) CrO 4 2- Rys. 9. Zestawienie widm w zakresie środkowej podczerwieni dla żeli N-A-S-H (A/S = 1,5, t = 28 dni) po immobilizacji: (a) Cd 2+, (b Cr 3+ i (c) CrO w zakresie cm -1 oraz (d) 1% dodatku jonów metali ciężkich w zakresie cm -1 Analiza widm IR pozwala stwierdzić, iż czas procesu oraz dodatek kationów i anionów metali ciężkich odgrywają istotny wpływ na mechanizm syntezy modelowych uwodnionych glinokrzemianów sodu zawierających jony metali ciężkich. Immobilizacja kationów i anionów metali ciężkich, niezależnie od ich udziału procentowego (0,5% i 1% dodatek Cd 2+, Pb 2+, Zn 2+, Cr 3+ i CrO 4 2- ) powoduje zauważalne zmiany na widmach MIR w trzech zakresach liczb falowych: cm -1, cm -1 i cm -1. Największe zmiany na widmach MIR obserwowane są dla próbek N-A-S-H (A/S = 1,5 i 28 dni hydratacji) (rys. 9) zawierają- 9

11 cych zarówno 0,5%, jak i 1% jonów metali ciężkich. W tym przypadku występuje przesunięcie głównego pasma przy liczbie falowej 1048 cm -1 do pozycji ok cm -1 dla jonów Cd 2+, Cr 3+ i CrO 4 2- (rys. 9). Dla analizowanych próbek uwidacznia się zwiększenie i wyostrzenie pasma przy liczbie falowej 835 cm -1 charakterystycznego dla drgań symetrycznych rozciągających Si-O-Si. Co istotne, po immobilizacji jonów Zn 2+ i Pb 2+ pojawiają się nowe pasma na widmach przy liczbie falowej 814 cm -1 i 835 cm -1, które pochodzą od drgań Si-O- Si. Dla 0,5% i 1% dodatku jonów: (1) Cd 2+ występują pasma przy liczbie falowej ok. 798 cm - 1, (2) Cr cm -1 i (3) CrO cm -1 (rys. 9). Widoczne zmiany dotyczą również pasm w zakresie liczb falowych cm -1. Zmiany te dotyczą rozkładu głównego pasma przy liczbie falowej 470 cm -1 na dwa pasma składowe przy liczbach falowych ok. 447 cm -1 do 491 cm -1. Na widmach N-A-S-H zawierających jony metali ciężkich pojawiają się również nowe pasma przy liczbach falowych w zakresie 537 cm -1 do 549 cm -1 oraz cm -1 związane z symetrycznymi rozciągającymi drganiami Si-O-Si oraz asymetrycznymi rozciągającymi SiO-Al (rys. 9). Rozmiar tych zmian zależy od rodzaju immobilizowanych jonów metali ciężkich, głównie od ich promienia jonowego, ładunku i zdolności do hydratacji. Wyniki obserwacji mikroskopowych (SEM/EDS i TEM) Wybrane zdjęcia morfologii uwodnionych krzemianów wapnia, uwodnionych glinokrzemianów wapnia i sodu, po immobilizacji jonów metali ciężkich, wykonane techniką SEM, powstających w obecności jonów metali ciężkich wraz z ich przykładową mikroanalizą rentgenowską (EDS), jak również techniką transmisyjnej mikroskopii elektronowej (TEM) przedstawiono na rys Zdjęcia powierzchni przełamu wraz z analizą EDS wykazały, że produktami alkalicznej hydratacji C-S-H zawierających jony metali ciężkich są w głównej mierze amorficzne odmiany fazy C-S-H (rys. 10). Produkty hydratacji szkieł glinokrzemianowych typu C-S-H, po immobilizacji kationów i anionów metali ciężkich wykazują obok amorficznej fazy C-S-H, obecność form submikrokrystalicznych, zauważalnych głównie dla próbek C-S-H o stosunku molowym C/S równym 1,7 (charakterystycznych dla zaczynów z cementów portlandzkich). C-1,0-7 (0) 1%Zn(II) 1%Pb(II) (1) (2) (3) Rys. 10. SEM/EDS. Morfologia C-S-H (C/S = 1,0; t = 7 dni hydratacji) z dodatkiem jonów metali ciężkich z przykładową analizą EDS w punktach (1), (2) i (3) 10

12 (a) CA-1,0-7-1%Pb 2+ (b) CA-1,0-7-1%CrO 4 2- (c) N-1,5-7-1%Zn 2+ 1 (1) Rys. 11. SEM/EDS. Morfologia C-A-S-H (A/S = 1,0; t = 7 dni hydratacji) z dodatkiem jonów (a) Pb 2+ z przykładową analizą EDS w punktach (1 )i (b) CrO 4 2- oraz N-A-S-H (A/S = 1,5; t = 7 dni hydratacji) z dodatkiem jonów (c) Zn 2+ Wszystkie analizowane próbki N-A-S-H, podobnie jak próbki C-S-H i C-A-S-H, obrazują w głównej mierze mikrostrukturę amorficzną. Ponadto, w zależności od zastosowanego stosunku molowego A/S (1,0 i 1,5) mikrostruktura N-A-S-H, po immobilizacji jonów metali ciężkich, zmienia się na bardziej zwartą, którą odzwierciedla typ II (wg klasyfikacji Diamond a) (rys. 11c). Z drugiej zaś strony, nie zauważono znaczących różnić pomiędzy wyjściowymi próbkami N-A-S-H, a próbkami z dodatkiem 0,5% jonów metali ciężkich. Różnice te, zauważalne są natomiast dla próbek dotowanych 1% dodatkiem jonów metali ciężkich. W przypadku próbek o stosunku molowym A/S = 1,5, t = 28 dni, zaobserwowano wyraźną zmianę w mikrostrukturze próbek z dodatkiem 0,5% i 1% dodatkiem metali ciężkich (charakteryzuje je zwarta forma, określona według klasyfikacji Diamond a jako typ III). Analiza EDS w wybranych obszarach uwodnionych glinokrzemianów wapnia wskazuje na obecność jonów Pb 2+, Zn 2+, Cd 2+ i Cr 3+ włączonych do struktury produktów hydratacji szkieł glinokrzemianowych typu N-A-S-H. W przypadku próbek N-A-S-H z 0,5% i 1% zawartością anionów CrO 4 2- nie zaobserwowano refleksów pochodzących od chromu lub zauważono ich niewielką ilość na widmach dyspersji energii promieniowania rentgenowskiego w punktach. Na tej podstawie domniemywać można, iż jony chromianowe CrO 4 2- nie zostały wbudowane w strukturę uwodnionych glinokrzemianów sodu. C-1,0-28-1%Pb(II) C-1,0-28-1% Pb(II) C-1,0-28-1% Pb(II) Rys. 12. TEM. Morfologia C-S-H (C/S = 1,0; t = 28 dni hydratacji) z dodatkiem kationów Pb 2+ CA-1,0-28-1%Zn(II) N-1,0-28-1%Pb(II) N-1,5-7-1%Pb(II) Rys. 13. TEM. Morfologia C-A-S-H (C/S = 1,0; t = 28 dni hydratacji) z dodatkiem kationów Zn 2+ oraz N-A-S-H (A/S = 1,0 i 1,5; t = 7 i28 dni) z dodatkiem kationów Pb 2+ Na podstawie otrzymanych wyników badań mikrostruktury w transmisyjnym mikroskopie elektronowym można stwierdzić, że wszystkie analizowane próbki C-S-H (rys. 12), 11

13 C-A-S-H niezależnie od zastosowanych stosunków molowych C/S i A/S oraz zastosowanych dodatków jonów metali ciężkich (rys. 13) charakteryzują pomarszczone formy uwodnionych krzemianów wapnia oraz uwodnionych glinokrzemianów wapnia. Porównując próbki N-A-S- H o stosunku molowym A/S = 1,0 i 1,5 (7-dniowy czas hydratacji), zawierających kationy ołowiu Pb 2+, zauważalne stają się zmiany ich morfologii, zobrazowane poprzez powstanie form bardziej zbitych, gąbczastych. Wyniki obserwacji TEM, bardzo dobrze korelują z wynikami uzyskanymi metodą skaningowej mikroskopii elektronowej (SEM), bowiem prócz oczekiwanych obszarów o formie amorficznej zlokalizowano również obszary zawierające jony metali ciężkich wprowadzone do struktury C-S-H, C-A-S-H i N-A-S-H. Badania strukturalne metodą magnetycznego rezonansu jądrowego (NMR) Od wielu lat do badań struktury ciał stałych z dużym powodzeniem, wykorzystywana jest metoda magnetycznego rezonansu jądrowego NMR. Biorąc pod uwagę duże możliwości poznawcze, związane z techniką NMR, podjęto próbę zastosowania spektroskopii NMR w badaniach produktów hydratacji szkieł glinokrzemianowych. Dla wybranych próbek przeprowadzono pomiary widm 29 Si MAS NMR. Badania NMR dostarczyły także informacji na temat występowania jonów Al 3+ w hydratach. Q 1 Q 1 Q 2 C-1,0-28-Zn C-1, ,74 81,72 84, CA-1,0-7-Zn CA-1,0-7 Q 4 ppm Q 3 94,27 Q 3 96,21 Q 4 106,57 Q 4 Q 0 111,79 121,39 70,57 Q 1 Q2 89,35 77,83 Q 4 Q 0 Q 3 103,45 129,72 64,37 Q 1 97,46 135,49 82,10 Q 4 29 Si Rys. 14. Widma 29 Si MAS NMR dla C-S-H (C/S = 1,0; 28 dni hydratacji) bez dodatku i z dodatkiem 1% jonów Zn ,70 115,62 29 Si ppm 116,70 119,05 Rys. 15. Widma 29 Si MAS NMR dla C-A-S-H (A/S = 1,0; 7 dni hydratacji) bez dodatku i z 1% dodatkiem jonów Zn 2+ Na rys. 14 przedstawiono widma NMR dla uwodnionych krzemianów wapnia, bez z dodatków i z dodatkami wybranych metali ciężkich, w zakresie (-60) do (-120) ppm przesunięcia chemicznego względem TMS. Widma 29 Si MAS NMR próbek C-S-H syntezowanych z dodatkiem Zn(NO 3 ) 2 potwierdzają silne zaburzenia struktury. Świadczą o tym zmiany na widmie w postaci podniesionego, bardzo postrzępionego i poszerzonego tła. Z kształtu widm wnioskować można o obecności łańcuchów i wstęg krzemotlenowych. Silne pasmo Q 2 zarejestrowane jest zarówno dla próbek syntezowanych bez dodatków, ale również w obecności dodatków - 1% jonów Zn 2+. Wzrost zawartości Al 2 O 3 w strukturze uwodnionych glinokrzemianów wapnia ( rys. 15) powoduje zauważalne zmiany na widmach 29 Si NMR MAS, szczególnie w zakresie wartości -80 do -90 ppm przesunięcia chemicznego, ale również w zakresie wartości: do -120 ppm przesunięcia chemicznego. W przypadku próbki C-A-S-H (A/S = 1,5; 28 dni hydratacji) cechującej się znaczną ilością jonów glinu w strukturze, występują w niej podstawienia atomów krzemu glinem w podsieci tetraedrycznej, co skutkuje zmianą położenia pasm w kierunku

14 Świadczy to o występowaniu w próbce tetraedrów typu Q 3. W przypadku próbek N-1,0-7- 1%Zn (rys. 18) można zaobserwować przesunięcie pasma zarówno z pozycji tetraedrycznej, jak i oktaedrycznej w kierunku wartości ujemnych względem próbki odniesienia, które są wynikiem wzrostu stopnia polimeryzacji próbek zawierających jony metali ciężkich względem próbek referencyjnych. CA-1,0-7-Zn CA-1,0-7 10,09 27 Al CA-1,5-28 CA-1, Al 11,38 10,92 5,83 57,08 58, ppm Rys. 16. Widma 27 Al MAS NMR dla C-A-S-H (A/S = 1,0; 7 dni hydratacji) bez dodatku (próbka referencyjna) i z 1% dodatkiem jonów Zn ppm Rys. 17. Widma 27 Al MAS NMR dla C-A-S-H (A/S = 1,0 i 1,5; 28 dni hydratacji) (próbki ref.) N-1,0-7-1Zn N ,11 5,82 27 Al N-1,5-28-1Zn N-1, ,38 7,56 12,66 27 Al 53,68 54,50 54, ppm Rys. 18. Widma 27 Al MAS NMR dla N-A-S-H (A/S = 1,0; 7 dni hydratacji) bez dodatku (próbki referencyjne) i z dodatkiem 1% jonów Zn ppm Rys. 19. Widma 27 Al MAS NMR dla N-A-S-H (A/S = 1,5; 7 dni hydratacji) bez dodatku (próbki referencyjne) i z dodatkiem 1% jonów Zn 2+ Podsumowując, 1% jonów można Zn 2+ stwierdzić, że metoda 29 Si i 27 Al NMR MAS pozwoliła na lepsze scharakteryzowanie struktur uwodnionych krzemianów wapnia oraz uwodnionych glinokrzemianów wapnia, a także uwodnionych glinokrzemianów sodu. Struktura podsieci krzemotlenowej C-S-H i glinokrzemotlenowej C-A-S-H oraz N-A-S-H jest zależna od składu chemicznego (stosunku molowego C/S oraz A/S, jak również zastosowanych dodatków jonów cynku) oraz warunków prowadzenia syntezy (czasu hydratacji, temperatury). Wraz ze wzrostem zawartości jonów Ca 2+ w strukturze uwodnionych krzemianów wapnia, oprócz struktury łańcuchowej zauważyć można powstawanie struktur wstęgowych. W próbkach referencyjnych C-S-H, przy C/S = 1,0 i 1,7, dominującym składnikiem podsieci krzemotlenowej są łańcuchy tetraedrów (intensywne pasmo Q 2 w widmie 29 Si NMR). W próbkach C-S-H i C-A-S-H stwierdzono obecność struktur dwuwymiarowych, o czym świadczy obecność pasm Q 3 w widmie NMR. Położenia, jak również intensywność pasm przypisywanych wstęgom są zróżnicowane w zależności od stosunku molowego C/S i C+S/A w materiale wyjściowym oraz od obecności jonów metali ciężkich. Badając wpływ kationów cynku na proces tworzenia się C-S-H, C-A-S-H i N-A-S-H zaobserwowano porządkowanie struktury uwodnionych krzemianów wapnia oraz uwodnionych glinokrzemianów wapnia poprzez utworzenie struktury łańcuchowej. W próbkach uwodnionych glinokrzemianów wapnia i uwodnionych glinokrzemianów sodu przeważa udział oktaedrów glinotlenowych nad tetraedrami. Dodatek jonów metali ciężkich wpływa na wzrost zawartości glinu w pozycji oktaedrycznej. 13

15 Stopien immoblizacji [%] Stopien immoblizacji [%] 5. Badanie stopnia immobilizacji metali ciężkich w fazach C-S-H, C-A-S-H i N-A-S-H W dalszej części pracy sprawdzono, w jakim stopniu matryce C-S-H, C-A-S-H i N-A-S- H spełniają swą oczekiwaną pozytywną rolę w procesie immobilizacji jonów metali ciężkich. Priorytetowym celem tej części pracy było określenie potencjału immobilizacyjnego tych faz. Kluczowym etapem było zbadanie stopnia ługowalności metali ciężkich z otrzymanych produktów hydratacji szkieł glinokrzemianowych. W celu ustalenia stopnia immobilizacji zbadano poziom wymywalności danego kationu i anionu metalu ciężkiego z matryc C-S-H, C-A-S-H oraz N-A-S-H poprzez wykonanie testów ługowalności. W realizowanej pracy, badania wymywalności jonów metali ciężkich (Zn 2+, Pb 2+, Cd 2+, Cr 3+ i CrO 4 2- ) wykonano metodą określoną w literaturze jako ML test (maksimum wyługowania). Wyniki testów ługowania metali ciężkich z uwodnionych krzemianów wapnia (przy stosunkach molowych C/S wynoszących 1,0 i 1,7 oraz czasach hydratacji równych 7, 28 i 90 dni) przedstawiono w Tabeli 1. Dodatkowo, na rys przedstawiono stopień immobilizacji dla próbek C-S- H, C-A-S-H i N-A-S-H z 1% dodatkiem jonów metali ciężkich. Tabela 1. Wyniki testów ługowania dla C-S-H (C/S = 1,0; czas dojrzewania próbek 7, 28 i 90 dni) Oznaczenie próbek Stężenia metali ciężkich w przesączu [mg/dm 3 ] Współczynnik wyługowania metali ciężkich [%] Stopień immobilizacji metali ciężkich [%] 7 dni 28 dni 90 dni 7 dni 28 dni 90 dni 7 dni 28 dni 90 dni 0,5% Pb(II) 0,0122 0,0218 0,0225 0,0142 0,0265 0, ,98 99,97 99,97 1,0% Pb(II) 0,0115 0,0142 0,0149 0,0067 0,0086 0,0090 >99,99 99,99 99,99 0,5% Zn(II) 0,0351 0,0901 0,0655 0,0422 0,1084 0, ,95 99,92 99,92 1,0% Zn(II) 0,0124 0,0432 0,0434 0,0072 0,0260 0,0263 >99,99 99,97 99,97 0,5% Cd(II) 0,0375 0,0302 0,0309 0,0452 0,0363 0, ,95 99,96 99,96 1,0% Cd(II) 0,0021 0,0359 0,0363 0,0012 0,0216 0, ,98 99,97 99,97 0,5% Cr(III) 0,0346 0,0378 0,0381 0,0514 0,0455 0, ,96 99,95 99,95 1,0% Cr(III) 0,0300 0,0266 0,0270 0,0191 0,0161 0, ,98 99,98 99,98 0,5% Cr(VI) 2,4038 6,4612 6,5021 2,8961 7,7832 7, ,10 92,22 92,16 1,0% Cr(VI) 5, , ,476 3,4372 8,1143 8, ,57 91,89 91,88 (a) ,99 99,97 99,97 99,98 C-1, , ,97 99,94 99,93 99,93 C-1, ,70 (b) ,0%Pb(II) 1,0%Zn(II) 1,0%Cd(II) 1,0%Cr(III) 1,0%Cr(VI) 0 1,0%Pb(II) 1,0%Zn(II) 1,0%Cd(II) 1,0%Cr(III) 1,0%Cr(VI) Rys. 20. Stopień immobilizacji jonów metali ciężkich dla C-S-H o stosunku molowym C/S równym: (a) 1,0 oraz (b) 1,7 po 28 dniowym czasie hydratacji 14

16 Stopien immobilizacji [%] Stopien immobilizacji [%] Stopien immobilizacji [%] Stopien immobilizacji [%] (a) ,96 98,89 98,84 93,08 CA-1, , ,32 98,01 98,10 90,48 CA-1, ,33 (b) ,0%Pb(II) 1,0%Zn(II) 1,0%Cd(II) 1,0%Cr(III) 1,0%Cr(VI) 0 1,0%Pb(II) 1,0%Zn(II) 1,0%Cd(II) 1,0%Cr(III) 1,0%Cr(VI) Rys. 21. Stopień immobilizacji jonów metali ciężkich dla C-A-S-H o stosunku molowym A/S równym: (a) 1,0 oraz (b) 1,5 po 28 dniowym czasie hydratacji (a) 100 N-1, ,99 99,99 99,99 99,98 98, N-1, ,95 99,93 99,96 99,77 97,71 (b) ,0%Pb(II) 1,0%Zn(II) 1,0%Cd(II) 1,0%Cr(III) 1,0%Cr(VI) 0 1,0%Pb(II) 1,0%Zn(II) 1,0%Cd(II) 1,0%Cr(III) 1,0%Cr(VI) Rys. 22. Stopień immobilizacji jonów metali ciężkich dla N-A-S-H o stosunku molowym A/S: (a) 1,0 oraz (b) 1,5 po 28 dniowym czasie hydratacji Poziom immobilizacji metali ciężkich w fazach C-S-H, C-A-S-H i N-A-S-H silnie zależy od czasu hydratacji próbek. Proces 28 dniowego naturalnego dojrzewania próbek jest wystarczający do uzyskania wysokiego poziomu immobilizacji. Różniące się stosunkiem molowym C/S i A/S oraz czasem dojrzewania próbki dają różny stopień wyługowania jonów metali ciężkich z matryc C-S-H, C-A-S-H i N-A-S-H Niezależnie od warunków hydratacji (T = 20 2 C, t = 7 i 28 dni) i proporcji pomiędzy CaO i SiO 2 (1,0 i 1,7) oraz Al 2 O 3 do SiO 2 (1,0 i 1,5) w materiale wyjściowym, kationy Zn 2+, Pb 2+, Cd 2+ i Cr 3+ immobilizowane są przez matryce uwodnionych krzemianów wapnia na poziomie przekraczającym 99,9%, w uwodnionych glinokrzemianów wapnia powyżej 90,4%, a w uwodnionych glinokrzemianach sodu na poziomie przekraczającym 99,7%. Pb(II), Zn(II), Cd(II), Cr(III) i Cr(VI) immobilizowane są przez matryce uwodnionych glinokrzemianów sodu z bardzo dużą skutecznością. Wymywalność jonów metali ciężkich jest bardzo mała. Poziom immobilizacji anionów CrO 4 2- w C-S-H wynosi ponad 91,8%, w C-A-S-H jest wyższy od 83,7%, a w N-A-S-H mieści się na poziomie przekraczającym 96,9%, Najlepsze wyniki stopnia immobilizacji metali ciężkich w fazach C-S-H, C-A-S-H i N-A-S-H dają próbki uwodnionych krzemianów wapnia, uwodnionych glinokrzemianów wapnia oraz uwodnionych glinokrzemianów sodu o stosunku molowym C/S i A/S równym 1,0. 15

17 6. PODSUMOWANIE Przystępując do realizacji pracy starano się przeanalizować dotychczasowy dorobek naukowy i wysunąć z nich istotne wnioski w obszarze związanym z alkaliczną aktywacją oraz potencjałem immobilizacyjnym modelowych produktów hydratacji szkieł glinokrzemianowowapniowych, takich jak: uwodnione krzemiany wapnia (C-S-H), uwodnione glinokrzemiany wapnia (C-A-S-H) oraz uwodnione glinokrzemiany sodu (N-A-S-H). Przeprowadzone badania zweryfikowały tezę, stwierdzającą, że ze względu na właściwości strukturalne, mikrostrukturalne i właściwości chemiczne modelowych produktów hydratacji alkalicznie aktywowanych szkieł glinokrzemianowo-wapniowych mogą one stanowić efektywne matryce immobilizujące metale ciężkie. Przeprowadzone w ramach niniejszej pracy badania pozwoliły dokładniej opisać i scharakteryzować produkty powstające w trakcie hydratacji alkalicznie aktywowanych szkieł glinokrzemianowych typu C-S-H, C-A-S-H i N-A-S-H. Wykorzystanie metody NMR pozwoliło w sposób bardzo precyzyjny przedstawić zmiany stopnia polikondensacji tetraedrów w strukturze uwodnionych krzemianów wapnia, uwodnionych glinokrzemianów wapnia oraz uwodnionych glinokrzemianach sodu zarówno bez dodatków, jak i z dodatkiem jonów metali ciężkich. Mechanizm immobilizacji metali ciężkich przez matryce uwodnionych krzemianów wapnia obejmuje wiele, nie do końca poznanych jeszcze czynników unieszkodliwiania. W przypadku matryc uwodnionych glinokrzemianów wapnia zawierających 0,5% i 1% dodatek jonów metali ciężkich, badania składu fazowego wykonane metodą rentgenowskiej analizy fazowej XRD pozwoliły zaobserwować, iż większość jonów metali ciężkich uległa sorpcji powierzchniowej. W zależności od stosunków molowych Al 2 O 3 /SiO 2 powstają produkty amorficzne albo krystaliczne w postaci wodorotlenków, np. Zn(OH) 2, czy zeolitów [zeolit A- Zn (Zn 6 Al 12 Si 12 O 48 (H 2 O) 29 ]. W modelowych matrycach uwodnionych glinokrzemianów sodu po immobilizacji jonów metali ciężkich zaobserwowano istnienie amorficznych substancji żelowych wystepujących w postaci fazy N-A-S-H. W mniejszych ilościach powstają również inne fazy, będące wynikiem immobilizacji, których powstawanie i rodzaj zależne są od stosunku jonów glinu do jonów krzemu, takie jak, np.: akwa-kompleksy typu- Cd 5 (OH) 8 (NO 3 ) 2 2H 2 O, gaulit o wzorze chemicznym Na 4 Zn 2 Si 2 O 7 5H 2 O, czy 2PbO SiO 2 xh 2 O. Wyniki otrzymanych badań pozwalają na stwierdzenie, że metale ciężkie w matrycach C-S-H, C-A-S-H i N-A-S-H immobilizowane mogą być za pomocą różnych mechanizmów, do których w głównej mierze należą: sorpcja zaobserwowana głównie dla jonów chromu, wytrącenia nowych produktów, czy podstawienia w strukturze międzywarstwowej. Wykonane badania wymywalności jonów metali ciężkich z faz C-S-H, C-A-S-H i N-A- S-H dowiodły, iż matryce uwodnionych krzemianów wapnia, uwodnionych glinokrzemianów wapnia oraz uwodnionych glinokrzemianów sodu stanowią efektywne matryce immobilizujące metale ciężkie. Przeprowadzone badania przyniosły wiele odpowiedzi, ale również stają się przyczynkiem do nowych wyzwań badawczych dotyczących choćby dokładnego poznania mechanizmów unieruchamiania metali ciężkich w matrycach C-S-H, C-A-S-H i N-A-S-H. Skuteczność immobilizacji w matrycach opartych na spoiwach mineralnych powinna sprawdzona być z uwzględnieniem czynników środowiskowych, takich jak: karbonatyzacja, zmienne temperatury zewnętrzne, czy zmienne ph czynnika wymywającego. To kolejny ważny i słabo dotąd rozpoznany obszar dociekań naukowych. 16

18 7. WNIOSKI Przeprowadzone badania pozwalają na wyciągnięcie następujących wniosków: 1. Modelowe fazy C-S-H, C-A-S-H i N-A-S-H charakteryzują się bardzo wysokim stopniem amorficzności. Wprowadzenie metali ciężkich do tych matryc prowadzi do nieznacznego zmniejszenia poziomu nieuporządkowania. Różnice morfologiczne tych matryc uzależnione są w głównej mierze od rodzaju i stężenia metalu ciężkiego, od stosunków molowych CaO/SiO 2 i Al 2 O 3 /SiO 2 oraz czasu hydratacji. 2. Struktury podsieci krzemotlenowej w C-S-H oraz glinokrzemotlenowej w C-A-S-H i N-A-S-H są zależne od składu chemicznego (stosunki molowe C/S i A/S), obecności metali ciężkich oraz warunków dojrzewania zaczynu. Zwiększenie ilości jonów Ca 2+ w matrycy prowadzi do powstania, obok struktur łańcuchowych, struktur wstęgowych. 3. Badania techniką NMR jednoznacznie potwierdziły porządkowanie struktury uwodnionych krzemianów wapnia oraz uwodnionych glinokrzemianów wapnia lub sodu w obecności kationów cynku. 4. Jony Al 3+ występują w strukturach fazy C-A-S-H i N-A-S-H głównie w formie tetraedrów glinowych zastępujących aniony [SiO 4 ] 4-. W obydwu tych fazach stwierdza się także obecność glinu w koordynacji oktaedrycznej. Dodatek jonów metali ciężkich wpływa na wzrost zawartości glinu w pozycji oktaedrycznej. Jony glinianowe tworzą również odrębne uwodnione fazy (zeolity). 5. Fazy uzyskane w modelowych układach C-S-H, C-A-S-H i N-A-S-H mają wysoki potencjał immobilizacyjny względem kationów Zn 2+, Cd 2+, Pb 2+ i Cr 3+. Stopień immobilizacji jonów metali ciężkich: Zn 2+, Cd 2+, Pb 2+ i Cr 3+ w fazie C-S-H utrzymuje się na poziomie przekraczającym 99,9%, w C-A-S-H powyżej 90,4%, a w N-A-S-H przekracza 99,7%. 6. C-S-H, C-A-S-H i N-A-S-H zawierające jony chromu sześciowartościowego charakteryzuje zauważalnie niższy poziom immobilizacji spowodowany występowaniem jonów CrO 4 2- w postaci stosunkowo dobrze rozpuszczalnych chromianów. Stopień immobilizacji dla anionów chromianowych CrO 4 2- w C-S-H przekracza 91,8%, w C- A-S-H jest wyższy od 83,7%, a w N-A-S-H zbliża się nawet do 99%. 7. Najlepszymi właściwościami immobilizacyjnymi charakteryzują się matryce C-S-H, C-A-S-H i N-A-S-H o stosunku molowym CaO/SiO 2 i Al 2 O 3 /SiO 2 równym 1,0, typowe dla zaczynów ze spoiw żużlowo-alkalicznych. 8. Wraz ze wzrostem stosunku molowego CaO/SiO 2 i Al 2 O 3 /SiO 2 oraz wraz z upływem czasu dojrzewania próbek, stopień immobilizacji metali ciężkich nieznacznie maleje, bądź pozostaje na niezmienionym wysokim poziomie. 9. Metale ciężkie w matrycach C-S-H, C-A-s-H i N-A-S-H immobilizowane są za pomocą różnych mechanizmów: sorpcji obserwowanej głównie dla jonów chromu, wytrącania nowych produktów oraz podstawiania jonów w strukturach uwodnionych krzemianów wapnia lub uwodnionych glinokrzemianów wapnia i sodu. 17

Możliwości zastosowania fluidalnych popiołów lotnych do produkcji ABK

Możliwości zastosowania fluidalnych popiołów lotnych do produkcji ABK Sekcja Betonów Komórkowych SPB Konferencja szkoleniowa ZAKOPANE 14-16 kwietnia 2010 r. Możliwości zastosowania fluidalnych popiołów lotnych do produkcji ABK doc. dr inż. Genowefa Zapotoczna-Sytek mgr inż.

Bardziej szczegółowo

Instytutu Ceramiki i Materiałów Budowlanych

Instytutu Ceramiki i Materiałów Budowlanych Instytutu Ceramiki i Materiałów Budowlanych Scientific Works of Institute of Ceramics and Building Materials Nr 11 ISSN 1899-3230 Rok V Warszawa Opole 2012 RENATA ŻAK * JAN DEJA ** Słowa kluczowe: szkła

Bardziej szczegółowo

Wpływ popiołów lotnych krzemionkowych kategorii S na wybrane właściwości kompozytów cementowych

Wpływ popiołów lotnych krzemionkowych kategorii S na wybrane właściwości kompozytów cementowych Międzynarodowa Konferencja Popioły z Energetyki- Zakopane 19-21.X.2016 r. Wpływ popiołów lotnych krzemionkowych kategorii S na wybrane właściwości kompozytów cementowych Mikołaj Ostrowski, Tomasz Baran

Bardziej szczegółowo

Adsorpcja wybranych jonów metali ciężkich na biowęglu pochodzącym z komunalnych osadów ściekowych

Adsorpcja wybranych jonów metali ciężkich na biowęglu pochodzącym z komunalnych osadów ściekowych Adsorpcja wybranych jonów metali ciężkich na biowęglu pochodzącym z komunalnych osadów ściekowych mgr Ewelina Ślęzak Opiekun pomocniczy: dr Joanna Poluszyńska Opiekun: prof. dr hab. inż. Piotr Wieczorek

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/13

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/13 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229864 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 401393 (22) Data zgłoszenia: 29.10.2012 (51) Int.Cl. C04B 28/04 (2006.01)

Bardziej szczegółowo

gospodarka odpadami Anna Król Politechnika Opolska

gospodarka odpadami Anna Król Politechnika Opolska Unieszkodliwianie odpadów poprzez ich zestalanie, gospodarka odpadami Anna Król Politechnika Opolska 1 Przemysł cementowy swoimi działaniami wpisuje się w filozofię zrównoważonego rozwoju Działania przemysłu

Bardziej szczegółowo

Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.

Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami. Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami. I. Gęstość propanu w warunkach normalnych wynosi II. Jeżeli stężenie procentowe nasyconego roztworu pewnej

Bardziej szczegółowo

ĆWICZENIE. Wpływ nano- i mikroproszków na udział wody związanej przez składniki hydrauliczne ogniotrwałych cementów glinowych

ĆWICZENIE. Wpływ nano- i mikroproszków na udział wody związanej przez składniki hydrauliczne ogniotrwałych cementów glinowych LABORATORIUM z przedmiotu Nanomateriały i Nanotechnologie ĆWICZENIE Wpływ nano- i mikroproszków na udział wody związanej przez składniki hydrauliczne ogniotrwałych cementów glinowych I WĘP TEORETYCZNY

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp W przypadku trudno rozpuszczalnej soli, mimo osiągnięcia stanu nasycenia, jej stężenie w roztworze jest bardzo małe i przyjmuje się, że ta

Bardziej szczegółowo

Kompozyty nanowarstw tytanianowych z udziałem związków cynku i baru synteza i właściwości

Kompozyty nanowarstw tytanianowych z udziałem związków cynku i baru synteza i właściwości Agnieszka Opasińska 161381 POLITECHNIKA ŁÓDZKA WYDZIAŁ CHEMICZNY Kompozyty nanowarstw tytanianowych z udziałem związków cynku i baru synteza i właściwości Praca zrealizowana w Katedrze Fizyki Molekularnej

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Analiza strukturalna materiałów Ćwiczenie 4

Analiza strukturalna materiałów Ćwiczenie 4 Akademia Górniczo Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych Instrukcja do ćwiczeń laboratoryjnych Kierunek studiów: Technologia chemiczna

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

Otrzymywanie i badanie właściwości chemicznych związków wanadu na różnych stopniach utlenienia.

Otrzymywanie i badanie właściwości chemicznych związków wanadu na różnych stopniach utlenienia. ĆWICZENIE 6 Otrzymywanie i badanie właściwości chemicznych związków wanadu na różnych stopniach utlenienia. Celem ćwiczenia jest obserwacja barwnych produktów redukcji metawanadanu(v) sodu, NaVO 3 oraz

Bardziej szczegółowo

EDF POLSKA R&D EDF EKOSERWIS

EDF POLSKA R&D EDF EKOSERWIS EDF POLSKA R&D EDF EKOSERWIS SYNTEZA MATERIAŁÓW AKTYWOWANYCH ALKALICZNIE NA BAZIE POPIOŁÓW LOTNYCH BARTOSZ SARAPATA XXIII Konferencja POPIOŁY Z ENERGETYKI ZAKOPANE, 2016-10-20 SYNTEZA GEOPOLIMERÓW NA BAZIE

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016 XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego II Etap - 18 stycznia 2016 Nazwisko i imię ucznia: Liczba uzyskanych punktów: Drogi Uczniu, przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

Wskaźniki aktywności K28 i K90 popiołów lotnych krzemionkowych o miałkości kategorii S dla różnych normowych cementów portlandzkich

Wskaźniki aktywności K28 i K90 popiołów lotnych krzemionkowych o miałkości kategorii S dla różnych normowych cementów portlandzkich Wskaźniki aktywności K28 i K90 popiołów lotnych krzemionkowych o miałkości kategorii S dla różnych normowych cementów portlandzkich Tomasz Baran, Mikołaj Ostrowski OSiMB w Krakowie XXV Międzynarodowa Konferencja

Bardziej szczegółowo

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II Czas trwania testu 120 minut Informacje 1. Proszę sprawdzić czy arkusz zawiera 10 stron. Ewentualny brak należy zgłosić nauczycielowi. 2. Proszę rozwiązać

Bardziej szczegółowo

Zasady zapisywania wzorów krzemianów

Zasady zapisywania wzorów krzemianów Zasady zapisywania wzorów krzemianów Wzór chemiczny podaje skład chemiczny danego związku Rodzaje wzorów 1. Tlenkowy pokazuje skład ilościowy i jakościowy 2. Koordynacyjny oprócz składu ilościowego i jakościowego

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 21/10. MARCIN ŚRODA, Kraków, PL

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 21/10. MARCIN ŚRODA, Kraków, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 212156 (13) B1 (21) Numer zgłoszenia: 387737 (51) Int.Cl. C03C 1/00 (2006.01) B09B 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii

Bardziej szczegółowo

Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014

Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014 ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014 Imię i nazwisko uczestnika Szkoła Klasa Nauczyciel Imię

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp Mianem rozpuszczalności określamy maksymalną ilość danej substancji (w gramach lub molach), jaką w danej temperaturze można rozpuścić w określonej

Bardziej szczegółowo

Streszczenie. do SO. jonami CrO. CrO. and SO

Streszczenie. do SO. jonami CrO. CrO. and SO * Streszczenie CrO do SO jonami CrO - and SO * 142 1. Wstęp Etryngit występuje w przyrodzie jako trudno rozpuszczalny minerał o wzorze ogólnym 3CaO Me 2 3CaX 32H 2 O gdzie: Me metal trójwartościowy - najczęściej

Bardziej szczegółowo

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I...... Imię i nazwisko ucznia ilość pkt.... czas trwania: 90 min Nazwa szkoły... maksymalna ilość punk. 33 Imię

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab CZĄSTECZKA I RÓWNANIE REKCJI CHEMICZNEJ potrafi powiedzieć co to jest: wiązanie chemiczne, wiązanie jonowe, wiązanie

Bardziej szczegółowo

Sole. 2. Zaznacz reszty kwasowe w poniższych solach oraz wartościowości reszt kwasowych: CaBr 2 Na 2 SO 4

Sole. 2. Zaznacz reszty kwasowe w poniższych solach oraz wartościowości reszt kwasowych: CaBr 2 Na 2 SO 4 Sole 1. Podkreśl poprawne uzupełnienia zdań: Sole to związki, które dysocjują w wodzie na kationy/aniony metali oraz kationy/ aniony reszt kwasowych. W temperaturze pokojowej mają stały/ ciekły stan skupienia

Bardziej szczegółowo

TEST NA EGZAMIN POPRAWKOWY Z CHEMII DLA UCZNIA KLASY II GIMNAZJUM

TEST NA EGZAMIN POPRAWKOWY Z CHEMII DLA UCZNIA KLASY II GIMNAZJUM TEST NA EGZAMIN PPRAWKWY Z CHEMII DLA UCZNIA KLASY II GIMNAZJUM I. Część pisemna: 1. Które z poniższych stwierdzeń jest fałszywe? a.) Kwasy są to związki chemiczne zbudowane z wodoru i reszty kwasowej.

Bardziej szczegółowo

107 137 153 167 171 195 197

107 137 153 167 171 195 197 Spis treści 1. Wprowadzenie 5 2. Dodatki mineralne i odpady stosowane w technologii produkcji cementu oraz betonu 9 2.1. Wykorzystanie ubocznych produktów przemysłowych i odpadów w budownictwie jako działanie

Bardziej szczegółowo

OZNACZANIE WŁAŚCIWOŚCI BUFOROWYCH WÓD

OZNACZANIE WŁAŚCIWOŚCI BUFOROWYCH WÓD OZNACZANIE WŁAŚCIWOŚCI BUFOROWYCH WÓD POWIERZCHNIOWYCH WPROWADZENIE Właściwości chemiczne wód występujących w przyrodzie odznaczają się dużym zróżnicowaniem. Zależą one między innymi od budowy geologicznej

Bardziej szczegółowo

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 21 maja 2016 Im. Jana Kasprowicza INOWROCŁAW XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY

Bardziej szczegółowo

Powstawanie żelazianu(vi) sodu przebiega zgodnie z równaniem: Ponieważ termiczny rozkład kwasu borowego(iii) zachodzi zgodnie z równaniem:

Powstawanie żelazianu(vi) sodu przebiega zgodnie z równaniem: Ponieważ termiczny rozkład kwasu borowego(iii) zachodzi zgodnie z równaniem: Zad. 1 Ponieważ reakcja jest egzoenergetyczna (ujemne ciepło reakcji) to wzrost temperatury spowoduje przesunięcie równowagi w lewo, zatem mieszanina przyjmie intensywniejszą barwę. Układ będzie przeciwdziałał

Bardziej szczegółowo

CHEMIA KLASA II I PÓŁROCZE

CHEMIA KLASA II I PÓŁROCZE CHEMIA KLASA II I PÓŁROCZE wymienia zasady bhp dotyczące obchodzenia się z kwasami definiuje pojęcia: elektrolit i nieelektrolit wyjaśnia, co to jest wskaźnik i wymienia trzy przykłady odróżnia kwasy od

Bardziej szczegółowo

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M) Wodorotlenki Definicja - Wodorotlenkami nazywamy związki chemiczne, zbudowane z kationu metalu (zazwyczaj) (M) i anionu wodorotlenowego (OH - ) Ogólny wzór wodorotlenków: M(OH) n M oznacza symbol metalu.

Bardziej szczegółowo

CO WARTO WIEDZIEĆ O CEMENCIE?

CO WARTO WIEDZIEĆ O CEMENCIE? CO WARTO WIEDZIEĆ O CEMENCIE? str. 1 A1 Cement to spoiwo hydrauliczne, tj. drobno zmielony materiał nieorganiczny, który po zmieszaniu z wodą daje zaczyn, wiążący i twardniejący w wyniku reakcji i procesów

Bardziej szczegółowo

REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW

REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW Chemia analityczna jest działem chemii zajmującym się ustalaniem składu jakościowego i ilościowego badanych substancji chemicznych. Analiza jakościowa bada

Bardziej szczegółowo

VI Podkarpacki Konkurs Chemiczny 2013/2014

VI Podkarpacki Konkurs Chemiczny 2013/2014 VI Podkarpacki Konkurs Chemiczny 01/01 ETAP I 1.11.01 r. Godz. 10.00-1.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Znając liczbę masową pierwiastka można określić liczbę:

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH. Ćwiczenie nr 6. Adam Pawełczyk

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH. Ćwiczenie nr 6. Adam Pawełczyk POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH Ćwiczenie nr 6 Adam Pawełczyk Instrukcja do ćwiczeń laboratoryjnych USUWANIE SUBSTANCJI POŻYWKOWYCH ZE ŚCIEKÓW PRZEMYSŁOWYCH

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Chemia Kl.2. I. Kwasy

Wymagania programowe na poszczególne oceny. Chemia Kl.2. I. Kwasy Wymagania programowe na poszczególne oceny Chemia Kl.2 I. Kwasy Ocena dopuszczająca zna zasady bhp dotyczące obchodzenia się z kwasami definiuje elektrolit, nieelektrolit wyjaśnia pojęcie wskaźnika i wymienia

Bardziej szczegółowo

Bezpieczeństwo ekologiczne współspalania odpadów w piecach cementowych. Dyrektor ds. Produkcji Paweł Zajd

Bezpieczeństwo ekologiczne współspalania odpadów w piecach cementowych. Dyrektor ds. Produkcji Paweł Zajd Bezpieczeństwo ekologiczne współspalania odpadów w piecach cementowych Dyrektor ds. Produkcji Paweł Zajd Walory ekologiczne pieców obrotowych I Zawartość chloru w paliwie alternatywnym do 1,0 % powyżej

Bardziej szczegółowo

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW. RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW. Zagadnienia: Zjawisko dysocjacji: stała i stopień dysocjacji Elektrolity słabe i mocne Efekt wspólnego jonu Reakcje strącania osadów Iloczyn rozpuszczalności Odczynnik

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 14 Data wydania: 5 lutego 2016 r. AB 097 Kod identyfikacji

Bardziej szczegółowo

X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12

X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12 ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12 Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty Zadanie 1. (10

Bardziej szczegółowo

Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej

Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej Politechnika Gdańska Wydział Chemiczny Katedra Technologii Chemicznej Bezpieczeństwo środowiskowe Sorpcyjne właściwości gleb Przygotował: dr inż. Andrzej P. Nowak Gleba, czyli pedosfera, jest naturalnym

Bardziej szczegółowo

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco: HYDROLIZA SOLI Hydroliza to reakcja chemiczna zachodząca między jonami słabo zdysocjowanej wody i jonami dobrze zdysocjowanej soli słabego kwasu lub słabej zasady. Reakcji hydrolizy mogą ulegać następujące

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

CEMENTY SIARCZANOGLINIANOWE C 4. S (Belit) 10 60%; C 4 ŻELAZIANOWO SIARCZANOGLINIANOWE AF 15 30%

CEMENTY SIARCZANOGLINIANOWE C 4. S (Belit) 10 60%; C 4 ŻELAZIANOWO SIARCZANOGLINIANOWE AF 15 30% CEMENT WAPNIOWO SIARCZANOGLINIANOWY (CSA) str. 1 A12 Cement wapniowo siarczanoglinianowy (CSA) jest to mineralne spoiwo hydrauliczne wytwarzane w wyniku przemiału klinkieru wapniowo siarczanoglinianowego

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

Wymagania z chemii na poszczególne oceny Klasa 2 gimnazjum. Kwasy.

Wymagania z chemii na poszczególne oceny Klasa 2 gimnazjum. Kwasy. Wymagania z chemii na poszczególne oceny Klasa 2 gimnazjum Stopień celujący mogą otrzymać uczniowie, którzy spełniają kryteria na stopień bardzo dobry oraz: Omawiają przemysłową metodę otrzymywania kwasu

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Spektroskopowe i teoretyczne badania wpływu niektórych metali na układ elektronowy wybranych kwasów aromatycznych

Spektroskopowe i teoretyczne badania wpływu niektórych metali na układ elektronowy wybranych kwasów aromatycznych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Grzegorz Świderski Streszczenie rozprawy doktorskiej p.t: Spektroskopowe i teoretyczne badania wpływu niektórych metali na układ elektronowy

Bardziej szczegółowo

XV Wojewódzki Konkurs z Chemii

XV Wojewódzki Konkurs z Chemii XV Wojewódzki Konkurs z Chemii dla uczniów dotychczasowych gimnazjów oraz klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa świętokrzyskiego II Etap powiatowy 16 styczeń 2018

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. IV. Kwasy. Ocena bardzo dobra. Ocena dostateczna. Ocena dopuszczająca. Ocena dobra [1] [ ]

Wymagania programowe na poszczególne oceny. IV. Kwasy. Ocena bardzo dobra. Ocena dostateczna. Ocena dopuszczająca. Ocena dobra [1] [ ] Wymagania programowe na poszczególne oceny IV. Kwasy Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra [1] [1 + 2] [1 + 2 + 3] [1 + 2 + 3 + 4] wymienia zasady bhp dotyczące obchodzenia

Bardziej szczegółowo

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Szeroki zakres interkalacji y, a więc duża dopuszczalna zmiana zawartości litu w materiale, która powinna zachodzić przy minimalnych zaburzeniach

Bardziej szczegółowo

HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH

HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH Uniwersytet Mikołaja Kopernika Monografie Wydziału Chemii MYROSLAV SPRYNSKYY HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH (KLINOPTYLOLIT, MORDENIT, DIATOMIT, TALK,

Bardziej szczegółowo

PL 198188 B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL 03.04.2006 BUP 07/06

PL 198188 B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL 03.04.2006 BUP 07/06 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 198188 (13) B1 (21) Numer zgłoszenia: 370289 (51) Int.Cl. C01B 33/00 (2006.01) C01B 33/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

SPIS TREŚCI WPROWADZENIE Podział biomateriałów Biomateriały w medycynie regeneracyjnej Cementy kostne...

SPIS TREŚCI WPROWADZENIE Podział biomateriałów Biomateriały w medycynie regeneracyjnej Cementy kostne... SPIS TREŚCI WPROWADZENIE... 1 I. PRZEGLĄD LITERATURY... 3 1.1. Podział biomateriałów... 3 1.2. Biomateriały w medycynie regeneracyjnej... 8 1.3. Materiały kościozastępcze... 11 1.4. Wymagania stawiane

Bardziej szczegółowo

BADANIE ZMIAN ZACHODZĄCYCH W MASACH Z BENTONITEM POD WPŁYWEM TEMPERATURY METODĄ SPEKTROSKOPII W PODCZERWIENI

BADANIE ZMIAN ZACHODZĄCYCH W MASACH Z BENTONITEM POD WPŁYWEM TEMPERATURY METODĄ SPEKTROSKOPII W PODCZERWIENI BADANIE ZMIAN ZACHODZĄCYCH W MASACH Z BENTONITEM POD WPŁYWEM TEMPERATURY METODĄ SPEKTROSKOPII W PODCZERWIENI BADANIE ZMIAN ZACHODZĄCYCH W MASACH Z BENTONITEM POD WPŁYWEM TEMPERATURY METODĄ SPEKTROSKOPII

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

MARATON WIEDZY CHEMIA CZ. II

MARATON WIEDZY CHEMIA CZ. II MARATON WIEDZY CHEMIA CZ. II 1. Podaj liczbę elektronów, nukleonów, protonów i neuronów zawartych w następujących atomach: a), b) 2. Podaj liczbę elektronów, nukleonów, protonów i neutronów zawartych w

Bardziej szczegółowo

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Ocenę niedostateczną otrzymuje uczeń, który nie opanował wymagań na ocenę dopuszczającą.

Bardziej szczegółowo

PL B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL BUP 15/06

PL B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL BUP 15/06 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 198350 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 372230 (22) Data zgłoszenia: 13.01.2005 (51) Int.Cl. C04B 28/20 (2006.01)

Bardziej szczegółowo

Związki nieorganiczne

Związki nieorganiczne strona 1/8 Związki nieorganiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Typy związków nieorganicznych: kwasy, zasady, wodorotlenki, dysocjacja jonowa, odczyn roztworu,

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

MAŁOPOLSKI KONKURS CHEMICZNY

MAŁOPOLSKI KONKURS CHEMICZNY Kod ucznia MAŁOPOLSKI KONKURS CHEMICZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu 8 października 2018 r. Etap I (szkolny) Wypełnia Szkolna

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba punktów ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI Instrukcja dla ucznia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE II gimnazjum

WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE II gimnazjum WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE II gimnazjum Program nauczania chemii w gimnazjum autorzy: Teresa Kulawik, Maria Litwin Program realizowany przy pomocy

Bardziej szczegółowo

H2S, H2SO4, H2SO3, HNO3, H2CO3,

H2S, H2SO4, H2SO3, HNO3, H2CO3, Wymagania programowe z chemii dla klasy drugiej (na podstawie treści zawartych w podstawie programowej, programie nauczania oraz podręczniku dla klasy drugiej gimnazjum Chemia Nowej Ery). Wyróżnione wymagania

Bardziej szczegółowo

Skład zespołu (imię i nazwisko): (podkreślić dane osoby piszącej sprawozdanie):

Skład zespołu (imię i nazwisko): (podkreślić dane osoby piszącej sprawozdanie): Wydział Chemii Katedra Chemii Ogólnej i Nieorganicznej pracownia studencka prowadzący:.. ĆWICZENIE 5 RÓWNOWAGI W ROZTWORACH ZWIĄZKÓW KOMPLEKSOWYCH Data wykonania ćwiczenia: Skład zespołu (imię i nazwisko):

Bardziej szczegółowo

Badanie oddziaływania polihistydynowych cyklopeptydów z jonami Cu 2+ i Zn 2+ w aspekcie projektowania mimetyków SOD

Badanie oddziaływania polihistydynowych cyklopeptydów z jonami Cu 2+ i Zn 2+ w aspekcie projektowania mimetyków SOD Wydział Farmaceutyczny z Oddziałem Analityki Medycznej Badanie oddziaływania polihistydynowych cyklopeptydów z jonami Cu 2+ i Zn 2+ w aspekcie projektowania mimetyków SOD Aleksandra Kotynia PRACA DOKTORSKA

Bardziej szczegółowo

Kryteria oceniania z chemii dla klasy drugiej DLA UCZNIÓW Z OBOWIĄZKIEM DOSTOSOWANIA WYMAGAŃ EDUKACYJNYCH

Kryteria oceniania z chemii dla klasy drugiej DLA UCZNIÓW Z OBOWIĄZKIEM DOSTOSOWANIA WYMAGAŃ EDUKACYJNYCH Kryteria oceniania z chemii dla klasy drugiej DLA UCZNIÓW Z OBOWIĄZKIEM DOSTOSOWANIA WYMAGAŃ EDUKACYJNYCH (na podstawie treści zawartych w podstawie programowej, programie nauczania oraz podręczniku dla

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII KOD UCZNIA... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII Termin: 12 marzec 2008 r. godz. 10 00 Czas pracy: 90 minut ETAP III Ilość punktów za rozwiązanie zadań Część I Część II Część III Numer zadania 1

Bardziej szczegółowo

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach Geopolimery z tufu wulkanicznego dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach Tuf wulkaniczny skład i właściwości Tuf wulkaniczny jest to porowata skała należąca do skał okruchowych, składająca

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. CHEMIA klasa II.

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. CHEMIA klasa II. Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych CHEMIA klasa II Oceny śródroczne: Ocenę dopuszczającą otrzymuje uczeń, który: -wymienia zasady bhp

Bardziej szczegółowo

CHEMIA 1. Podział tlenków

CHEMIA 1. Podział tlenków INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 www.medicus.edu.pl tel. 501 38 39 55 CHEMIA 1 SYSTEMATYKA ZWIĄZKÓW NIEORGANICZNYCH. ZWIĄZKI KOMPLEKSOWE. Tlenki

Bardziej szczegółowo

Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT

Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT 1 ĆWICZENIE 3 Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT Do wyznaczenia stopnia krystaliczności wybranych próbek polimerów wykorzystany zostanie program

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

Zasady oceniania z chemii w klasie II w roku szkolnym 2015/2016. Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra

Zasady oceniania z chemii w klasie II w roku szkolnym 2015/2016. Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Zasady oceniania z chemii w klasie II w roku szkolnym 2015/2016 I. Kwasy wymienia zasady bhp dotyczące obchodzenia się z kwasami definiuje pojęcia: elektrolit i nieelektrolit wyjaśnia, co to jest wskaźnik

Bardziej szczegółowo

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach Geopolimery z tufu wulkanicznego dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach Tuf wulkaniczny skład i właściwości Tuf wulkaniczny jest to porowata skała należąca do skał okruchowych, składająca

Bardziej szczegółowo

KRUSZYWA WAPIENNE ZASTOSOWANIE W PRODUKCJI BETONU TOWAROWEGO I ELEMENTÓW PREFABRYKOWANYCH

KRUSZYWA WAPIENNE ZASTOSOWANIE W PRODUKCJI BETONU TOWAROWEGO I ELEMENTÓW PREFABRYKOWANYCH KRUSZYWA WAPIENNE ZASTOSOWANIE W PRODUKCJI BETONU TOWAROWEGO I ELEMENTÓW PREFABRYKOWANYCH Marek Krajewski Instytut Badawczy Materiałów Budowlanych Sp. z o.o. 13 KRUSZYWA WAPIENNE I ICH JAKOŚĆ Kruszywo

Bardziej szczegółowo

7. Obliczenia zapisane w brudnopisie nie bgd4 oceniane. 4. Zadanta czytaj uwazrue i ze zrozumieniem.

7. Obliczenia zapisane w brudnopisie nie bgd4 oceniane. 4. Zadanta czytaj uwazrue i ze zrozumieniem. Kuratorium O6wiaty w Lublinie Imie i nazwisko ucznia Pelna nazwa szkoly Liczba punkt6w ZESTAW ZADAN KONKURSU CHEMICZNEGO DLA UCZNIoW GIMNAZIUM ROK SZKOLNY 201il20r8 ETAPTRZECI Instrukcja dla ucznia 1.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje rejonowe

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje rejonowe kod ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Uzyskane punkty.. WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje rejonowe Zadanie

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

Nieorganiczne polimery glinokrzemianowe (geopolimery) otrzymywanie, właściwości, przykłady zastosowania

Nieorganiczne polimery glinokrzemianowe (geopolimery) otrzymywanie, właściwości, przykłady zastosowania Politechnika Krakowska Im. Tadeusza Kościuszki Instytut Inżynierii Materiałowej Wydział Mechaniczny Nieorganiczne polimery glinokrzemianowe (geopolimery) otrzymywanie, właściwości, przykłady zastosowania

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 02/10

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 02/10 PL 215751 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215751 (13) B1 (21) Numer zgłoszenia: 385658 (51) Int.Cl. C04B 14/04 (2006.01) C04B 20/04 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to:

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to: KWASY I WODOROTLENKI 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to: 1. kwas siarkowy (IV), kwas siarkowy (VI), kwas azotowy, 2. kwas siarkowy (VI), kwas siarkowy (IV), kwas azotowy (V), 3. kwas siarkowodorowy,

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

SPRAWOZDANIE 2. Data:... Kierunek studiów i nr grupy...

SPRAWOZDANIE 2. Data:... Kierunek studiów i nr grupy... SPRAWOZDANIE 2 Imię i nazwisko:... Data:.... Kierunek studiów i nr grupy..... Doświadczenie 1.1. Wskaźniki ph stosowane w laboratorium chemicznym. Zanotować obserwowane barwy roztworów w obecności badanych

Bardziej szczegółowo

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów

Bardziej szczegółowo

substancje rozpuszczalne bądź nierozpuszczalne w wodzie. - Substancje ROZPUSZCZALNE W WODZIE mogą być solami sodowymi lub amonowymi

substancje rozpuszczalne bądź nierozpuszczalne w wodzie. - Substancje ROZPUSZCZALNE W WODZIE mogą być solami sodowymi lub amonowymi L OLIMPIADA CHEMICZNA KOMITET GŁÓWNY OLIMPIADY CHEMICZNEJ (Warszawa) ETAP II O L I M P I A D A 1954 50 2003 C H EM I C Z N A Zadanie laboratoryjne W probówkach oznaczonych nr 1-8 znajdują się w stanie

Bardziej szczegółowo

VIII Podkarpacki Konkurs Chemiczny 2015/2016

VIII Podkarpacki Konkurs Chemiczny 2015/2016 III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI CEMENTU GLINOWEGO

BADANIE WŁAŚCIWOŚCI CEMENTU GLINOWEGO Akademia Górniczo-Hutnicza w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki BADANIE WŁAŚCIWOŚCI CEMENTU GLINOWEGO I. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z procesem hydratacji cementu

Bardziej szczegółowo