Informacje organizacyjne:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Informacje organizacyjne:"

Transkrypt

1 po h uzupe i Informacje organizacyjne: Wykładowca: dr Michał Major, Katedra Statystyki, Zakład Statystycznych Metod Kontroli Jakości, pok 315, paw ; Tel ; Literatura: ds tawowa: Iwasiewicz: ; Śląskie Wydawnictwo Wyższej Szkoły Zarządzania i Nauk Społecznych w Tychach; Tychy 2005 Iwasiewicz: ; Wydawnictwo Naukowe PWN; Warszawa-Kraków 1999 Zarzą dzan ie ja ko śc iąwprzy kła dac hiza Zarzą dzan ie ja ko śc ią łn ia jąca Iwasiewicz, Z Paszek: dan iac ; E w Krakowie; Kraków Se kwency jneme to dy kon tro lija śc 1988 Zasoby internetu: wwwsmkjuekkrakowpl

2 Literatura: Dr Michał Major śc Zarzą dzan ie ja ko ią program wykładu 15 godzin 1 Przegląd podstawowych pojęć związanych z jakością produktu - potrzeba, produkt, cena produktu, konsument, ograniczenie budżetowe 2 Rynek jako system relacji pomiędzy popytem i podażą 3 Właściwości produktu, cecha diagnostyczna i zmienna diagnostyczna, pomiar i kwantyfikacja, skale pomiarowe, liczbowa i alternatywna ocena właściwości produktu 4 pojęcie jakości produktu - geneza słowa jakość - przegląd podstawowych definicji jakości produktu - jakość jako kategoria dualna jakość techniczna i marketingowa - powiązania i relacje pomiędzy jakością techniczną i marketingową 5 Pomiar jakości ocena poziomu jakości - ocena jakości typu projektu - przegląd podstawowych metod wzorcowej i bezwzorcowej oceny jakości typu przykłady - pomiar jakości wykonania, ogólne omówienie podstawowych miar z uwzględnieniem miar cząstkowych i agregatowych - ocena jakości marketingowej prezentacja różnych modeli i sposobów oceny jakości marketingowej przykłady numeryczne prezentacja programu komputerowego 6 Przegląd podstawowych narzędzi i metod zarządzania jakością - Wielka siódemka - Nowa siódemka 7 Międzynarodowe systemy zapewnienia jakości wiadomości wstępne - organizacje normalizacyjne - normy międzynarodowe odbiorczej kontroli jakości i systemów zapewnienia jakości - notyfikacja, certyfikacja i akredytacja - jednostki ceryfikujące w Polsce i za granicą - znaki certyfikacji systemów i certyfikacji wyrobów prezentacja - etapy certyfikacji - audyty systemów jakości - księga jakości 8 Wielcy jakości i ich narzędzia Deming, Shewhat, Juran Iwasiewicz, Zarządzanie jakością w przykładach i zadaniach, Śląskie Wydawnictwo naukowe Wyższej Szkoły Zarządzania i Nauk Społecznych w Tychach Tychy 2005

3 Dr Michał Major program wykładu ciąg dalszy 15 godzin 9 Statystyczna kontrola procesów Statistical Proces Control SPC naliza wydolności procesu technologicznego * wymagania projektu * możliwości procesu technologicznego * kryteria zgodności między możliwościami i wymaganiam Karty kontrolne * Sterowanie procesami za pomocą kart kontrolnych * Karty kontrolne Shewharta - konstrukcja i funkcjonowanie kart kontrolnych Shewharta - karty kontrolne dla ciągłych zmiennych diagnostycznych - karty kontrolne dla dyskretnych zmiennych diagnostycznych * Karty kontrolne sum skumulowanych - konstrukcja i funkcjonowanie kart kontrolnych sum skumulowanych - karty kontrolne dla ciągłych zmiennych diagnostycznych - karty kontrolne dla dyskretnych zmiennych diagnostycznych 10Koszty jakości klasyfikacja kosztów straty na brakach koszty sterowania jakością ogólny koszt jakości decyzyjny rachunek kosztów w zarządzaniu jakością śc Zarzą dzan ie ja ko ią 11 Odbiorcza kontrola jakości Podstawowe pojęcia Badania odbiorcze przy alternatywnej ocenie jakości produktu o Jednostopniowe plany badań o Dwustopniowe i wielostopniowe plany badań o Sekwencyjne plany badania o Wyznaczanie parametrów planów badania Kontrola wyrywkowa procentu jednostek niegodnych na podstawie liczbowej oceny własności o Reguły decyzyjne dla jednostronnych lub dwustronnych rozłącznych przedziałów tolerancji - metoda numeryczna o Reguły decyzyjne dla jednostronnych lub dwustronnych rozłącznych przedziałów tolerancji - metoda graficzna o Reguły decyzyjne dla dwustronnych łącznych przedziałów tolerancji

4 Literatura uzupełniająca: 1VFeigenbaum Total quality control, third edition, revised, McGraw-Hill Inc, HGitlow, SGitlow, Oppenheim, ROppenheim Tools and methods for the improvement of quality, IRWIN, Homewood IL, Boston M, OHryniewicz Nowoczesne metody statystycznego sterowania jakością, Omnitech Press, Warszawa, Iwasiewicz Statystyczna kontrola jakości w toku produkcji; Systemy i procedury, Państwowe Wydawnictwo Naukowe, Warszawa, Iwasiewicz, ZPaszek Elementy statystyki i statystycznej kontroli jakości, E, Kraków, PBJensen ISO 9000, Przewodnik i komentarz, Wydawnictwa Normalizacyjne lfa- Wero, Warszawa, DCMontgomery Introduction to statistical quality control, second edition, John Wiley & Sons, JRThompson, JKoronacki Statystyczne sterowanie procesem; Metoda Deminga etapowej optymalizacji jakości, kademicka Oficyna Wydawnicza, Warszawa, 1994

5 Wprowadzenie podstawowe pojęcia Potrzeba wynikające ze stanu braku pożądanie czegoś niezbędnego do zapewnienia warunków rozwoju i funkcjonowania człowieka We współczesnej literaturze ekonomicznej wyróżnia się dwie kategorie potrzeb, różniące się znaczeniem i zakresem potrzeby pierwotne oraz potrzeby wtórne Pierwsze z nich - potrzeby pierwotne nazywane też potrzebami niedoboru - nie dotyczą konkretnych przedmiotów, lecz ogólnych warunków egzystencji człowieka Związane są one z zaspokojeniem głodu, pragnienia, higieny, ubierania się, podróżowania itp Potrzeby wtórne określić można natomiast jako pożądanie określonych dóbr, służących zaspokojeniu pierwotnych potrzeb Jest to więc pożądanie takich dóbr, którymi ludzie nauczyli się zaspokajać pierwotne potrzeby Niektóre z nich są odczuwane tak silnie, że traktuje się je na równi z potrzebami pierwotnymi a ich zaspokojenie staje się niezbędne dla konsumenta, który je odczuwa Zjawisko takie nosi nazwę autonomii funkcjonalnej

6 d Wprowadzenie podstawowe pojęcia Technologia zaspokojenie potrzeb określona koncepcja związana zwykle z praktycznym wykorzystaniem wynalazku lub odkrycia naukowego Realizację owej koncepcji stanowi konkretny wyrób lub usługa Przy kła Rozważmy potrzebę pierwotną jaką jest komunikowanie się na odległość Na przestrzeni wieków wyróżnić można następujące technologie zaspokajania tej potrzeby: - posłaniec, - posłaniec z listem, - list wysyłany za pośrednictwem przedsiębiorstwa pocztowego, - telegraf, - telefon, - telefax, - radio - telefon, - telefonia komórkowa, - internetowa poczta elektroniczna, - VOIP - telefonia satelitarna - wideofonia Nowe technologie owocują z reguły różnymi typami i odmianami produktów Na przykład, wprowadzenie telefonu komórkowego zaowocowało pojawieniem się wielu potrzeb wtórnych takich jak: - potrzeba posiadania systemów głośno mówiących, - potrzeba posiadania przystawek ładujących do samochodu, - potrzeba integracji telefonu komórkowego z internetem Proces zaspokajania potrzeb odbywa się w określonych warunkach rynkowych, w których rynek rozumiany jest jako system relacyjny o strukturze przedstawionej na poniższym rysunku

7 t Wprowadzenie podstawowe pojęcia Popy Po da PRODUKTY WŁŚCIWOŚCI UŻYTKOWE I TECHNICZNE ŻĄDNE CENY POTRZEBY I PREFERENCJE W ZKRESIE ICH ZSPOKJNI OGRNICZENI BUDŻETOWE REGULCJE PRWNE KONSUMENCI Produkty Do oznaczenia produktu używać będziemy symbolu i dla potrzeb zarządzania jakością, każdy produkt rozważać będziemy w kontekście innych produktów pełniących w stosunku do niego rolę substytutów = { 1, 2,, i,, n }, Produkty należące do zbioru, są oceniane ze względu na cechy U i należące do zbioru cech użytkowych i technicznych U, takiego że, U = {U 1, U 2,,U j,,u k }, stanowiący kryterium oceny poszczególnych produktów i Uwzględniając powyższe założenia zbiór własności technicznych i użytkowych dla dowolnego produktu i można zapisać U i = { U 1 i, U 2 i,, U j i,, U k i }, 13 gdzie U j i oznacza stan produktu i ze względu na cechę U j U

8 Wprowadzenie podstawowe pojęcia Przykład Niech oznacza klasę produktów pralki automatyczne i jest i - tym typem pralki automatycznej oznaczonym określonym symbolem Poszczególne cechy wchodzące w skład zbioru U mogą być opisane następująco: U 1 - bezpieczeństwo użytkowania, U 2 - maksymalna prędkość wirowania, U 3 - pojemność bębna piorącego, U 4 - zużycie energii elektrycznej, U 5 - zużycie wody, U 6 - opcja 1/2 prania, U 7 - ilość programów, U 8 - regulacja procesu suszenia, U 9 - opcja automatycznego wyważania bielizny podczas prania itp Przy powyższych założeniach U 1 i oznaczać będzie poziom bezpieczeństwa użytkowania pralki typu i, U 2 i oznacza maksymalną prędkość wirowania pralki typu i, U 3 i jest maksymalną pojemnością bębna piorącego w pralce typu i itd

9 Zestawiając zbiór produktów substytucyjnych ze zbiorem cech użytkowych i technicznych otrzymujemy macierz o wymiarach U k n, w której każdy wiersz odpowiada ustalonemu produktowi i, natomiast kolumna odpowiada ustalonej cesze U j U n k n j n n i k i j i i k j k j U U U U U U U U U U U U U U U U Wprowadzenie podstawowe pojęcia

10 Macierz ta w procesie kwantyfikacji cech technicznych i użytkowych można sprowadzić do macierzy X o wymiarach nxk, postaci: X k n = n k n j n n i k i j i i k j k j X X X X X X X X X X X X X X X X Wspomniany proces kwantyfikacji cechy polega na przejściu od cechy technicznej i użytkowej do odpowiedniej zmiennej losowej Proces tej transformacji przebiega w następującym porządku: W pierwszym kroku badanej cesze U j, przyporządkowuje się określoną metodę pomiarową, która umożliwia wyróżnienie r r 2 stanów tej cechy Stany te oznaczymy kolejno: u j1, u j2,, u jr W drugim kroku wyróżnionym stanom cechy U j zostają przyporządkowane liczby rzeczywiste charakteryzujące natężenie badanej cechy

11 Skale pomiarowe: - nominalna mianowa, - porządkowa rangowa, }skale niemetryczne - przedziałowa interwałowa, - ilorazowa stosunkowa }skale metryczne

12 Skala nominalna mianowa jest najprostszą a zarazem najsłabszą spośród wszystkich skal pomiarowych Stosowana jest wówczas, gdy stany badanej cechy rozróżniane przez metodę badawczą są rozłącznymi kategoriami jakościowymi Funkcja pomiarowa przyporządkowuje jednakowym obiektom lub powtórzeniom zjawiska jednakowe wartości liczbowe, a różnym obiektom powtórzeniom zjawiska przypisuje różne wartości liczbowe Przyporządkowane liczby pełnią rolę przysłowiowych etykiet tożsamości znaków rozpoznawczych, są ich oznaczeniami lub nazwami, pozwalającymi na ich jednoznaczną identyfikację i klasyfikację Skali nominalnej można użyć np numerując autobusy, tramwaje, telefony a także studentów w protokołach ocen itp Niewielka jest liczba operacji matematyczno statystycznych, które można wykonać dla sklasyfikowanych w ten sposób obiektach lub powtórzeniach zjawisk Należy tutaj wymienić: wyznaczanie liczebności zdarzeń lub relacji pomiędzy opisywanymi obiektami, procentów i frakcji, modalnych i współczynnika skojarzenia Yule a 1 Dopuszczalnymi relacjami, które możemy zastosować przy opisie badanych obiektów lub powtórzeń zjawisk to relacja równości i relacja różności Oznacza to, że jednakowym obiektom lub powtórzeniom zdarzeń funkcja pomiarowa przypisuje jednakowe wartości liczbowe i jednocześnie różnym obiektom różne wartości liczbowe Skalę porządkową stosuje się jeżeli stany badanych cech są uporządkowanymi rozłącznymi, a także uporządkowanymi malejąco lub rosnąco kategoriami jakościowymi Określa ona pozycję, jaką zajmuję każdy z badanych przedmiotów lub osób, a także zjawisk w odpowiednio uporządkowanym i uszeregowanym zbiorze zgodnie z przyjętymi kryteriami oceny Wyznaczona w ten sposób pozycja jest względna i niedokładna Wiemy, bowiem że jeden z badanych obiektów poprzedza lub następuje po innych, nie znamy jednak wielkości dzielącego ich dystansu Skalami porządkowymi są np skale stopni szkolnych, przy czym w polskim systemie szkolnictwa, bardziej preferowanemu stanowi przypisuje się większą liczbę Oparta na skali porządkowej jest także większość wyników badań testowych dotyczących poziomu osiągnięć szkolnych, inteligencji, zdolności i osobowości czy badań marketingowych Skala porządkowa, obok operacji statystycznych stosowanych w przypadku skali nominalnej, dopuszcza także takie operacje jak ustalanie wartości środkowych median, centyli i współczynników korelacji rangowej Dopuszczalne operacje arytmetyczne to zliczanie liczby relacji równości, różności, większości mniejszości Oznacza to, że jednakowo preferowanym obiektom lub powtórzeniom zdarzeń funkcja pomiarowa przypisuje jednakowe wartości liczbowe, wyżej preferowanym obiektom większe liczby, natomiast mniej preferowanym obiektom mniejsze liczby Różnica pomiędzy przyporządkowanymi liczbami jest tutaj kwestią umowną i nie decyduje o sile preferencji jednego z obiektów w stosunku do innych

13 Skala przedziałowa interwałowa zachowuje wszystkie możliwości pomiarowe skal nominalnej i porządkowej, dodając do nich możliwość pomiaru dystansu pomiędzy dwoma dowolnymi stanami badanej cechy Zatem, dopuszczalne w poprzednich skalach operacji arytmetycznych można rozszerzyć o operację dodawania i odejmowania Określenie wspomnianego dystansu stało się możliwe dzięki temu, że operuje ona równymi jednostkami pomiaru równymi interwałami i tzw umownym zerem Takim umownym zerem może być np narodzenie Chrystusa w chronologii dziejów lub temperatura topnienia lodu w skali temperatur Celsjusza, od których można odliczać jednostki miary lata, stopnie w kierunku dodatnim lub w kierunku ujemnym Do wyników pomiaru opartych na skali porządkowej można stosować oprócz wymienionych wcześniej operacji statystycznych również takie statystyki jak średnie arytmetyczne, odchylenia standardowe, i korelacje według momentu iloczynowego Pearsona Skala przedziałowa ze względu na brak tzw zera absolutnego nie daje jednak możliwości oceny stosunku mierzonych wielkości Zmiana położenia umownego zera na osi badanej zmiennej powoduje zmianę stosunków między liczbami otrzymanymi w rezultacie pomiaru, pomimo braku zmian pomiędzy odpowiednimi stanami badanej cechy Skala ilorazowa stosunkowa jest stosowana, jeżeli zostanie ustalony naturalny punkt zerowy skali Wówczas możliwe staje się określenie stosunków między wynikami pomiaru Przykładem takiej skali może być skala metryczna długości przedmiotów lub skala termometryczna Kelvina Skala ilorazowa jest najsilniejszą spośród omówionych powyżej skal pomiarowych W niektórych podręcznikach z zakresu teorii pomiaru 1 można znaleźć jeszcze jedną piątą najsilniejszą skalę pomiarową określaną mianem skali absolutnej Wyniki pomiarów uzyskuje się wówczas na drodze zliczania obiektów lub powtórzeń zjawisk W przypadku tej skali niedopuszczalna jest żadna transformacja pierwotnego wyniku pomiaru Jako przykład takiego pomiaru można podać zliczanie klientów kupujących określony produkt, zliczanie głosów w wyborach parlamentarnych itp

14 Ceny produktów Każdemu z produktów i przypisana jest cena P i, dzięki czemu otrzymujemy wektor żądanych oferowanych cen zapisany w poniższy sposób: Konsumenci Elementy rynku cd [P 1 P 2 P i P n ] K = {K 1, K 2, K r,,k m } Każdy segment K charakteryzuje się pewną - ukształtowaną na bazie istniejących warunków społeczno ekonomicznych - potrzebą główną G o oraz zespołem potrzeb charakterystycznych dla danego segmentu G s, dla s = 1,2,,r Przykład 12 Rozpatrzmy ten sam produkt - pralka automatyczna Załóżmy, że segment odbiorców K składa się z rodzin wielodzietnych i młodych małżeństw Potrzebę główną G o jest konieczność utrzymania czystości i higieny Do potrzeb charakterystycznych dla tego segmentu zaliczyć można na przykład: G 1 - potrzebę częstego prania odzieży i bielizny G 2 - potrzebę równoległego wykonywania czynności domowych tj pranie, gotowanie, sprzątanie itp O ile takie same pozostają potrzeby główne, o tyle preferencje w zakresie ich zaspokojenia są zróżnicowane w zależności od rozpatrywanego segmentu np w segmencie np ludzi starszych, czy samotnych Potrzeba główna pozostanie taka sama jak w pierwszym przypadku Zmianie ulec mogą natomiast potrzeby charakterystyczne dla tego segmentu Potrzeba G 1 konieczności częstego prania, może zostać zastąpiona potrzebą możliwości prania niewielkich ilości ubrań - tzw opcja 1/2 prania Potrzeba G 2 może dotyczyć np łatwości obsługi pralki czytelny programator itp

15 Wprowadzenie podstawowe pojęcia Ograniczenie budżetowe Ograniczenie budżetowe konsumenta K r K oznaczać będziemy symbolem BK r i jest ono kwotą swobodnej decyzji która pozostaje po zaspokojeniu wszystkich pilniejszych potrzeb Zależność pomiędzy ilością nabywanych jednostek produktu i, ceną tego produktu oraz ograniczeniem budżetowym można zapisać stosując nierówność: V P B K, i i r gdzie V i oznacza liczbę nabytych jednostek produktu i, Regulacje prawne: Funkcje jakie pełnią te regulacje można ująć w następujących punktach: 1 Funkcja ochrony rynku przed towarami szkodliwymi dla konsumenta i środowiska naturalnego Funkcja ta ma na celu eliminacje produktów z wadami krytycznymi, których użytkowanie niesie ze sobą zagrożenie życia ludzkiego tj porażenie prądem, zatrucie substancją szkodliwą itp Rolę egzekutora odpowiednich przepisów pełnią takie jednostki jak np Państwowa Inspekcja Handlowa PIH, Wojewódzkie Stacje Sanitarno-Epidemiologiczne i inne 2 Funkcja ochrony indywidualnych interesów konsumenta Dużą rolę w zakresie ochrony praw konsumenta spełniają funkcjonujące w danym kraju czy regionie organizacje konsumenckie Prawu konsumenta do produktów wykonanych zgodnie z wymogami jakościowymi, towarzyszy powstawanie zjawiska reklamacji jakościowych, które z punktu widzenia producenta, stanowią istotny czynnik w zakresie kosztów jakości

16 Jakość geneza i historia 1 1 Biblia Wtedy Bóg rzekł:>> iech stanie się światłość<< Bóg widząc, że światłość jest dobra, oddzielił ją od ciemności [ ] [Rdz 1, 3-4] Bóg widział, że wszystko co uczynił było bardzo dobre [Rdz 1, 31] przykład samooceny gdy Bóg ukończył w dniu szóstym swe dzieło, nad którym pracował, odpoczął dnia siódmego po całym trudzie jaki podjął [Rdz 2, 2] stworzenie dzieła odpowiedniej jakości wymaga wysiłku po którym należy się odpoczynek 2 Starożytność Egipt 1200 r pn e za panowania Ramzesa III zostały ułożone tzw listy towarowe opisujące wymagania w stosunku do towarów takich jak np masa żywicznej kadzidła: barwa jej może się wahać tylko od mglistej żółcieni bursztynu do bladej jak światło księżycowe barwy jadeitu Jako wzmianki dotyczące jakości przyjąć można także zapiski z kodeksu Hammurabiego z 1750 r p n e dotyczące zasad odpowiedzialności za wyrób takich zawodów jak: murarz, szkutnik czy lekarz Znaleźć można zapis: Jeżeli oberżystka jako zapłatę za piwo zboża nie przyjęła, lecz według odważnika zbyt dużego srebro przyjęła, bądź równowartość piwa względem wartości zboża obniżyła i oberżystce tej udowodni się to, do wody wrzuci się ją Jeśli murarz obywatelowi dom zbudował, a pracy swej odpowiednio nie umocnił i dom zbudowany zawalił się i spowodował śmierć właściciela domu, murarz ten zostanie zabity

17 Jakość geneza i historia 1 3 Pochodzenie słowa jakość Pojęcie jakości wprowadził grec poiothes wprowadził Platon pne Łacińskim odpowiednikiem było słowo qualitas co oznaczało właściwość, przymiot W wielu językach zachowało się podobne brzmienie: ang Quality, niem Qalität W innych językach jest ono tłumaczeniem odpowiednika łacińskiego np w ros Kaczestwo, pol Jakość 4 Średniowiecze O odpowiedni wysoki poziom jakości wyrobów troszczyły się cechy rzemieślnicze i gildie kupieckie Nie należący do cechów rzemieślniczych nazywani partaczami nie mieli praw sprzedaży swych produktów w obrębie murów miejskich 5 XVI wiek ndrzej Frycz Modrzewski w dziele De republica emenndanta O naprawie Rzeczypospolitej w rozdziale o nadzorach handlu i pieniędzy napisał: Swawolą się co niemiara szynkarze fałszując wina i drogo je ceniąc Urząd przeto wymiarkowawszy jakie są ich własne koszty, a nawet dozwalając im na stały zysk, powinien ceny oznaczać, a karać owych fałszerzy win [ ] Był on zwolennikiem wolnego rynku, a możliwość zapewnienia jakości widział w drodze kontroli Mikołaj Kopernik w traktacie Monetae Cudendae ratio z 1526 r O sposobie bicia monety opisał zasady reformy monetarnej opartej na projekcie poprawy jakości pieniądza i ujednolicenia monety pruskiej i polskiej Zbudował prawo ekonomiczne mówiące o tym, że pieniądz gorszy wypiera pieniądz lepszy Car Piotr I formułując ukaz dotyczący jakości broni głosił: jeżeli pomimo tego wojsko dostanie złą broń, psującą się podczas bitwy, nie oszczędzając się bić batami [ ]: starszego kontrolera wojskowego bić do nieprzytomności; nadzorcę uczynić pisarzem, a jego pomocnika pozbawić niedzielnej porcji wódki na okres jednego roku

18 Jakość geneza i historia 1 6 Czasy rewolucji przemysłowej Rozwój masowego przemysłu i pojawienie się anonimowego odbiorcy nie sprzyjał poprawie jakości produktów Próbowano temu zapobiec wyznaczając stanowiska kontrolera brakarza ok 1914r Starano się także kontynuować tradycje średniowiecznej jakości rzemieślniczej, zastępując znak cechu rzemieślniczego, marką produktu 7 Rozwój produkcji seryjnej Lata 20ste to dalszy rozwój produkcji seryjnej W 1924 roku w fabryce telefonów Bell Telephone, W Shewhart w 1924 roku stworzył specjalne procedury kontrolne nazywane kartami kontrolnymi, które w okresie II wojny światowej koncepcje Shewharta wykorzystywano w przemyśle zbrojeniowym Karty kontrolne stały się część składową norm Z11, Z oraz Z ktywnie tworzyły się również piony kontroli technicznej Lata 40ste i 50te to okres kiedy w fabrykach i przedsiębiorstwach zaczęły pojawiać się działy służb jakości 8 Lata sześćdziesiąte V Feigenbaum formułuje zasady kompleksowego sterowanie jakością 9 Lata siedemdziesiąte W zakładach powstają piony zapewnienia jakości W Wielkiej Brytanie British Standard Institution publikuje normy serii BS, które potem zostały zastąpione normami serii 9000

19 Jakość geneza i historia 1 10 Lata osiemdziesiąte dziewięćdziesiąte Rozwój koncepcji TM Total Menagement, powstawanie działów zarządzania jakością i stanowisk pełnomocników ds jakości W roku 1987 Międzynarodowa Organizacja Normalizacyjna ISO publikuje normy serii ISO r Ustanowienie Międzynarodowej Nagrody Jakości im Malcolma Baldrige a 1991 r Encyklika papieża Jana Pawła II pt Contesimus annus Słowa: dziś problem polega nie na tym, by dostarczać człowiekowi odpowiednią ilość dóbr, ale także by zaspokoić zapotrzebowanie na jakość: jakość towarów produkowanych i konsumowanych, jakość usług z których się korzysta, jakość środowiska naturalnego i życia w ogóle 11 Przełom wieku XX i XIX Publikacja nowej wersji norm ISO 9000 redukcja ilości norm Rozwój koncepcji Total Quality Management TQM Poszukiwanie nowych rozwiązań w zakresie zarządzania jakością

20 Jakość produktu - definicje Definicja Platona z IV wieku pne Jakość jest to pewien stopień doskonałości Według współczesnych autorytetów w dziedzinie jakości: Jakość to zgodność z wymaganiami PB Crosby Przewidywalny stopień jednorodności i niezawodności przy możliwie niskich kosztach i dopasowaniu do wymagań rynku EW Deming Przydatność użytkowa JM Juran Jakość - ogół własności obiektu wiążących się z jego zdolnością do zaspokojenia potrzeb stwierdzonych lub oczekiwanych [PN-ISO 8042] Norma PN-EN ISO 9000:2000 podaje następującą definicję jakości: Jakość jest to stopień w jakim zbiór inherentnych właściwości spełnia wymagania, przy czym w dalszej części normy wymagania definiuje się jako: potrzeba lub oczekiwanie, które zostało ustalone, przyjęte zwyczajowo lub jest obowiązkowe, natomiast właściwości to: cecha wyróżniająca inherentny - tkwiący w czymś w istocie, strukturze, zasadniczym charakterze czegoś, w naturze, w ustalonych obyczajach; nieodłączny od

21 Jakość produktu - definicje Jakość - zespół cech produktu lub usługi, które wpływają na ich zdolność do zaspokojenia określonej potrzeby [Słownik jakości 1980] Jakość wyrobu jest stopniem spełnienia przezeń wymagań odbiorcy [Słownik jakości 1968] Jakość jest to stopień spełnienia stawianych wymagań - [Kolman: Inżynieria jakości 1992], s 12 Product and service quality can be defined as: The total composite product and service characteristics of marketing, engineering, manufacture and maintenance through which the product and service in use will meet the expectations of the customer Jakość wyrobu i usług jest to zespół charakterystyk marketingowych, inżynieryjnych, produkcyjnych i użytkowych wyrobu lub usługi poprzez które wyrób lub usługa spełnia wymagania konsumenta - tłumaczenie z języka angielskiego [Feigenbaum Total Quality Control 1991], s7 Jakość wyrobu to zdolność wyrobu do zaspokajania określonych potrzeb użytkownika, w określonych warunkach eksploatacji [] Jakość [] wynika z relacji między zbiorem potrzeb charakterystycznym dla danych warunków użytkowania a zbiorem cech użytkowych, które wyrób uzyskuje w procesie projektowania i produkcji - [Iwasiewicz 1985], s11

22 Definicje jakości Opisaną relację w sposób symboliczny możemy zapisać następująco: Q;K :GK; ϕ U, gdzie: Q;K oznacza poziom jakości produktu skierowanego do segmentu K, GK; jest agregatem potrzeb i oczekiwań mających swe źródło w segmencie K, U jest zbiorem cech użytkowych i technicznych, natomiast ϕ oznacza relację zgodną z definicją z grupy opisowej lub wartościującej Jakość można rozważać w dwóch kategoriach: 1 jakości technicznej jakość typu ang quality of design i jakość wykonania, ang quality of manufacture 2 jakości marketingowej

23 Jakość typu to relacja między zbiorem właściwości użytkowych i technicznych, który został przewidziany w projekcie produktu, albo zrealizowany w prototypie, a agregatem potrzeb, które projektowany produkt ma zaspokajać Q * ;K: GK; ϕ U * gdzie * oznacza projekt produktu Jakość wykonania to relacja między zbiorem cech użytkowych zrealizowanym w projekcie lub prototypie, a tym zbiorem cech użytkowym, który jest realizowany w seryjnie produkowanym wyrobie Qa: U * ϕ Ua, gdzie a jest zbiorem jednostek wytwarzanych na podstawie przyjętego projektu lub prototypu produktu, Ua jest zbiorem właściwości technicznych i użytkowych charakterystycznych dla jednostek a, U *, jest zbiorem właściwości użytkowych i technicznych projektu produktu * Relację ϕ należy rozumieć jako stopień zgodności lub poziom rozbieżności pomiędzy omawianymi zbiorami Im zgodność jest wyższa lub rozbieżność niższa, tym wyższy jest poziom jakości wykonania Jakość marketingowa produktu jest relacją pomiędzy sensorycznym profilem tego produktu W a agregatem potrzeb i preferencji GK; co zapiszemy: Q * ;K: W ϕ GK;, gdzie ϕ oznacza relację zdolności do zaspokojenia potrzeb lub jest stopniem zaspokojenia potrzeb konsumenta Przez sensoryczny profil produktu rozumieć będziemy zespół agregat informacji, a także wszystkich relacji między nimi, które kształtują obraz produktu w świadomości, a także podświadomości konsumenta

24 Tabela 11 Relacja pomiędzy jakością techniczną i jakością marketingową JT Stan JW JM komentarz Źródło: opracowanie własne Wszystkie aspekty jakości są na niskim poziomie niekorzystna sytuacja techniczna i marketingowa - konieczna transformacja Niska jakość techniczna jest postrzegana jako wysoka jakoś marketingowa stan taki jest z reguły stanem krótkookresowym, wywołanym np poprzez duże nakłady w sferze promocji i reklamy, który w przypadku braku transformacji jakości technicznej ze stanu 0 do stanu 1, prowadzi najczęściej do transformacji 0,0,1 0,0,0 Niska jakość typu, wysoka jakość wykonania, niska marketingowa jakość produktu Z powyższym przypadkiem mamy do czynienia wówczas, gdy zostaje zachwiana równowaga pomiędzy zbiorem właściwości technicznych i użytkowych, który został przewidziany w projekcie produktu albo zrealizowany w prototypie, a agregatem potrzeb, które projektowany produkt ma zaspokoić

25 Tabela 11 Relacja pomiędzy jakością techniczną i jakością marketingową cd Stan komentarz JT JW JM Niska jakość typu, wysoka jakość wykonania oraz wysoka marketingowa jakość produktu stan taki może zaistnieć, jeśli wytwórcy produktu uda się zrównoważyć, niedostatki w jakości typu wysoką jakością wykonania, oraz dużymi nakładami w sferze reklamy i promocji W dłuższym okresie, przy braku transformacji jakości typu ze stanu 0 do stanu 1, może prowadzić do transformacji 0,1,1 0,1,0 Wysoka jakość typu, niska jakość wykonania, wysoka jakość marketingowa stan obrazujący sytuację, w której pomimo niskiej jakości wykonania, producentowi udało się wykorzystując reklamę i promocję, przekonać potencjalnego konsumenta, że ma do czynienia z wysokim poziomem jakości Stan taki jest z reguły stanem krótkookresowym i w przypadku braku szybkiej transformacji jakości wykonania ze stanu 0 do stanu 1 prowadzi zwykle do transformacji 1,0,1 1,0, Wysoka jakość techniczna, niska jakość marketingowa z przypadkiem takim mamy do czynienia np wówczas wtedy, gdy wytwórca produktu nie posiada wystarczających środków finansowych pozwalających, wykreować swój produkt na rynku Wysoka jakość techniczna jak i marketingowa korzystna sytuacja techniczna i marketingowa Nakłady poniesione na etapie projektowania i wykonania produktu przyniosły zamierzony skutek Opinia wytwórcy o produkcie pokrywa się z opinią konsumenta Źródło: opracowanie własne

26 Pomiar poziomu jakości - Ocena jakości typu metoda bezwzorcowa Poziom jakości typu produktu nie poddaje się ścisłemu pomiarowi, lecz raczej dokonuje się ocen porównawczych rankingi rankingi te pozwalają na uszeregowanie rosnące lub malejące ocenianych produktów ze względu na ich jakość typu W tym celu najczęściej stosuje się miernik postaci: q i = k j= 1 q ij w j gdzie q ij unormowana charakterystyka produktu i ze względu na zmienną diagnostyczną X j w j - współczynnik wagowy przypisany zmiennej X j, przy czym k j= 1 w j = 1 Zmienne diagnostyczne mogą być stymulantami, destymulantami lub nominantami jakości produktu Zmienna X j jest stymulantą jakości, jeżeli wyższemu poziomowi jakości produktu odpowiada większa wartość obserwowanej zmiennej diagnostycznej a niższemu poziomowi jakości mniejsza wartość tej zmiennej ang lager the better Zmienna X j jest destymulantą jakości, jeżeli wyższemu poziomowi jakości produktu odpowiada mniejsza wartość obserwowanej zmiennej diagnostycznej a niższemu poziomowi jakości większa wartość tej zmiennej ang smaller the better Zmienna X j jest nominantą jakości, jeżeli w zbiorze wartości jakie może ona przyjąć istnieje wartość najkorzystniejsza nominalną, docelową, x o a odchylenia od tej wartości in plus lub in minus oznaczają obniżenie poziomu jakości ang nominal the best

27 nominanta jakości destymulanta jakości stymulanta jakości poziom jakości produktu xj0 Wartość zmiennej diagnostycznej xjmin xjma x Stymulanta jakości, destymulanta jakości oraz nominanta jakości

28 Wartości zmiennych diagnostycznych poddawane są standaryzacji, która pozwala na przekształcenie pierwotnych zmiennych diagnostycznych w stymulanty jakości jeśli X j stymulanta jakości q ij = x x ij jmax x x jmin jmin jeśli X j destymulanta jakości q ij = x x imax jmax x x ij jmin jeśli X j nominantą jakości o ustalonej wartości nominalnej x jo q ij x x j x = x j ij o x x jmax max jmin jmin x x 1 ij j o gdy gdy gdy x x x ij ij ij < x > x = x j o j o j o

29 Przykład Informacje podane w tabeli poniżej charakteryzują położenie n = 6 obiektów w przestrzeni k = 3 cech Obiekty te zostały oznaczone symbolami 1 do 6 Są to aparaty telefonii komórkowej oferowane w promocji Ich ceny są zbliżone i mogą one być traktowane jako wzajemnie zastępowalne z punktu widzenia konsumenta pragnącego zostać abonentem określonej sieci Telefony zostały porównane ze względu na trzy cechy, reprezentowane przez następujące zmienne diagnostyczne: X 1 ciężar aparatu g X 2 maksymalny czas czuwania h X 3 maksymalny czas rozmowy h Zmienną X 1 można traktować jako destymulantę jakości, natomiast zmienne X 2 i X 3 są stymulantami Dane w tabeli pochodzą z deklaracji fabrycznych producentów aparatów Technikę porządkowania prezentuje poniższa tabela x ij q ij wq ij SUM Produkt X 1 X 2 X 3 X 1 X 2 X 3 X 1 X 2 X ,5 0,25 1,00 0,67 0,08 0,33 0,22 0, ,5 0,00 1,00 0,67 0,00 0,33 0,22 0, ,55 0,00 0,33 0,18 0,00 0,11 0, ,43 0,18 1,00 0,14 0,06 0,33 0, ,5 0,82 0,00 0,00 0,27 0,00 0,00 0, ,00 1,00 1,00 0,33 0,33 0,33 1,00 max min ,5 max-min ,5 Podczas obliczeń założono, że wszystkie cechy są jednakowo ważne i przypisano jednakową wagę w = 1/3 = 0,33 zatem produkty należy uszeregować w kolejności: 6, 1, 2, 4, 3, 5

30 Porządkowanie produktów według jakości typu z użyciem metody wzorcowej W trakcie porządkowania produktów względem wzorca anty wzorca jakości typu wykorzystać można miary odległości Do najczęściej wykorzystywanych jest odległość euklidesowa W przypadku znormalizowanych zmiennych losowych odległość euklidesowa pomiędzy produktem i a znormalizowanym wzorcem Q w = [q 1w, q 2w,, q sw ] wyraża się wzorem: d iw = s j= 1 w j q ij q gdzie w j jest współczynnikiem wagowym przypisanym j tej zmiennej diagnostycznej W przypadku, gdy wzorzec jakości typu jest wektorem jedynek, wówczas odległość obliczana jest według wzoru: d ik = s j= 1 w j q ij 1 natomiast przy wykorzystaniu anty wzorca jakości typu mamy: d ik = s j= 1 w j q ij 0 2 = 2, s wj j= 1 2 w j, q ij 2

31 Poniżej na rysunku zamieszczona została graficzna prezentacja oceny jakości typu dwóch substytucyjnych produktów 1 i 2 w przestrzeniu dwuwymiarowej metodą porównywania z wzorcem i anty-wzorcem jakości produktu Pomiar odległości produktów od wzorca anty-wzorca jakości typu produktu ustalonego w oparciu o górny dolny biegun rozwoju Źródło: Opracowanie własne

32 Przykład Badania zostały przeprowadzone dla 10 rzeczywistych produktów opisywanych przez 7 zmiennych losowych Produkty te to odkurzacze tradycyjne Ponieważ zaspakajają one podobną gamę potrzeb oraz charakteryzują się możliwym do porównania zbiorem własności technicznych i użytkowych, można je traktować jako elementy zbioru substytucyjnych produktów = { 1, 2,, 10 } Wartości badanych zmiennych diagnostycznych zaczerpnięto z deklaracji producentów dostępnych na stronach internetowych dystrybutorów produktów 1 Macierz obserwacji przedstawia się następująco: zmienne produkty X 1 X 2 X 3 X 4 X 5 X 6 X , ,3 9 5, ,5 6,3 9 6, ,5 5,3 8 4, ,3 9 5, ,5 6,3 9 5, ,5 6,3 9 5, ,5 9,3 12 5, ,3 9 4, ,3 8 5,1 Zmienne diagnostyczne X 1,,X 7 oznaczają kolejno: X 1 moc maksymalna W, X 2 wydatek maksymalny l/s, X 3 poziom hałasu db, X 4 pojemność worka na kurz l, X 5 długość przewodu zasilającego m, X 6 zasięg odkurzania m, X 7 masa netto kg X 1, X 2, X 4, X 5, X 6 to stymulanty jakości badanego produktu, Natomiast X 3 i X 7 należy zakwalifikować do kategorii destymulant jakości

33 Wartości badanych zmiennych zostały zestandaryzowane przy użyciu unitaryzacji zerowanej i otrzymaną znormalizowaną następującą znormalizowaną macierz obserwacji: zmienne produkty X 1 X 2 X 3 X 4 X 5 X 6 X 7 1 0,5000 0,5000 0,2000 0,0000 0,0000 0,0000 0, ,5000 0,5000 0,9000 0,8571 0,3023 0,2500 0, ,8750 1,0000 0,3000 0,7143 0,3023 0,2500 0, ,0000 0,0000 0,0000 0,7143 0,0698 0,0000 0, ,6250 0,6667 0,9000 0,8571 0,3023 0,2500 0, ,5000 0,5000 1,0000 1,0000 0,3023 0,2500 0, ,2500 0,3333 0,6000 0,7143 0,3023 0,2500 0, ,0000 1,0000 0,6000 0,7143 1,0000 1,0000 0, ,2500 0,5000 0,5000 0,5714 0,3023 0,2500 1, ,2500 0,3333 0,8000 0,8571 0,0698 0,0000 0,6667 Wartości powyższej macierzy zostały następnie poddane obliczeniom zmierzającym do wyznaczenia odległości euklidesowej od znormalizowanego wzorca jakości typu postaci wektora: Q wg = [1, 1, 1, 1, 1, 1, 1] W trakcie obliczeń przyjęto zasadę jednakowych wag przypisanych wszystkim zmiennym w 1 = w 2 = = w 7 = 1/7 = 0,142857

34 W wyniku przeprowadzonych obliczeń otrzymano wektor odległości od wzorca: Odległość od wzorca Produkt 0, , , , , , , , , , Ponieważ w trakcie badania założono wzorzec oparty na górnym biegunie rozwoju, dlatego, dany produkt będzie tym wyższej jakości typu im mniejsza będzie jego odległość o wzorca jakości typu W analizowanym przypadku, produkty te można uporządkować według malejącej jakości typu w kolejności: 8, 5, 2, 6, 9, 7, 3, 10, 1, 4

35 - Pomiar poziomu jakości wykonania Podstawowymi miarami jakości wykonania są - wadliwość - przeciętna liczba wad w jednostce produktu Wadliwość można definiować jako frakcję elementów nie spełniających wymagań jakościowych, w partii albo strumieniu produktu, lub jako prawdopodobieństwo zdarzenia losowego polegającego na tym, że jednostka produktu pobrana z partii lub ze strumienia produktu okaże się jednostką nie spełniającą wymagań jakościowych Jeżeli jakość produktu oceniana jest ze względu na jedną zmienną diagnostyczną to wówczas wadliwość produktu nazywana jest wadliwością cząstkową, natomiast gdy jakość produktu oceniana jest na pewien agregat separowalnych zmiennych diagnostycznych to wówczas mówimy o wadliwości ogólnej agregatowej Oznaczając wadliwość cząstkową symbolem px, oraz traktując wadliwość w kategoriach prawdopodobieństwa możemy zapisać: p X = Pr x X gdzie X jest zbiorem wartości niepożądanych zmiennej X Jeżeli zmienna diagnostyczna X jest zero-jedynkowa 0 jednostka produktu spełnia wymagania jakościowe, 1 jednostka nie spełnia wymagań jakościowych, to wówczas wadliwość px = PrX=1 + W przypadku zmiennej ciągłej to wówczas zbiory X i X są przedziałami na osi + liczb rzeczywistych a X jest interpretowany jako przedział tolerancji X o

36 Przykład wadliwość jako frakcja Hurtownik, zakupił produkty od 3 dostawców, B i C Od dostawcy zakupił losowo 100 produktów od B 150 i od C W dostawie były 2 wadliwe, w dostawie B 4 wadliwe, a w C 4 wadliwe Oceń jaka jest wadliwość zakupionych przez niego produktów Ilość jednostek wadliwych albo niezgodnych w dostarczonych partiach produktu wynosiła: z 1 =2, z 2 = 4, z 3 = 4 Wadliwość po połączeniu 3 partii: p = = %

37 Przykład wadliwość jako prawdopodobieństwo W celu oceny poziomu jakości wykonania pobierano kolejne próbki losowe ze strumienia produktu Poddawano je badaniu, stosując alternatywną ocenę właściwości, a następnie zliczano wykryte jednostki niezgodne ze specyfikacją właściwości wzorca typu produktu Uzyskano następujące wyniki: t n t z t Łączna ilość zbadanych jednostek produktu równa jest sumie liczebności próbek losowych pobranych do badania Mamy więc: n 9 = n t t= 1 = 200 Ogólną ilość niezgodnych jednostek produktu wynika z następującego rachunku: z 9 = z t t= 1 = 10 Na podstawie tych danych obliczamy oszacowanie wadliwości obserwowanego strumienia produktu: w = p = z 10 = = 005 5% n 200 Obliczoną wadliwość należy interpretować jako prawdopodobieństwo, albowiem dotyczy ona przyszłości Należy mianowicie oczekiwać, że przeciętnie 5 na 100 wyprodukowanych jednostek wyrobu nie będzie wykazywać pożądanej zgodności ze specyfikacja wzorca typu

38 W zarządzaniu jakością podstawową rolę odgrywają dwa typy zmiennych diagnostycznych, a mianowicie zmienne zero jedynkowe, stosowane w przypadku alternatywnej oceny właściwości produktu albo stanu procesu, oraz ciągłe zmienne diagnostyczne, wykorzystywane wówczas, gdy stosuje się tak zwaną liczbową ocenę właściwości produktu albo stanu procesu Zero jedynkowe zmienne diagnostyczne definiowane są następująco: 0 gdy jednostka produktu spelnia wymagania jakościowe X = 1 gdy jednostka produktu nie spelnia wymagań jakościowych Mamy tu więc: X 0 = { 0;1}, X = { 0} X = { 1 } Oznaczające odpowiednio: zbiór wartości zmiennej, zbiór wartości dopuszczalnych i zbiór wartości niedopuszczalnych

39 Przykład zero jedynkowa zmienna diagnostyczna Jedną z końcowych operacji technologicznych w paczkowalniach produktów sypkich typu: mąka, cukier, sól itp jest ocena szczelności opakowań jednostkowych W praktyce przemysłowej szczelność oceniana jest alternatywnie Każde badane opakowanie kwalifikowane jest do jednej z dwóch rozłącznych kategorii, a mianowicie do kategorii szczelne" lub do kategorii nieszczelne", bez rozróżniania stanów pośrednich Wyniki badania kodowane są za pomocą zer 0 i jedynek 1 przyporządkowywanych według następującej reguły: X = 0, gdy opakowanie jest szczelne X = 1, gdy opakowanie jest nieszczelne Wyniki badania są w takiej sytuacji automatycznie rejestrowane w postaci ciągu zer 0 i jedynek 1

40 Przykład ocena właściwości produktu ze względu na ciągłą zmienną diagnostyczną Jakość napojów chłodzących oceniana jest między innymi ze względu na zawartość środka konserwującego Środek ten nie jest całkowicie obojętny dla zdrowia konsumenta Odpowiednią zmienną diagnostyczną możemy więc zdefiniować następująco: X zawartość środka konserwującego w mg/l w napoju Optymalna ilość środka konserwującego nie zagrażającego zdrowiu konsumenta a jednocześnie gwarantująca utrzymanie świeżości produktu to x 0 = 140mg/l, a dopuszczalne odchylenia od tej wartości ustalono na poziomie ±20mg/l Zbiór pożądanych + wartości ma więc postać przedziału X = [ 120;160] natomiast z dwóch przedziałów i ma postać = [ 0; ;1000] Zbiór wartości niepożądanych składa się X

41 Przedział tolerancji zmiennej ciągłej + W przypadku ciągłych zmiennych diagnostycznych zbiory pożądanych wartości X przyjmują postać tak zwanych technicznych przedziałów tolerancji W powyższym przykładzie obserwowana zmienna diagnostyczna jest nominantą jakości i w konsekwencji mamy do czynienia z dwustronnie ograniczonym przedziałem tolerancji ogólnej postaci [ ] x d x g + X = ; gdzie x d jest ograniczeniem lewostronnym czyli ograniczeniem od dołu, natomiast x g oznacza ograniczenie od góry, czyli ograniczenie prawostronne Jeśli obserwowana zmienna diagnostyczna jest destymulantą jakości, to przedział tolerancji ograniczony jest tylko od góry przez wartość + X = a; x ] g Jeśli natomiast mamy do czynienia ze zmienną diagnostyczną o charakterze stymulanty jakości, to przedział tolerancji ograniczony jest tylko od dołu przez wartość x d X + = [ x ; b d Występujące we wzorach ograniczenia a i b nie mają związku z oceną jakości produktu Są to ograniczenia związane najczęściej z zastosowaną skalą pomiarową W przypadku skali procentowej jak w powyższym przykładzie a = 0, natomiast b = 100

42 DEFINICJ WDLIWOŚCI CZĄSTKOWEJ Wadliwość cząstkową możemy definiować jako prawdopodobieństwo lub jako frakcję Jeśli istnieją powody by miarę tę definiować jako prawdopodobieństwo, to wówczas p = p X = Pr x X Jest to więc prawdopodobieństwo zdarzenia losowego polegającego na tym, że losowo wybrana jednostka produktu na przykład słoik dżemu nie spełni wymagań jakościowych Jeśli wadliwość chcemy albo musimy definiować jako frakcję to wówczas x X p= p X = gdzie N jest ogólną ilością jednostek produktu, natomiast Nx X oznacza ilość jednostek produktu nie spełniających wymagań jakościowych ze względu na zmienną diagnostyczną X Niezależnie od tego, którą z tych definicji stosujemy w konkretnym przypadku, wadliwość przyjmuje wartości z przedziału [0; 1] Frakcja zdefiniowana wzorem 6 może być oczywiście wyrażana w procentach po pomnożeniu przez 100 i wówczas przyjmuje ona wartości z przedziału [0; 100]

43 Definicja wadliwości agregatowej W podobny sposób możemy zapisać równanie dla wadliwości ogólnej: p k X, + 1- Pr X = x j j j gdzie X jest zbiorem niezależnych zmiennych diagnostycznych takim, że: X = {X 1, X 2,, X j,, X k }, natomiast X j +, stanowią odpowiednio j te elementy rodziny zbiorów wartości pożądanych X + ={X 1 +, X 2 +,, X +,, X k + } W pewnych sytuacjach wygodniejszą miarą jakości np ze względów interpretacyjnych czy rachunkowych jest poprawność Wówczas równania będą miały postać: + q X = Pr x X, k + q = Pr x j X j X, j= 1 gdzie qx oraz qx oznaczają odpowiednio poprawność cząstkową oraz poprawność ogólna, a znaczenie pozostałych symboli nie ulega zmianie

44 Przykład Przykład z Iwasiewicz, Zarządzanie jakością 2005 Przypomnijmy, że w procesie oceny jakości wykonania ołówków szkolnych bierze się pod uwagę 7 cech Kwantyfikując te cechy można zdefiniować 7 następujących zmiennych diagnostycznych: X 1 - długość ołówka, liczbowa ocena właściwości, dwustronnie ograniczony przedział tolerancji, X 2 - średnica ołówka, liczbowa ocena właściwości, dwustronnie ograniczony przedział tolerancji, X 3 - twardość pręcika grafitowego, alternatywna ocena właściwości, X 4 - ciągłość pręcika grafitowego, alternatywna ocena właściwości, X 5 - stan powłoki lakierniczej na oprawce, alternatywna ocena właściwości, X 6 - czytelność napisów, alternatywna ocena właściwości, X 7 - staranność zamocowania gumki, alternatywna ocena właściwości Na podstawie dokumentacji procesu technologicznego oceniono poszczególne wadliwości cząstkowe: px 1 = 00001, px 2 = 00003, px 3 = 00001, px 4 = 00010, px 5 = 00010, px 6 = 00004, px 7 = Interpretacja tych wartości jest bardzo oczywista Na przykład, px 1 = oznacza, że w przeszłości przeciętnie 1 ołówek na miał niewłaściwą długość; był za krótki, albo za długi Jeśli uwarunkowania techniczne i organizacyjne produkcji nie ulegną zmianie, to tę frakcję można interpretować jako prawdopodobieństwo zdarzenia losowego polegającego na wyprodukowaniu ołówka o niewłaściwej długości

45 Wartość wadliwości agregatowej, czyli wadliwości ze względu na wszystkie wymienione powyżej cechy traktowane łącznie wyniesie: px = 1- [ ] = % Oznacza to, że przeciętnie 44 ołówki na będą wykazywać odstępstwa od specyfikacji właściwości wzorca typu

46 Przykład wadliwość cząstkowa i agregatowa Zbadano jakość partii dżemu, biorąc pod uwagę 3 cechy diagnostyczne, opisane przez następujące zmienne diagnostyczne: X 1 procentowa zawartość cukru, X 2 ciężar produktu w gramach; X 3 szczelność zakrętki słoika Po przebadaniu 100 losowo wybranych słoików, okazało się 3 spośród zbadanych miało zaniżoną gramaturę, w 2 przypadkach procentowa zawartość cukru odbiegała od normy, a w 5 przypadkach zakrętka była nieszczelna Określić, jaki jest ogólny poziom wadliwości badanej partii dżemu Wadliwości cząstkowe wynoszą odpowiednio: px 1 = 002, px 2 = 003, px 3 = 005 Wartość wadliwości agregatowej, czyli wadliwości ze względu na wszystkie wymienione powyżej cechy traktowane łącznie wyniesie: px = 1- [ ] = % Oznacza to, że przeciętnie 10 słoików na 100 będzie wykazywać odstępstwa od specyfikacji właściwości wzorca typu

47 DEFINICJ WDLIWOŚCI CZĄSTKOWEJ Wadliwość cząstkową możemy definiować jako prawdopodobieństwo lub jako frakcję Jeśli istnieją powody by miarę tę definiować jako prawdopodobieństwo, to wówczas gdzie p = p X = Pr x X X jest zbiorem wartości niepożądanych Jeśli wadliwość chcemy albo musimy definiować jako frakcję to wówczas x X p= p X = gdzie jest ogólną ilością jednostek produktu, natomiast x X oznacza ilość jednostek produktu nie spełniających wymagań jakościowych ze względu na zmienną diagnostyczną X Ogólne równanie dla wadliwości ogólnej: p k + X 1- Pr X = x j j j gdzie X jest zbiorem niezależnych zmiennych diagnostycznych takim, że: X = {X 1, X 2,, X j,, X k }, natomiast X j +, stanowią odpowiednio j te elementy rodziny zbiorów wartości pożądanych X + ={X 1 +, X 2 +,, X +,, X k + },

48 Przeciętna liczba wad w jednostce produktu Jeżeli nie jest możliwa alternatywna ocena stanu jednostki produktu to wówczas właściwszą miarą jakości wykonania jest przeciętna liczba wad w jednostce produktu Dotyczy to zwykle produktów wytwarzanych w postaci długich odcinków tj np tkaniny, papier, przewody energetyczne i telekomunikacyjne, folie itp lub produktów o bardzo złożonym procesie wytwórczym, który nie pozwala na wyprodukowanie produktu całkowicie wolnego od wad Jednostka produktu może mieć charakter elementarny lub agregatowy Jednostką elementarną może być pojedyncza sztuka wyrobu rzeczywista np samochód, lodówka lub umowna np pudełko zapałek, słoik ogórków, flakon perfum Może to być też pewna ilość produktu para butów, tuzin guzików, metr tkaniny lub funkcja produktu np liczba defektów w trakcie okresu gwarancji samochodu lub liczba pomyłek w procesie świadczenia usługi Przeciętną liczbę wad ze względu na zmienną diagnostyczną X oznacza się zwykle symbolem λ m gdzie m jest identyfikatorem jednostki agregatowej Podobnie jak wadliwość przeciętną liczbę wad można badać ze względu na jedną cechę oraz na kilka cech traktowanych łącznie

49 - Mierniki jakości marketingowej Właściwą charakterystyką marketingowej jakości produktu jest rozkład preferencji konsumenckich rozpięty na zbiorze wyróżnionych poziomów jakości Przykład Załóżmy że zostały wyróżnione trzy poziomy jakości marketingowej,,q 3, pozostające ze sobą w relacji p p Q 3 gdzie p oznacza relację poprzedzania następstwa Załóżmy że chciano porównać pod względem jakości dwa produkty 1 i 2 dla których otrzymano następujące rozkłady preferencji konsumenckich: Pr[ ;K~ ] = p 11 = 0,2 Pr[Q 2 ;K~ ] = p 21 = 0 Pr[ ;K~ ] = p 12 = 0,3 Pr[Q 2 ;K~ ] = p 22 = 0,4 Pr[ ;K~Q 3 ] = p 13 = 0,5 Pr[Q 2 ;K~Q 3 ] = p 23 = 0,6 Poziom jakości Q1 Q2 Q3 Produkt i Pr[Q i :K~Q i ] W pierwszym kroku wyróżnionym poziomom jakości przyporządkowuje się wartości x 1, x 2 i x 3 takie że x 1 < x 2 < x 3 i x 2 x 1 = x 3 - x 2 np-1, 0, 1 a następnie oblicza się przeciętne liczbowe oceny marketingowe obu produktów w następujący sposób: E 1 = x 1 p 11 + x 2 p 12 + x 3 p 13 = 0,2 x ,3 x 0 + 0,5 x 1 = 0,3; E 2 = x 1 p 21 + x 2 p 21 + x 3 p 23 = 0 x ,4 x 0 + 0,6 x 1 = 0,6; Ponieważ E 1 < E 2 produkt 2 jest wyższej marketingowej jakości niż produkt 1 2 będzie częściej wybierany niż 1

50 Model procesu decyzyjnego konsumenta Wybór określonego produktu i przez konsumenta K r odbywa się przy zastosowaniu algorytmu maksymalnej użyteczności dochodów Polega on na tym, że konsument wybiera produkt najtańszy spośród najlepszych, których ceny nie przekraczają jego ograniczenia budżetowego Zaznaczyć należy, że jest to jego ograniczenie ostateczne lgorytm wyboru można przedstawić w następujących punktach Krok 1 Porównując ceny produktów i ograniczenia budżetowe konsumenta K r ze zbioru produktów zostaje wyodrębniony podzbiór ' taki, że maksymalna cena produktu należącego do tego podzbioru nie przekracza ograniczenia budżetowego Powyższe stwierdzenie można zapisać symbolicznie ' = i : ip i B K r, i Krok 2 Jeżeli zbiór ' nie jest zbiorem pustym ', to wówczas konsument K r, kierując się własną oceną jakości, wybiera zbiór produktów " ', które reprezentują najwyższą jakość w zbiorze ' Krok 3 Jeżeli zbiór " jest zbiorem jednoelementowym realizowana jest transakcja kupna sprzedaży produktu Jeżeli produkty i " są nie rozróżnialne pod względem jakości, wówczas moment zakupu produktu poprzedzony jest wartościowaniem cenowym Polega ono na wyborze ze zbioru " produktu o najniższej cenie W sytuacji, gdy takich produktów jest kilka dalszy wybór przebiega w sposób losowy Komentarza wymaga tutaj problem minimalnej ceny Jest rzeczą powszechnie wiadomą, że tak zwany próg postrzegalności różnicy cenowej pomiędzy produktami, zależy bezpośrednio od klasy rozważanych produktów oraz od sytuacji materialnej kupującego, a więc od przedziału ograniczeń budżetowych, do którego on należy Dlatego też dla każdego ograniczenia budżetowego musimy określić tak zwane odchylenia cenowe B i, przez które rozumieć będziemy maksymalną nieistotną różnicę cenową pomiędzy produktami i i j Oznacza to, że jeżeli mamy dwa produkty i i j należące do zbioru produktów substytucyjnych gdzie i j oraz gdy ich poziomy jakości Q i i Q j są sobie równe, to wówczas bezwzględna różnica ich cen P i P j B i

Statystyczne sterowanie procesem

Statystyczne sterowanie procesem Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Małgorzata Szerszunowicz Uniwersytet Ekonomiczny w Katowicach ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Wprowadzenie Statystyczna kontrola jakości ma na celu doskonalenie procesu produkcyjnego

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU 1. POPYT Popyt (zapotrzebowanie) - ilość towaru, jaką jest skłonny kupić nabywca po ustalonej cenie rynkowej, dysponując do tego celu odpowiednim dochodem

Bardziej szczegółowo

SEGMENTACJA RYNKU A TYPY MARKETINGU

SEGMENTACJA RYNKU A TYPY MARKETINGU SEGMENTACJA SEGMENTACJA...... to proces podziału rynku na podstawie określonych kryteriów na względnie homogeniczne rynki cząstkowe (względnie jednorodne grupy konsumentów) nazywane SEGMENTAMI, które wyznaczają

Bardziej szczegółowo

Bardzo dobra Dobra Dostateczna Dopuszczająca

Bardzo dobra Dobra Dostateczna Dopuszczająca ELEMENTY EKONOMII PRZEDMIOTOWY SYSTEM OCENIANIA Klasa: I TE Liczba godzin w tygodniu: 3 godziny Numer programu: 341[02]/L-S/MEN/Improve/1999 Prowadzący: T.Kożak- Siara I Ekonomia jako nauka o gospodarowaniu

Bardziej szczegółowo

Matryca efektów kształcenia dla programu studiów podyplomowych ZARZĄDZANIE I SYSTEMY ZARZĄDZANIA JAKOŚCIĄ

Matryca efektów kształcenia dla programu studiów podyplomowych ZARZĄDZANIE I SYSTEMY ZARZĄDZANIA JAKOŚCIĄ Podstawy firmą Marketingowe aspekty jakością Podstawy prawa gospodarczego w SZJ Zarządzanie Jakością (TQM) Zarządzanie logistyczne w SZJ Wymagania norm ISO serii 9000 Dokumentacja w SZJ Metody i Techniki

Bardziej szczegółowo

Rodzaje Kontroli. SPC Statystyczna kontrola procesu. Rodzaje kontroli 2013-12-07. Uproszczony cykl życia wyrobu. Kontrola odbiorcza - stuprocentowa

Rodzaje Kontroli. SPC Statystyczna kontrola procesu. Rodzaje kontroli 2013-12-07. Uproszczony cykl życia wyrobu. Kontrola odbiorcza - stuprocentowa Uproszczony cykl życia projektowanie projektowanie procesów i planowanie prod. zakupy Rodzaje Kontroli marketing i badanie rynku pozbycie się lub odzysk dbałość o wyrób po sprzedaży faza przedprodukcyjna

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

METODY STATYSTYCZNE W ZARZĄDZANIU JAKOŚCIĄ. prof. zw. dr hab. Andrzej Iwasiewicz, Uniwersytet Ekonomiczny w Krakowie, Katedra Statystyki.

METODY STATYSTYCZNE W ZARZĄDZANIU JAKOŚCIĄ. prof. zw. dr hab. Andrzej Iwasiewicz, Uniwersytet Ekonomiczny w Krakowie, Katedra Statystyki. METODY STATYSTYCZNE W ZARZĄDZANIU JAKOŚCIĄ prof. zw. dr hab. Andrzej Iwasiewicz, Uniwersytet Ekonomiczny w Krakowie, Katedra Statystyki Wstęp We wszystkich fazach zarządzania jakością mamy do czynienia

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Popyt, podaż i wszystko co z Nimi związane. Mgr Michał Ferdzyn SWSPiZ

Popyt, podaż i wszystko co z Nimi związane. Mgr Michał Ferdzyn SWSPiZ Popyt, podaż i wszystko co z Nimi związane Mgr Michał Ferdzyn SWSPiZ POPYT to zależność pomiędzy ilością dobra, którą chcą i mogą kupić konsumenci, a ceną tego dobra. Popyt jest przedstawiany za pomocą

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

INFILTRACJA POWIETRZA WSPÓŁCZYNNIK a

INFILTRACJA POWIETRZA WSPÓŁCZYNNIK a www.ltb.org.pl strona 1 / 5 INFILTRACJA POWIETRZA WSPÓŁCZYNNIK a Wymagania krajowe a norma PN-EN 14351-1:2006 mgr inż. Andrzej Żyła Norma europejska PN-EN 14351-1:2006 Okna i drzwi. Norma wyrobu, właściwości

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Zarządzanie Jakością KOSZTY JAKOŚCI. Dr Mariusz Maciejczak www.maciejczak.pl

Zarządzanie Jakością KOSZTY JAKOŚCI. Dr Mariusz Maciejczak www.maciejczak.pl Zarządzanie Jakością KOSZTY JAKOŚCI Dr Mariusz Maciejczak www.maciejczak.pl Gdzie szukać kosztów jakości? PERSPEKTYWA ŁAŃCUCHA DOSTAW Rynek dostawców Pośrednicy dostawców Producent Pośrednicy dystrybucji

Bardziej szczegółowo

Przyjmuje dowolne wartości z określonego przedziału (skończonego lub nie). Zmienne ciągłe: wzrost, czas rozwiązana testu, kwota dochodu

Przyjmuje dowolne wartości z określonego przedziału (skończonego lub nie). Zmienne ciągłe: wzrost, czas rozwiązana testu, kwota dochodu cecha (właściwość), którą posiadają jednostki badanej zbiorowości, przyjmującą co najmniej dwie wartości. Zmienna to właściwość pod względem której elementy zbioru różnią się między sobą Przyjmuje dowolne

Bardziej szczegółowo

Strategie wspó³zawodnictwa

Strategie wspó³zawodnictwa Strategie wspó³zawodnictwa W MESE można opracować trzy podstawowe strategie: 1) niskich cen (dużej ilości), 2) wysokich cen, 3) średnich cen. STRATEGIA NISKICH CEN (DUŻEJ ILOŚCI) Strategia ta wykorzystuje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - struktura

ANALIZA SPRZEDAŻY: - struktura KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - struktura - koncentracja - kompleksowa analiza - dynamika Spis treści Wstęp 3 Analiza struktury 4 Analiza koncentracji 7 Kompleksowa

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

PRODUKT W MARKETINGU MIX

PRODUKT W MARKETINGU MIX PRODUKT W MARKETINGU MIX PRODUKT Towar, usługa lub pomysł zawierający określony zestaw materialnych i niematerialnych cech, które zaspakajają potrzeby klientów, otrzymywany w zamian za pieniądze lub inną

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Znakowanie kosmetyku nowe przepisy. mgr Katarzyna Kobza - Sindlewska

Znakowanie kosmetyku nowe przepisy. mgr Katarzyna Kobza - Sindlewska Znakowanie kosmetyku nowe przepisy. mgr Katarzyna Kobza - Sindlewska Rozporządzenie parlamentu Europejskiego i Rady (WE) NR 1223/2009 z dnia 30 listopada 2009 r. rozdział VI Informacje dla konsumenta art.

Bardziej szczegółowo

I. Podstawowe pojęcia ekonomiczne. /6 godzin /

I. Podstawowe pojęcia ekonomiczne. /6 godzin / PROPOZYCJA ROZKŁADU MATERIAŁU NAUCZANIA PRZEDMIOTU PODSTAWY EKONOMII dla zawodu: technik ekonomista-23,02,/mf/1991.08.09 liceum ekonomiczne, wszystkie specjalności, klasa I, semestr pierwszy I. Podstawowe

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

Analiza ryzyka w farmacji dla procesów pomiaru masy

Analiza ryzyka w farmacji dla procesów pomiaru masy RADWAG WAGI ELEKTRONICZNE Analiza ryzyka w farmacji dla procesów pomiaru masy Wstęp W rzeczywistości nie ma pomiarów idealnych, każdy pomiar jest obarczony błędem. Niezależnie od przyjętej metody nie możemy

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Uwagi do ustawy o prawach konsumenta. (druk nr 632)

Uwagi do ustawy o prawach konsumenta. (druk nr 632) Warszawa, 20 maja 2014 r. Uwagi do ustawy o prawach konsumenta (druk nr 632) 1) Art. 2 pkt 4 ustawy zawiera definicję trwałego nośnika. Jest to przeniesienie brzmienia definicji z dyrektywy w sprawie praw

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

Specyfika i zasady przyznawania punktów w ramach kryteriów merytorycznych fakultatywnych

Specyfika i zasady przyznawania punktów w ramach kryteriów merytorycznych fakultatywnych Program Operacyjny Innowacyjna Gospodarka Działanie 8.1 Wspieranie działalności gospodarczej w dziedzinie gospodarki elektronicznej Specyfika i zasady przyznawania punktów w ramach kryteriów merytorycznych

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

ZAKŁADOWA ADOWA KONTROLA PRODUKCJI W ŚWIETLE WYMAGAŃ CPR

ZAKŁADOWA ADOWA KONTROLA PRODUKCJI W ŚWIETLE WYMAGAŃ CPR ZAKŁADOWA ADOWA KONTROLA PRODUKCJI W ŚWIETLE WYMAGAŃ CPR Alicja Papier Warszawa, kwiecień 2014 Wprowadzanie wyrobów w budowlanych wg CPR Wszystkie podmioty gospodarcze w łańcuchu dostaw i dystrybucji powinny

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: BADANIE JAKOŚCI I SYSTEMY METROLOGICZNE II Kierunek: Mechanika I Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj zajęć: projekt I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Teoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj

Teoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta 1) Przedmiot wyboru konsumenta na rynku towarów. 2) Zmienne decyzyjne, parametry rynkowe i preferencje jako warunki wyboru.

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Tom 6 Opis oprogramowania Część 8 Narzędzie do kontroli danych elementarnych, danych wynikowych oraz kontroli obmiaru do celów fakturowania

Tom 6 Opis oprogramowania Część 8 Narzędzie do kontroli danych elementarnych, danych wynikowych oraz kontroli obmiaru do celów fakturowania Część 8 Narzędzie do kontroli danych elementarnych, danych wynikowych oraz kontroli Diagnostyka stanu nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 21 maja 2012 Historia dokumentu

Bardziej szczegółowo

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej.

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Andrzej Hantz Dyrektor Centrum Metrologii RADWAG Wagi Elektroniczne Pomiary w laboratorium

Bardziej szczegółowo

Tom 6 Opis oprogramowania

Tom 6 Opis oprogramowania Część 9 Narzędzie do wyliczania wskaźników statystycznych Diagnostyka Stanu Nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 31 maja 2012 Historia dokumentu Nazwa dokumentu Nazwa

Bardziej szczegółowo

KLIENCI KIENCI. Wprowadzenie normy ZADOWOLE NIE WYRÓB. Pomiary analiza i doskonalenie. Odpowiedzialnoś ć kierownictwa. Zarządzanie zasobami

KLIENCI KIENCI. Wprowadzenie normy ZADOWOLE NIE WYRÓB. Pomiary analiza i doskonalenie. Odpowiedzialnoś ć kierownictwa. Zarządzanie zasobami SYSTEM ZARZĄDZANIA JAKOŚCIĄ ISO Jakość samą w sobie trudno jest zdefiniować, tak naprawdę pod tym pojęciem kryje się wszystko to co ma związek z pewnymi cechami - wyrobu lub usługi - mającymi wpływ na

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Systemy rachunku kosztów

Systemy rachunku kosztów Systemy rachunku kosztów Tradycyjny rachunek kalkulacyjny kosztów oparty na rozmiarach produkcji kalkulacja doliczeniowa (zleceniowa), doliczanie kosztów wydziałowych kalkulacja podziałowa (procesowa)

Bardziej szczegółowo

MODEL KONKURENCJI DOSKONAŁEJ.

MODEL KONKURENCJI DOSKONAŁEJ. Wykład 4 Konkurencja doskonała i monopol 1 MODEL KONKURENCJI DOSKONAŁEJ. EFEKTYWNOŚĆ RYNKU. MONOPOL CZYSTY. KONKURENCJA MONOPOLISTYCZNA. 1. MODEL KONKURENCJI DOSKONAŁEJ W modelu konkurencji doskonałej

Bardziej szczegółowo

Księgarnia PWN: Kazimierz Szatkowski - Przygotowanie produkcji. Spis treści

Księgarnia PWN: Kazimierz Szatkowski - Przygotowanie produkcji. Spis treści Księgarnia PWN: Kazimierz Szatkowski - Przygotowanie produkcji Spis treści Wstęp... 11 część I. Techniczne przygotowanie produkcji, jego rola i miejsce w przygotowaniu produkcji ROZDZIAŁ 1. Rola i miejsce

Bardziej szczegółowo

Z-ZIP2-119z Inżynieria Jakości Quality Engineering

Z-ZIP2-119z Inżynieria Jakości Quality Engineering KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIP2-119z Inżynieria Jakości Quality Engineering Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

Skrót wymagań normy ISO 9001/2:1994, PN-ISO 9001/2:1996

Skrót wymagań normy ISO 9001/2:1994, PN-ISO 9001/2:1996 Skrót wymagań normy ISO 9001/2:1994, PN-ISO 9001/2:1996 (pojęcie wyrób dotyczy też usług, w tym, o charakterze badań) 4.1. Odpowiedzialność kierownictwa. 4.1.1. Polityka Jakości (krótki dokument sygnowany

Bardziej szczegółowo

Wykład 1 Klasyfikacja kosztów

Wykład 1 Klasyfikacja kosztów Wykład 1 Klasyfikacja kosztów dr Robert Piechota Pojęcie kosztów Wyrażone w pieniądzu celowe zużycie środków trwałych, materiałów, paliwa, energii, usług, czasu pracy pracowników oraz niektóre wydatki

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Inżynieria Jakości Quality Engineering. Zarządzanie i Inżynieria Produkcji II stopień Ogólnoakademicki

Inżynieria Jakości Quality Engineering. Zarządzanie i Inżynieria Produkcji II stopień Ogólnoakademicki KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Inżynieria Jakości Quality Engineering A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

ZACHOWANIA NABYWCÓW NA RYNKU

ZACHOWANIA NABYWCÓW NA RYNKU ZACHOWANIA NABYWCÓW NA RYNKU PODSTAWOWE POJĘCIA (1) KLIENT osoba fizyczna lub instytucja występująca w charakterze partnera sprzedawcy w transakcjach kupna-sprzedaży; termin ten może być utożsamiany z

Bardziej szczegółowo

Model procesu dydaktycznego

Model procesu dydaktycznego Model procesu dydaktycznego w zakresie Business Intelligence Zenon Gniazdowski 1,2), Andrzej Ptasznik 1) 1) Warszawska Wyższa Szkoła Informatyki, ul. Lewartowskiego 17, Warszawa 2) Instytut Technologii

Bardziej szczegółowo

SPOSÓB POSŁUGIWANIA SI

SPOSÓB POSŁUGIWANIA SI SPOSÓB POSŁUGIWANIA SIĘ TABELAMI SŁUŻĄCE DO UPROSZCZONEJ OCENY SPRAWNOŚCI FIZYCZNEJ OPARTEJ NA PRÓBACH MINI TESTU. 1. SPOSÓB POSŁUGIWANIA SIĘ TABELAMI Na stronach Animatora Sportu (animatorsdim.szs.pl)

Bardziej szczegółowo

Zarządzanie jakością. dr inż. Olga Iwasińska-Kowalska Pok. 215 iwa@mchtr.pw.edu.pl

Zarządzanie jakością. dr inż. Olga Iwasińska-Kowalska Pok. 215 iwa@mchtr.pw.edu.pl Zarządzanie jakością dr inż. Olga Iwasińska-Kowalska Pok. 215 iwa@mchtr.pw.edu.pl Informacje organizacyjne Jednostka prowadząca: Instytut Metrologii i Inżynierii Biomedycznej Osoby prowadzące: Olga Iwasińska-Kowalska

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

MARKETING USŁUG ZDROWOTNYCH

MARKETING USŁUG ZDROWOTNYCH MARKETING USŁUG ZDROWOTNYCH Beata Nowotarska-Romaniak wydanie 3. zmienione Warszawa 2013 SPIS TREŚCI Wstęp... 7 Rozdział 1. Istota marketingu usług zdrowotnych... 11 1.1. System marketingu usług... 11

Bardziej szczegółowo

Plan dydaktyczny EKONOMIKA. Klasa IV nr programu 341[02]/MEN/2008.05.20. Rok szkolny... WYNIK FINANSOWY, SYSTEM FINANSOWY PODMIOTU GOSPODARCZEGO CD.

Plan dydaktyczny EKONOMIKA. Klasa IV nr programu 341[02]/MEN/2008.05.20. Rok szkolny... WYNIK FINANSOWY, SYSTEM FINANSOWY PODMIOTU GOSPODARCZEGO CD. Plan dydaktyczny EKONOMIKA Klasa IV nr programu 341[02]/MEN/2008.05.20 Rok szkolny... Lp. Temat zajęć Uczeń zna, wie, rozumie Przewidywane osiągnięcia ucznia Uczeń potrafi Uwagi 1 Zapoznanie z programem

Bardziej szczegółowo

Działania marketingowe

Działania marketingowe Działania marketingowe Czyli jak sprzedać produkt Urszula Kazalska 1 Marketing Nazwa- od słowa market- rynek. Czyli marketing związany jest z wszelkiego rodzaju interakcjami jakie zachodzą pomiędzy kupującymi

Bardziej szczegółowo

Zarządzanie kosztami i wynikami. dr Robert Piechota

Zarządzanie kosztami i wynikami. dr Robert Piechota Zarządzanie kosztami i wynikami dr Robert Piechota Wykład 2 Analiza progu rentowności W zarządzaniu przedsiębiorstwem konieczna jest ciągła ocena zależności między przychodami, kosztami i zyskiem. Narzędziem

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Omówienie specyfiki i zasad przyznawania punktów w ramach kryteriów merytorycznych fakultatywnych

Omówienie specyfiki i zasad przyznawania punktów w ramach kryteriów merytorycznych fakultatywnych Program Operacyjny Innowacyjna Gospodarka Działanie 8.1 Wspieranie działalności gospodarczej w dziedzinie gospodarki elektronicznej Omówienie specyfiki i zasad przyznawania punktów w ramach kryteriów merytorycznych

Bardziej szczegółowo

Mikroekonomia -Ćwiczenia Ćwiczenia 4: Podaż i równowaga rynkowa

Mikroekonomia -Ćwiczenia Ćwiczenia 4: Podaż i równowaga rynkowa Mikroekonomia -Ćwiczenia Ćwiczenia 4: Podaż i równowaga rynkowa Podstawowe pojęcia: rynek, podaż, krzywa podaż, prawo podaż, cena równowagi, cena maksymalna i minimalna, zmiana podaż dr inż. Anna Kiełbus

Bardziej szczegółowo

Informacje o wybranych funkcjach systemu klasy ERP Realizacja procedur ISO 9001

Informacje o wybranych funkcjach systemu klasy ERP Realizacja procedur ISO 9001 iscala Informacje o wybranych funkcjach systemu klasy ERP Realizacja procedur ISO 9001 Opracował: Grzegorz Kawaler SCALA Certified Consultant Realizacja procedur ISO 9001 1. Wstęp. Wzrastająca konkurencja

Bardziej szczegółowo

Rektora Państwowej Wyższej Szkoły Zawodowej w Koninie z dnia 9 listopada 2011 roku

Rektora Państwowej Wyższej Szkoły Zawodowej w Koninie z dnia 9 listopada 2011 roku ZARZĄDZENIE Nr 84/2011 Rektora Państwowej Wyższej Szkoły Zawodowej w Koninie z dnia 9 listopada 2011 roku zmieniające zasady organizacji studiów podyplomowych Zarządzanie jakością Na podstawie 7 Regulaminu

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo