Rzut oka na współczesną matematykę spotkanie 5: Krzywe i ich krzywizna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rzut oka na współczesną matematykę spotkanie 5: Krzywe i ich krzywizna"

Transkrypt

1 Rzut oka na współczesną matematykę spotkanie 5: Krzywe i ich krzywizna P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

2 W stronę geometrii. Cele na 2-3 spotkania: 1 Porozmawiać o krzywych, powierzchniach i ich uogólnieniach; 2 Dowiedzieć się, co to krzywizna, 3 Zobaczyć kilka starych i nowych twierdzeń o krzywych i powierzchniach; 4 Nieco później: dowiedzieć się, co to jest rachunek wariacyjny. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

3 Dwa cytaty na początek: The greatest mathematicians, as Archimedes, Newton, and Gauss, always united theory and applications in equal measure. Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions. Felix Klein, P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

4 Dygresja: Felix Klein i jego wkład w geometrię 1872 (w wieku 23 lat!) profesura w Erlangen; wielki wpływ na rozwój geometrii; tzw. program erlangeński: są różne geometrie; każda z nich bada tylko te własności figur, które są zachowane przez przekształcenia, należące do ustalonej grupy przekształceń (danej) przestrzeni. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

5 Co to jest grupa? Co Klein miał na myśli? Zbiór G z wyróżnionym działaniem, które spełnia trzy warunki: 1 istnienie jedynki : istnieje takie e G, że e x = x e = x dla każdego x G; 2 łączność mnożenia : (x y) z = x (y z) dla x, y, z G; 3 istnienie elementu odwrotnego: dla każdego x G istnieje dokładnie jeden element x 1 G taki, że x x 1 = x 1 x = e. Przykłady grup: 1 R \ {0} z mnożeniem; Z = {0, ±1, ±2,...} z dodawaniem; 2 zbiór izometrii płaszczyzny; = składanie przekształceń; 3 zbiór wszystkich obrotów w przestrzeni, działanie jw. Izometrie zachowują wszystkie odległości, ale można badać np. przekształcenia zachowujące kąty, itp., itd. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

6 Kluczowe pojęcia współczesnej geometrii Rozmaitość P. Strzelecki (IM) Rzut oka Krzywe i krzywizna / 26

7 Kluczowe pojęcia współczesnej geometrii Rozmaitość Krzywizna P. Strzelecki (IM) Rzut oka Krzywe i krzywizna / 26

8 Kluczowe pojęcia współczesnej geometrii Rozmaitość np. okrąg, sfera, torus, zbiór wszystkich obrotów przestrzeni trójwymiarowej, zbiór wszystkich położeń litery F w przestrzeni,... w ogólności: wszystko, co w małej skali wygląda w każdym miejscu (z grubsza) tak, jak fragment przestrzeni euklidesowej, ale może jest jakoś zakrzywione, posklejane itp. Krzywizna P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

9 Kluczowe pojęcia współczesnej geometrii Rozmaitość np. okrąg, sfera, torus, zbiór wszystkich obrotów przestrzeni trójwymiarowej, zbiór wszystkich położeń litery F w przestrzeni,... w ogólności: wszystko, co w małej skali wygląda w każdym miejscu (z grubsza) tak, jak fragment przestrzeni euklidesowej, ale może jest jakoś zakrzywione, posklejane itp. Krzywizna sposób pomiaru zakrzywienia, określający lokalne i globalne cechy rozmaitości, m.in. to, na ile odbiega ona od jakiegoś symetrycznego, eleganckiego modelu. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

10 Przykłady rozmaitości cd. 1 rozmaitości jednowymiarowe: krzywe gładkie, bez dziobków, zagięć, załamań i samoprzecięć np. okrąg i prosta 2 rozmaitości dwuwymiarowe: sfera, torus, precel, butelka Kleina, wstęga Möbiusa; ogólnie: wszelkie powierzchnie gładkie, bez ostrych szpiców, zagięć, kantów etc. 3 rozmaitości trójwymiarowe, np. sfera S 3 jest zbiorem tych punktów (x, y, z, t) przestrzeni czterowymiarowej R 4, które spełniają x 2 + y 2 + z 2 + t 2 = itd. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

11 Przykład: torus i jego zanurzenia w R 3 Różne homeomorficzne obrazy torusa. Torus to powierzchnia rodzaju 1. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

12 Powierzchnia rodzaju 2: precel P. Strzelecki (IM) Rzut oka Krzywe i krzywizna / 26

13 Klasyfikacja powierzchni dwustronnych, zwartych, bez brzegu (XIX wiek) Dla każdej liczby n powierzchnia rodzaju n powstaje ze sfery przez doklejenie dwóch rączek. Innych powierzchni zwartych, bez brzegu, dwustronnych, nie ma. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

14 Przykład powierzchni jednostronnej: wstęga Moebiusa (M.C. Escher, Moebius band II, 1963 rok) P. Strzelecki (IM) Rzut oka Krzywe i krzywizna / 26

15 Przestroga: definicje to poważna rzecz Mówienie językiem potocznym o matematyce bywa niebezpieczne. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

16 Przestroga: definicje to poważna rzecz Mówienie językiem potocznym o matematyce bywa niebezpieczne. Przykład. Liczb naturalnych jest nieskończenie wiele. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

17 Przestroga: definicje to poważna rzecz Mówienie językiem potocznym o matematyce bywa niebezpieczne. Przykład. Liczb naturalnych jest nieskończenie wiele. Zatem, są wśród nich tak duże, że nie zdołam ich zdefiniować, choćbym pokazywał slajdy do wieczora, prawda? P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

18 Przestroga: definicje to poważna rzecz Mówienie językiem potocznym o matematyce bywa niebezpieczne. Przykład. Liczb naturalnych jest nieskończenie wiele. Zatem, są wśród nich tak duże, że nie zdołam ich zdefiniować, choćbym pokazywał slajdy do wieczora, prawda? A wśród tych liczb, których nie zdołam zdefiniować, choćbym pokazywał slajdy przez cały wykład, jest najmniejsza. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

19 Przestroga: definicje to poważna rzecz Mówienie językiem potocznym o matematyce bywa niebezpieczne. Przykład. Liczb naturalnych jest nieskończenie wiele. Zatem, są wśród nich tak duże, że nie zdołam ich zdefiniować, choćbym pokazywał slajdy do wieczora, prawda? A wśród tych liczb, których nie zdołam zdefiniować, choćbym pokazywał slajdy przez cały wykład, jest najmniejsza. I właśnie ją zdefiniowałem na jednym slajdzie! (Wyjaśnienie: trzeba odróżniać badany język od metajęzyka, w którym prowadzi się badania). P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

20 Co to jest krzywa? Generalne stanowisko matematyków prawie do końca XIX w.: koń jaki jest, każdy widzi Nieco poważniej: ciągły obraz odcinka Kłopot: to nie jest definicja tego, co chcemy. P. Strzelecki (IM) Rzut oka Krzywe i krzywizna / 26

21 Co to jest krzywa? Generalne stanowisko matematyków prawie do końca XIX w.: koń jaki jest, każdy widzi Nieco poważniej: ciągły obraz odcinka Kłopot: to nie jest definicja tego, co chcemy.definicja z poprzedniego punktu obejmuje, jak się okazuje, np. kwadrat, a także różne zbiory o fraktalnym kształcie. 1890: Giuseppe Peano konstruuje przykład funkcji ciągłej, przeprowadzającej odcinek [0, 1] na cały kwadrat. Krzywymi, tzn. ciągłymi obrazami odcinka, są też dywan Sierpińskiego i gąbka Mengera. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

22 Krzywa typu Peano: kilka stadiów konstrukcji Trzy początkowe kroki konstrukcji krzywej wypełniającej kwadrat. U góry: kopie wyjściowej łamanej. U dołu: to samo, z dodanymi połączeniami. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

23 Dywan Sierpińskiego (1916) Krzywa, dla której każdy punkt jest punktem rozgałęzienia; zbiór o ułamkowym wymiarze; Każda krzywa płaska wymiaru 1 jest homeomorficzna z jakimś podzbiorem dywanu. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

24 Dywan Sierpińskiego: kilka własności Dywan ma pole zero. Istotnie, pole usuniętych kwadratów: = 1 ) ( = = Dywan ma ułamkowy wymiar Hausdorffa. Jeśli chcemy przykryć dywan kwadratami mniejszymi trzykrotnie od ustalonych, to ich liczba rośnie 8 razy. Wymiar d to taka liczba, że 3 d = 8, stąd d = log 8/ log 3 1,89. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

25 Gąbka Mengera (1926) Nieskończone pole powierzchni; zerowa objętość; Wymiar ln 20 2,72; ln 3 Każdy punkt jest punktem rozgałęzienia P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

26 Może zatem inna definicja krzywej...? Na przykład: Krzywa to ciągły i różnowartościowy obraz odcinka. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

27 Może zatem inna definicja krzywej...? Na przykład: Krzywa to ciągły i różnowartościowy obraz odcinka. To wykluczy krzywą Peano, dywan i gąbkę. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

28 Może zatem inna definicja krzywej...? Na przykład: Krzywa to ciągły i różnowartościowy obraz odcinka. To wykluczy krzywą Peano, dywan i gąbkę.... Ale kilka innych patologii nadal zostanie: krzywe o dodatnim polu powierzchni (William Osgood, 1903) P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

29 Może zatem inna definicja krzywej...? Na przykład: Krzywa to ciągły i różnowartościowy obraz odcinka. To wykluczy krzywą Peano, dywan i gąbkę.... Ale kilka innych patologii nadal zostanie: krzywe o dodatnim polu powierzchni (William Osgood, 1903) albo tzw. nitka do pomiaru objętości. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

30 Może zatem inna definicja krzywej...? Na przykład: Krzywa to ciągły i różnowartościowy obraz odcinka. To wykluczy krzywą Peano, dywan i gąbkę.... Ale kilka innych patologii nadal zostanie: krzywe o dodatnim polu powierzchni (William Osgood, 1903) albo tzw. nitka do pomiaru objętości. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

31 Krzywe bez samoprzecięć, o dodatnim polu Konstrukcja krzywej Osgooda Knoppa (przybliżenia o numerach n = 1, 2, 3, 5, 7, 13). Jest to krzywa bez samoprzecięć, ale o dodatnim polu. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

32 Co to jest krzywa, 2. Dla bezpieczeństwa i wygody: odtąd słowo krzywa będzie oznaczać krzywą gładką być może ze skończoną liczbą samoprzecięć zamkniętą lub z końcami. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

33 Krzywizna krzywych płaskich i przestrzennych Krzywizna okręgu o promieniu R jest równa 1/R. Krzywizna każdej innej krzywej płaskiej w punkcie p to odwrotność promienia tego okręgu, który jest styczny do krzywej w p; najlepiej ze wszystkich okręgów przybliża krzywą w pobliżu p. Równoważnie: bierzemy w pobliżu p dwa inne punkty q, s na krzywej; opisujemy na trójkącie p, q, s okrąg o promieniu R(p, q, s); znajdujemy granicę wielkości 1/R(p, q, s) dla q, s p. Ta definicja jest dobra także w przestrzeni trójwymiarowej. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

34 Skręcenie krzywej przestrzennej Płaszczyzna ściśle styczna do krzywej (przestrzennej w punkcie p: ta płaszczyzna, która najlepiej przylega do krzywej w punkcie p. Tę płaszczyznę wyznaczają wektory prędkości i przyspieszenia (gdy poruszamy się wzdłuż krzywej ze stałą szybkością) Torsja (skręcenie): tempo, w jakim krzywa odgina się od swojej płaszczyzny ściśle stycznej. Proste twierdzenie. Jedyną krzywą płaską o stałej krzywiźnie jest okrąg. Jedyną krzywą przestrzenną o stałej krzywiźnie i stałym skręceniu jest linia śrubowa. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

35 Twierdzenia znane i mniej znane. Twierdzenie. Skręcenie i krzywizna wyznaczają krzywą przestrzenną z dokładnością do izometrii (a nawet: ruchu sztywnego). Pytanie: Ile jest krzywych przestrzennych o stałej krzywiźnie? Zaskakująco dużo! Twierdzenie (2007). Każdy węzeł ma model, który jest krzywą o stałej krzywiźnie. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

36 Twierdzenia znane i mniej znane. Twierdzenie. Skręcenie i krzywizna wyznaczają krzywą przestrzenną z dokładnością do izometrii (a nawet: ruchu sztywnego). Pytanie: Ile jest krzywych przestrzennych o stałej krzywiźnie? Zaskakująco dużo! Twierdzenie (2007). Każdy węzeł ma model, który jest krzywą o stałej krzywiźnie. Taki model można zrobić z łuków okręgów i linii śrubowych. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

37 Fragment przygód Gullivera oczami matematyka P. Strzelecki (IM) Rzut oka Krzywe i krzywizna / 26

38 Fragment przygód Gullivera oczami matematyka Twierdzenie (Kneser, Blaschke, ok. 1912). Każde jajko ma cztery rogi. Terminologia: rogi to lokalne maksima lub lokalne minima krzywizny. Jajko to gładka krzywa wypukła taka, która jest brzegiem zbioru wypukłego na płaszczyźnie. Założenie wypukłości można opuścić. Trzeba wtedy mówić o krzywiźnie ze znakiem. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

39 Liczba rogów jajka cd. Załóżmy, że α jest zamkniętą krzywą gładką na płaszczyźnie, a okrąg γ brzegiem najmniejszego koła zawierającego α. Inaczej: γ to okrąg opisany na α. Twierdzenie (Robert Osserman, 1985). Jeśli część wspólna α γ krzywej α i okręgu γ opisanego na niej ma co najmniej n składowych, to α ma co najmniej 2n rogów. Twierdzenie (B. Dahlberg, 1997). Każda funkcja ciągła na okręgu, która ma co najmniej dwa lokalne maksima i dwa lokalne minima, jest krzywizną pewnej płaskiej krzywej zamkniętej. P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

40 Twierdzenie Farý ego Milnora (1951) Jeśli C[γ] = γ to γ nie jest zawęźlona. κ 4π, Uwaga: Dla łamanej C[γ] = suma kątów dopisanych. 4π jest optymalne: dla każdego ε > 0 i n N istnieje krzywa γ taka, że C[γ] < 4π + ε (np. węzeł torusowy o n skrzyżowaniach). P. Strzelecki pawelst@mimuw.edu.pl (IM) Rzut oka Krzywe i krzywizna / 26

Z czterech wierzchołków w głąb geometrii

Z czterech wierzchołków w głąb geometrii Paweł Walczak Uniwersytet Łódzki 7 października 2009 Ogólny problem Problem Dla danej wielkości (funkcji, pola wektorowego, pola tensorowego) i danego niezmiennika geometrycznego (krzywizny pewnego typu,

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Wybrane zagadnienia teorii continuów

Wybrane zagadnienia teorii continuów Wybrane zagadnienia teorii continuów Mirosława Reńska, Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW Prezentacja wykładu Warszawa, maj 2011, (prezentacja dostępna na stronie http://www.mimuw.edu.pl/

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń

Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 30 marzec 2017 Prezentacja multimedialna do wykładu. 1 Zadania łatwe 1. Narysuj

Bardziej szczegółowo

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 I. GEOMETRIA ANALITYCZNA: Wektor w układzie współrzędnych.

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Geometria Różniczkowa I

Geometria Różniczkowa I Geometria Różniczkowa I wykład drugi Powierzchnie zanurzone, o których rozmawialiśmy na poprzednim wykładzie są bardzo istotną klasą przykładów rozmaitości różniczkowych. Pod koniec dzisiejszego wykładu

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Geometria Struny Kosmicznej

Geometria Struny Kosmicznej Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013 Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328 Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

O geometrii nieeuklidesowej. Andrzej Kotański

O geometrii nieeuklidesowej. Andrzej Kotański O geometrii nieeuklidesowej Andrzej Kotański Plan 1. Rys historyczny 2. Zaprzeczenie piątego pewnika Euklidesa 3. Modele geometrii eliptycznej i hiperbolicznej 4. Modele Beltramiego i Poincarego 5. Kąt

Bardziej szczegółowo

TEORIA WĘZŁÓW. Natalia Grzechnik 10B2

TEORIA WĘZŁÓW. Natalia Grzechnik 10B2 TEORIA WĘZŁÓW Natalia Grzechnik 10B2 Słowem wstępu zastosowanie teorii węzłów Biologiczna rola węzłów w białkach Wyznaczanie topologii białek Kryptografia Biofizyka Opis struktur DNA, RNA, białek DNA a

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 (G-PG). Prowadzący dr Andrzej Rychlewicz

Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 (G-PG). Prowadzący dr Andrzej Rychlewicz Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 G-PG). Prowadzący dr Andrzej Rychlewicz Przeanalizujmy następujące zadanie. Zadanie. próbna matura

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa druga. Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1 KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Egzamin wstępny z matematyki na kierunek Matematyka będzie przeprowadzony

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

ELEMENTY TEORII WĘZŁÓW

ELEMENTY TEORII WĘZŁÓW Łukasz Janus 10B2 ELEMENTY TEORII WĘZŁÓW Elementarne deformacje węzła Równoważność węzłów Węzły trywialne Ruchy Reidemeistera Twierdzenie o równoważności węzłów Grafy Powtórzmy Diagram węzła Węzły reprezentuje

Bardziej szczegółowo

Rozkład figury symetrycznej na dwie przystające

Rozkład figury symetrycznej na dwie przystające Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria godz. Funkcje trygonometryczne kąta ostrego definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Podstawowe pojęcia. Co w matematyce możemy nazwać. węzłem, a co. splotem?

Podstawowe pojęcia. Co w matematyce możemy nazwać. węzłem, a co. splotem? Magdalena Czarna Podstawowe pojęcia Co w matematyce możemy nazwać węzłem, a co splotem? Podstawowe pojęcia Węzeł to krzywa zamknięta (splątany okrąg) w przestrzeni 3-wymiarowej. W związku z tym węzłem

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. dr Michał Lorens

Młodzieżowe Uniwersytety Matematyczne. dr Michał Lorens Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ODLEGŁOŚĆ NA POWIERZCHNI WIELOŚCIANU dr Michał Lorens 28.04.2012 Projekt

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Spis treści. Przedmowa do wydania piątego

Spis treści. Przedmowa do wydania piątego Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny

Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Ciagi liczbowe wykład 4

Ciagi liczbowe wykład 4 Ciagi liczbowe wykład 4 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, r. akad. 2016/2017 Definicja (ciagu liczbowego) Ciagiem liczbowym nazywamy funkcję

Bardziej szczegółowo

VIII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Zabawa z odległościami

Zabawa z odległościami Konferencja SEM Gdzie jest matematyka? Zabawa z odległościami Joanna Jaszuńska Soczewka, 28 listopada 2010 Zabawa z odległościami 1 Joanna Jaszuńska Odległość punktu od figury Odległość punktu A od figury

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo