IZOLACJA WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (WWA) Z GLEBY

Wielkość: px
Rozpocząć pokaz od strony:

Download "IZOLACJA WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (WWA) Z GLEBY"

Transkrypt

1 Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 IZLACJA WIELPIERŚCIENIWYC WĘGLWDRÓW ARMATYCZNYC (WWA) Z GLEBY Nauka o Środowisku Gdańsk, 2012

2 1. Wstęp 2 Wielopierścieniowe węglowodory aromatyczne (WWA) to obszerna grupa związków chemicznych o budowie pierścieniowej, charakteryzujących się zbliżonymi własnościami fizykochemicznymi. Chociaż znanych jest ponad 100 różnych WWA najczęściej w środowisku występuje około 17 związków chemicznych. WWA nie występują w środowisku w postaci pojedynczych związków zawsze tworzą mieszaniny wieloskładnikowe. Skład ilościowy i jakościowy tych mieszanin zależy od rodzaju materiału spalanego oraz warunków, w jakich zachodzi proces spalania i jest dowodem na źródło emisji. Wielopierścieniowe węglowodory aromatyczne należą do grupy najpowszechniej występujących, trwałych zanieczyszczeń organicznych. Głównymi źródłami WWA są: produkty niepełnego spalania paliw kopalnych, lotne pyły i popioły powstające ze spalania paliw lub utylizacji odpadów oraz przemysł ciężki związany z przetwarzaniem węgla i ropy naftowej (koksownie, rafinerie, huty żelaza, aluminium i miedzi, produkcja i wykorzystanie smoły i kreozotu). Szacuje się, iż szczególnie w okresie zimowym, poważnym źródłem WWA w środowisku jest tzw. niska emisja, pochodząca z indywidualnych źródeł ciepła. Jednak najpoważniejszy udział w emisji WWA na terenach zurbanizowanych ma transport samochodowy. Wśród źródeł naturalnych wymienia się pożary lasów i wybuchy wulkanów oraz procesy przemiany materii bakterii, glonów i roślin wyższych. Biosynteza WWA prowadzi do tworzenia tych najbardziej groźnych dla zdrowia człowieka ale w aspekcie ogólnego skażenia, ilości WWA pochodzące ze źródeł naturalnych i stanowiące "naturalne tło" są niewielkie w porównaniu z ilościami będącymi wynikiem działalności człowieka. WWA pochodzące ze źródeł antropogenicznych nie występują w środowisku w postaci pojedynczych związków zawsze tworzą mieszaniny wieloskładnikowe. Skład ilościowy i jakościowy tych mieszanin zależy od rodzaju materiału spalanego oraz warunków, w jakich zachodzi proces spalania. Najistotniejszym ze zdrowotnego punktu widzenia skutkiem oddziaływania WWA na organizm jest zdolność niektórych z nich do wywoływania zmian nowotworowych. Z tego względu WWA podzielono na nieaktywne, mniej aktywne i bardzo aktywne. Liczne badania dostarczyły dostatecznej ilości danych, by WWA o ilości pierścieni powyżej 3 uznać za rakotwórcze i mutagenne. Do tych związków należą m.in.: benzo(a)piren, dibenzo(a,h)antracen, benzo(a)antracen, benzo(b)fluoranten, czy dibenzo(a,e)piren (Rysunek 1). WWA są metabolizowane przez mikrosomalne enzymy cytochromu P 450 do związków mogących tworzyć trwałe połączenia z DNA (np. epoksydy), co w konsekwencji może prowadzić do wysoce prawdopodobnego procesu nowotworzenia. W celu systematycznej oceny toksyczności wszystkich rakotwórczych WWA, wprowadzono tzw. względny współczynnik rakotwórczości (k), odnoszący się do rakotwórczości benzo(a)pirenu (BaP), dla którego przyjęto wartość równą 1.

3 3 becnie jako miarę narażenia na wielopierścieniowe węglowodory aromatyczne przyjmuje się wskaźnik będący sumą iloczynów stężeń 9 WWA i ich względnych współczynników rakotwórczości. WWA emitowane z różnych źródeł ulegają stopniowej dystrybucji w środowisku, gdzie ostatecznie deponowane są w glebach (90%) oraz, ze względu na bardzo słabą rozpuszczalność w wodzie, w osadach dennych (9%). prócz mokrej i suchej depozycji WWA, związki te trafiają do gleby razem z wodami spływnymi. Wody spływne wymywają np. nawierzchnię dróg, na których znajdują się duże ilości WWA pochodzące: ze spalin samochodowych, ze ścierania opon gumowych przy hamowaniu i z samego asfaltu bogatego we frakcje węglowodorów aromatycznych. Dodatkowym źródłem są także niekontrolowane zrzuty ścieków przemysłowych i bytowo-gospodarczych, a także odcieki ze składowisk odpadów. Przykładowe struktury WWA przedstawia rysunek 1. Benzo(a)piren Dibenzo(a,h)antracen Benzo(a)antracen Benzo(b)fluoranten Chryzen Perylen Piren Antracen Naftalen Rys. 1. Przykładowe struktury WWA 2. Wydzielanie WWA z próbek gleby We współczesnej analizie śladowej mamy do czynienia z wykrywaniem substancji na poziomie ppm i ppb. Aby oznaczyć tak małe ilości substancji chemicznych w skomplikowanej matrycy, jaką są próbki środowiskowe, niezbędne jest przygotowanie procedury składającej się z kilku etapów:

4 4 pobieranie próbki, przechowywanie, wstępne przygotowanie obejmujące wyodrębnienie od matrycy, zatężanie czy przekształcanie analitu w postać bardziej trwałą lub dogodną dla końcowego oznaczania, analiza właściwa, obróbka danych. 2.1 Chromatografia adsorpcyjna Wielopierścieniowe węglowodory aromatyczne wydziela się z gleby najczęściej poprzez ekstrakcję niepolarnym rozpuszczalnikiem organicznym. Proces ten nie jest selektywny. W ekstrakcie, poza węglowodorami, znajdują się inne grupy związków, poza tym węglowodorów alifatycznych jest zdecydowanie więcej niż aromatycznych co, w zdecydowanej większości przypadków, uniemożliwia wykorzystanie ekstraktu do analizy właściwej. Skuteczną i często stosowaną na skalę preparatywną metodą rozdzielania mieszanin związków organicznych jest cieczowa chromatografia adsorpcyjna. Rozdział następuje w wyniku wielokrotnych, selektywnych procesów adsorpcji zachodzących na aktywnych powierzchniach sorbentów. Szczególnie cenne usługi oddaje kolumnowa chromatografia adsorpcyjna w przypadku złożonych mieszanin stosunkowo niewielkich ilości substancji, których rozdzielenie za pomocą krystalizacji czy destylacji jest praktycznie nieosiągalne, zwłaszcza gdy chodzi o związki wysokowrzące i wrażliwe na działanie temperatury. Z tych samych powodów metodę kolumnowej chromatografii adsorpcyjna stosuje się do rozdzielania szczególnie złożonych mieszanin związków pochodzących ze źródeł naturalnych. W chromatografii cieczowej występują konkurencyjne oddziaływania między próbką (analit i matryca) a fazą stacjonarną (adsorbent), między próbką a fazą ruchomą (rozpuszczalnik wymywający próbkę z adsorbentu) i między fazą ruchomą a stacjonarną. Mechanizm adsorpcyjny polega na zatrzymywaniu cząsteczek substancji na powierzchni adsorbentu (zwykle porowatego). W procesie tym biorą udział następujące oddziaływania międzycząsteczkowe: siły wynikające z oddziaływań między cząsteczkami mającymi trwały moment dipolowy (oddziaływania dipol-dipol), siły wynikające z oddziaływań między cząsteczkami mającymi dipol i cząsteczkami, w których dipol jest indukowany przez sąsiadujące cząsteczki (oddziaływanie dipol-dipol indukowany), oddziaływania związane z tworzeniem wiązań wodorowych, specjalny rodzaj oddziaływania

5 5 dipol-dipol między wodorem a atomem elektroujemnym, np., N, F. ddziaływania międzycząsteczkowe powodują, że rozdzielane substancje w niejednakowym stopniu zatrzymują się na adsorbencie. Im większe powinowactwo analitu do fazy stacjonarnej tym analit jest silniej przez nią zatrzymywany. Analit z adsorbentu wymywany jest fazą ruchomą. Im silniej zatrzymywany analit, tym później opuszcza kolumnę (większa retencja czyli opóźnienie w stosunku do przepływu fazy ruchomej). bjętość fazy ruchomej potrzebna do jego wymycia nazywa się objętością retencji, a czas, w jakim analit zostaje wymyty z kolumny - czasem retencji. bjętość retencji i czas retencji określa się precyzyjnie, licząc od momentu naniesienia na kolumnę do momentu opuszczenia kolumny (maksimum stężenia analitu) przez analit o najwyższej wartości stężenia. Na rys. 2 przedstawiono schemat oddziaływań między cząsteczkami analitów Z i X a powierzchnią adsorbentu żelu krzemionkowego. Linią przerywaną oznaczono siły wynikające z różnego rodzaju oddziaływań występujących w chromatografii adsorpcyjnej i powodujących retencję. Przedstawiono substancję Z, która silniej oddziałuje z powierzchnią adsorbentu niż substancja X. W stanie równowagi, stosunek stężenia Z w fazie stacjonarnej (3 x Z) do stężenia Z w fazie ruchomej (1 x Z) jest większy {(3 x Z)/(1 x Z) = 3} niż analogiczny stosunek dla X {(3 x X)/(2 x X)=1,5}. Skoro substancji X jest relatywnie więcej w fazie ruchomej niż substancji Z, pierwsza opuści kolumnę substancja X (objętość retencji X, czas retencji X mniejsze niż objętość retencji Z, czas retencji Z). Z X X X Z X Z S Z X ŻEL KRZEMINKWY Rys. 2. Schemat mechanizmu adsorpcji na żelu krzemionkowym. Strzałką oznaczono przepływ fazy ruchomej S, kwadracikami substancje rozdzielane Z (k=3) i X (k=1,5), k=n s /n m, n s -liczba moli substancji rozdzielanej w fazie stacjonarnej, n m liczba moli substancji rozdzielanej w fazie ruchomej, k - współczynnik retencji

6 2.2. Adsorbenty 6 W chromatografii cieczowej używa się adsorbentów porowatych o powierzchniach od setek do tysiąca m 2 /g. Adsorbenty dzieli się na polarne i niepolarne. Do niepolarnych należą węgiel aktywny, węglowodory nasycone, polimery; do polarnych żel krzemionkowy, krzemian magnezu, tlenek glinu. Żel krzemionkowy o ogólnym wzorze Si. 2 n 2 jest najczęściej stosowanym adsorbentem. jego szerokim zastosowaniu decyduje łatwość otrzymywania przez polikondensację kwasu krzemowego, jak również możliwość łatwej modyfikacji jego właściwości powierzchniowych, takich jak struktura geometryczna porów czy modyfikacja chemiczna. Na powierzchni żelu krzemionkowego występują grupy - (silanolowe) o różnych właściwościach, w zależności od wzajemnej odległości i przestrzennego rozmieszczenia oraz grupy siloksanowe (Rys. 3). Rys. 3. Grupy silanolowe (aktywne, bliźniacze, swobodne i związane) i siloksanowa, występujące na powierzchni żelu krzemionkowego

7 7 Grupy silanolowe swobodne oraz aktywne stanowią centra silnie protonodonorowe, grupy silanolowe bliźniacze są centrami o słabych właściwościach protonodonorowych, a grupy związane, połączone ze sobą wiązaniem wodorowym mają właściwości protonoakceptorowe. Uważa się, że największą rolę w procesie adsorpcji odgrywają grupy swobodne i aktywne. Udział poszczególnych form występowania grup wodorotlenowych na powierzchni żelu krzemionkowego zależy od struktury geometrycznej porów. Żele szerokoporowate zawierają więcej swobodnych grup -, natomiast na powierzchni wąskoporowatych żeli więcej jest aktywnych i związanych grup -. Aktywność żelu krzemionkowego jak i innych adsorbentów nieorganicznych zwiększa się przez ogrzewanie w temperaturze ºC, aby częściowo usunąć zaadsorbowaną wodę. Wyższa temperatura w przypadku żelu krzemionkowego może powodować usuwanie grup wodorotlenowych z jego powierzchni. Siła adsorpcji związków organicznych na żelu krzemionkowym jest większa im większa jest ich polarność i rośnie w szeregu: węglowodory < halogenki alkilowe, arylowe < etery (RR)< aldehydy (RC)< ketony(r 2 C)< estry (RCR)< alkohole (R) < fenole (Ar) < zasady azotowe (np. C 5 5 N, C 6 5 N 2 )< aminy III-rz. (R 3 N)< aminy II-rz. i amidy < kwasy karboksylowe Fazy ruchome w chromatografii adsorpcyjnej Zdolność rozpuszczalnika do wymywania substancji z adsorbentu zależy od jego siły oddziaływania z powierzchnią adsorbentu i zwana jest mocą elucyjną rozpuszczalnika (eluentu). Mechanizm tego oddziaływania jest taki sam jak przedstawiony wyżej dla substancji i adsorbentu. Silniejsza adsorpcja rozpuszczalnika na fazie stacjonarnej zmniejsza adsorpcję analitu. Rozpuszczalniki klasyfikuje się zgodnie ze wzrastającą zdolnością wymywania zaadsorbowanych substancji z adsorbentu (czyli zgodnie ze wzrastającą ich mocą elucyjną) zestawiając (porządkując) je w tzw. szereg eluotropowy. W chromatografii z fazą stacjonarną polarną, np. z żelem krzemionkowym, o sile elucji decyduje polarność i polaryzowalność eluentu, więc szereg eluotropowy rozpuszczalników dla tej chromatografii adsorpcyjnej jest jednocześnie szeregiem o wzrastającej ich polarności. Wybór odpowiedniego rozpuszczalnika do rozdziału wybranej mieszaniny związków nie jest łatwy. Zwykle stosuje sie najpierw rozpuszczalnik o średniej mocy elucyjnej, następnie dla uzyskania właściwego rozdziału zmienia się rozpuszczalnik na taki, który ma większą lub mniejszą moc elucyjną. Można mieszać dwa lub więcej rozpuszczalników dla uzyskania odpowiedniej siły elucji i selektywności rozdziału. Szereg eluotropowy rozpuszczalników wg wzrastającej mocy elucyjnej, dla adsorbentów polarnych przedstawiono w Tab. 1.

8 8 Tab. 1. Rozpuszczalniki uszeregowane zgodnie ze wzrastającą mocą elucyjną w chromatografii adsorpcyjnej na żelu krzemionkowym 1. n-pentan 10. Tetrahydrofuran 2. Eter naftowy 11. Aceton 3. n-eksan 12. ctan etylu 4. Cykloheksan 13. Acetonitryl 5. Tetrachlorek węgla 14. Pirydyna 6. Toluen 15. Etanol 7. Eter dietylowy 16. Metanol 8. Chloroform Woda (b. duża siła elucji) 9. Dichlorometan Kwas octowy (b. duża siła elucji) Rozpuszczalniki stosowane w chromatografii cieczowej oprócz odpowiednich właściwości chemicznych muszą spełniać kilka wymogów: powinny być dostępne w handlu, niedrogie, czyste, bezpieczne w użyciu, mało reaktywne (nie niszczyć próbki, wypełnienia kolumny i przyrządu), umożliwiać detekcję próbki i być o odpowiedniej lepkości i lotności. Rozpuszczalniki niżej wrzące mają tendencję do tworzenia baniek, mogą odparowywać w czasie rozdziału i zmieniać niekontrolowanie skład fazy ruchomej. Rozpuszczalniki wyżej wrzące mają zwykle dużą lepkość i wymagają stosowania wysokich ciśnień dla uzyskania odpowiedniej szybkości przepływu, a po rozdziale, przy odparowywaniu eluatu, mogą powodować straty analitu Rozdział metodą kolumnowej chromatografii adsorpcyjnej W adsorpcyjnej chromatografii kolumnowej analizowane substancje w postaci roztworu nanosimy na adsorbent wypełniający kolumnę. Wybór rozpuszczalnika zależy przede wszystkim od rozpuszczalności substancji chromatografowanych. Związek organiczny jest zawsze silniej adsorbowany z rozpuszczalnika niepolarnego niż polarnego natomiast już zaadsorbowany będzie tym silniej wypierany im bardziej polarny jest dany rozpuszczalnik. Następnie przemywając złoże (adsorbent w kolumnie) rozpuszczalnikiem rozwijamy chromatogram, czyli dzielimy mieszaninę na grupy związków lub poszczególne związki chemiczne i wymywamy je (eluujemy) z kolumny zbierając kolejne frakcje eluatu (rozpuszczalnika z eluującymi się związkami). Wymywanie można prowadzić jednym rozpuszczalnikiem (elucja izokratyczna) lub kilkoma

9 9 kolejno, albo mieszaniną rozpuszczalników o wzrastającej polarności (elucja gradientowa). Spływające z kolumny frakcje zbiera się oddzielnie. W ten sposób uzyskuje się rozdział badanej mieszaniny na składniki nieadsorbowane i adsorbowane coraz silniej przez adsorbent. Poszczególne frakcje odparowuje się i bada innymi metodami. Rozdzielając mieszaniny związków organicznych, a szczególnie substancji pochodzenia naturalnego, mimo wielu wskazówek, jakie można znaleźć w literaturze, zawsze wskazane jest wykonanie próby na wzorcach oznaczanych substancji a następnie próby z małą ilością materiału. Poza tym, jak w przypadku innych metod empirycznych, potrzebna jest zawsze pewna doza inwencji eksperymentatora. Niejednokrotnie selektywny rozdział składników mieszaniny udaje się bardzo dobrze dopiero po uzyskaniu pewnego doświadczenia. Zasadniczą częścią każdego zestawu do chromatografii kolumnowej jest kolumna ze szkła obojętnego, której wymiary są dostosowane do skali przeprowadzanego rozdziału. Najczęściej mieszczą one od 10 do 100 g adsorbentu, co wystarcza do adsorpcji od 0,1 do kilku gramów substancji. Dla przyspieszenia elucji stosuje się słabe ssanie (pompka wodna) lub słabe tłoczenie. Napełnianie kolumny adsorbentem można przeprowadzać na sucho i na mokro. W metodzie na sucho adsorbent wsypuje się małymi porcjami do kolumny i ubija pałeczką szklaną. Następnie przemywa się adsorbent rozpuszczalnikiem, w którym nanosi się badaną mieszaninę. Metoda na mokro polega na wprowadzaniu do kolumny zawiesiny adsorbentu w rozpuszczalniku użytym do rozpuszczania substancji. W obu metodach napełnianie należy wykonać tak, by złoże adsorbentu było jednorodne, pozbawione pęcherzyków powietrza i tak ułożone, by nie zmieniało objętości w czasie rozdziału. Powierzchnia adsorbentu powinna być stale pokryta płynem od chwili nalania pierwszych porcji rozpuszczalnika do zakończenia procesu. W przeciwnym razie złoże na kolumnie może łatwo wyschnąć, co uniemożliwi prowadzenie prawidłowej adsorpcji i może spowodować utlenianie się niektórych substancji. Na Rys. 4 przedstawiono zestaw do chromatografii kolumnowej z zastosowaniem tłoczenia. Rys. 4. Zestaw do chromatografii kolumnowej z zastosowaniem tłoczenia

10 10 3. Wykonanie ćwiczenia 3.1. Cel ćwiczenia Celem ćwiczenia jest ekstrakcja wielopierścieniowych węglowodorów aromatycznych (WWA) w próbkach gleby. Przygotowanie próbki do analizy obejmuje: - ekstrakcję węglowodorów z gleby, - wydzielenie z ekstraktu frakcji węglowodorów alifatycznych i frakcji wielopierścieniowych węglowodorów aromatycznych (WWA) za pomocą adsorpcyjnej chromatografii cieczowej, - ocenę rozdziału za pomocą chromatografii cienkowarstwowej. Gleba pochodzi w okolic ulicy Sobieskiego i jest powietrznie sucha Ekstrakcja gleby i przygotowanie ekstraktu do rozdziału Powietrznie suchą glebę rozetrzeć w moździerzu. dważyć próbkę o masie od 10 do 30 g, w zależności od miejsca poboru. Minimalna masa gleby powietrznie suchej dla P 1 i P 4 wynosi 30 g, dla P-3 i P 5 20 g, a dla P-2 i P 6-10 g. Naważkę gleby umieścić w kolbie stożkowej o pojemności 100 ml, dodać 50 ml mieszaniny eteru naftowego i dichlorometanu (3:2, v:v). Kolbę umieścić w łaźni ultradźwiękowej na 15 min. Następnie osad zdekantować, ekstrakt przesączyć przez bezwodny siarczan sodu umieszczony na sączku z bibuły filtracyjnej do kolbki gruszkowej o pojemności 100 ml. Do gleby dodać świeżą porcję 25 ml mieszaniny eteru naftowego i dichlorometanu i ekstrahować w łaźni ultradźwiękowej 10 min, następnie przesączyć przez ten sam sączek. Do połączonych ekstraktów dodać 0,2 ml toluenu i odparować na odparowywaczu obrotowym, przy temperaturze łaźni wodnej nie przekraczającej 30ºC, do objętości poniżej 0,5 ml (warstwa oleju na ściankach kolbki). Do ekstraktu dodać 1 ml eteru naftowego. W razie trudności w rozpuszczeniu ekstraktu można dodać 1-2 krople toluenu i lekko podgrzać zawartość kolbki w łaźni wodnej, w ostateczności próbkę można nanieść na kolumnę w postaci zawiesiny Przygotowanie kolumny do rozdziału W kolbce stożkowej o pojemności 25 do 50 ml umieścić 4 do 6 g żelu krzemionkowego (żelu nie należy ważyć, proszę czekać na wskazówki prowadzącego), zalać go taką ilością eteru naftowego, aby słup cieczy nad zawiesiną wynosił ok. 1 cm. Zawartość kolbki mieszać ruchem łagodnym, tak by usunąć pęcherzyki powietrza z zawiesiny.

11 11 W kolumnie chromatograficznej umieścić na przegrodzie ze szkła 1 krążek bibuły filtracyjnej. Następnie przygotować naczynie na rozpuszczalnik z przemywania kolumny. Zawiesinę żelu krzemionkowego lekko wymieszać i wlać przez lejek do kolumny unikając zbędnego napowietrzania. Wlać tyle zawiesiny, aby złoże adsorbentu po ułożeniu się w kolumnie miało wysokość 6 do 8 cm. Po napełnieniu i ułożeniu adsorbentu w kolumnie na wierzch złoża nałożyć krążek bibuły, następnie przemyć zawartość kolumny 6 ml eteru naftowego (lub więcej aż do osiągnięcia stałej wysokości złoża w kolumnie) i zamknąć wypływ z kolumny. Należy pamiętać, by warstwa adsorbentu była stale pokryta rozpuszczalnikiem! 3.4. Nanoszenie ekstraktu na kolumnę Jeśli ekstrakt był podgrzewany należy go schłodzić do temperatury pokojowej. Wypuścić z kolumny nadmiar eteru naftowego, tak by wysokość cieczy nad złożem wynosiła 1-2 mm. Nanieść roztwór analizowany na czoło kolumny, wlewając go powoli pipetą lub strzykawką najlepiej po ściance kolumny tuż nad powierzchnią żelu. d momentu naniesienia ekstraktu na kolumnę rozpoczyna się zbieranie frakcji. Gdy roztwór znajdzie się w złożu a wysokość cieczy nad złożem wyniesie ok. 1-2 mm, wlać ostrożnie po ściance kolumny 1 ml eteru naftowego i odczekać jak poprzednio (można przyspieszyć przepływ fazy ruchomej stosując lekkie nadciśnienie). Czynność tę powtórzyć jeszcze raz, używając następną, 1 ml porcję eteru naftowego. Gdy składniki ekstraktu są zaadsorbowane na złożu, można dodać pozostałą objętość eteru naftowego, wynikającą z rozmiarów złoża i warunków rozdziału podanych poniżej i prowadzić wymywanie frakcji węglowodorów alifatycznych i WWA Warunki rozdziału Adsorbent - żel krzemionkowy MN-Kieselgel 60 o wielkości ziarna poniżej 0,08 mm Wymiary złoża adsorbentu - 1 cm x 6(8) cm; Elucja: - I frakcja - 12(15) ml eteru naftowego, zawiera węglowodory alifatyczne - II frakcja - 25(30) ml mieszaniny eteru naftowego i toluenu (9:1,v:v), zawiera WWA. Wartości w nawiasach podane są dla złoża o wysokości 8 cm. Jeśli wysokość złoża jest inna objętości frakcji należy proporcjonalnie zmienić. 3.6.cena jakości rozdziału za pomocą chromatografii cienkowarstwowej

12 12 Jeśli stężenie WWA i węglowodorów alifatycznych w glebie jest małe, frakcje można zatężyć na odparowywaczu obrotowym. Na płytkę nanieść roztwory wzorcowe czterech WWA (bonzo(a)antracen, perylen, piren, antracen) oraz dwie frakcje zebrane podczas rozdziału na kolumnie Sporządzenie sprawozdania W sprawozdaniu powinno się znajdować: zwięzły opis technik zastosowanych do izolacji WWA i węglowodorów alifatycznych z gleby, opis próbki, warunki ekstrakcji, warunki rozdziału na kolumnie, warunki rozdziału na płytkach TLC, schemat blokowy, ideowy wykonania oznaczenia, ocena jakości rozdziału i dyskusja wyników. Literatura 1. Behnke M., Szymański J. Problemy cen Środowiskowych, Nr 3(26), 2004, EK - KNSULT, Gdańsk-liwa. 2. Szczepaniak W., Metody instrumentalne w analizie chemicznej. W-wa, PWN, Minczewski J., Marczenko Z., Chemia analityczna. W-wa, PWN, 1985, tom Kocjan R. Chemia analityczna, podręcznik dla studentów, W-wa, PZWL, 2000, tom Staszewski R. Kontrola chemicznych zanieczyszczeń środowiska, Podstawy teoretyczne z ćwiczeniami laboratoryjnymi, Politechnika Gdańska, Gdańsk, Jerzmanowska, Z., Preparatyka organicznych związków chemicznych, PZWL,W-wa, Namieśnik J. Metody instrumentalne w kontroli zanieczyszczeń środowiska. J., Politechnika Gdańska, Gdańsk,1992.

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 4 WYDRĘBNIANIE WIELPIERŚCIENIWYC WĘGLWDRÓW ARMATYCZNYC (WWA) Z GLEBY

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 4 Wyodrębnianie wielopierścieniowych węglowodorów aromatycznych (WWA)

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 4 ZASTOSOWANIE METODY WZORCA WEWNĘTRZNEGO DO ANALIZY ILOŚCIOWEJ WWA

Bardziej szczegółowo

Ćwiczenie 4 Zastosowanie metody wzorca wewnętrznego do analizy ilościowej techniką GC-FID

Ćwiczenie 4 Zastosowanie metody wzorca wewnętrznego do analizy ilościowej techniką GC-FID Ćwiczenie 4 Zastosowanie metody wzorca wewnętrznego do analizy ilościowej techniką GC-FID Ćwiczenie obejmuje klasyczną metodę ekstrakcji rozpuszczalnikiem organicznym (ekstrakcję wspomaganą ultradźwiękami)

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 IZOLACJA WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (WWA) Z GLEBY

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAOSKI WYDZIAŁ CHEMII Pracownia studencka Zakładu Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 IZOLACJA WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (WWA) Z GLEBY

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych Uniwersytet Gdański Wydział Chemii Chemia żywności Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 12 Identyfikacja barwników naturalnych w liściach szpinaku Chemia żywności

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Metody ekstrakcji wielopierścieniowych węglowodorów aromatycznych (WWA) z gleby LABORATORIUM

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 OPTYMALIZACJA ROZDZIELANIA MIESZANINY WYBRANYCH FARMACEUTYKÓW METODĄ

Bardziej szczegółowo

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 1 CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH I. Wiadomości teoretyczne W wielu dziedzinach nauki i techniki spotykamy się z problemem

Bardziej szczegółowo

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY).

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). Wprowadzenie: Wielopierścieniowe węglowodory aromatyczne (WWA) to grupa związków zawierających

Bardziej szczegółowo

RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy:

RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy: RP WPRWADZENIE M. Kamiński PG WCh Gdańsk 2013 Układy faz odwróconych RP-HPLC, RP-TLC gdy: Nisko polarna (hydrofobowa) faza stacjonarna, względnie polarny eluent, składający się z wody i dodatku organicznego;

Bardziej szczegółowo

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II Ćwiczenie 1 Przygotowanie próbek do oznaczania ilościowego analitów metodami wzorca wewnętrznego, dodatku wzorca i krzywej kalibracyjnej 1. Wykonanie

Bardziej szczegółowo

Chromatografia kolumnowa planarna

Chromatografia kolumnowa planarna Chromatografia kolumnowa planarna Znaczenie chromatografii w analizie i monitoringu środowiska lotne zanieczyszczenia organiczne (alifatyczne, aromatyczne) w powietrzu, glebie, wodzie Mikrozanieczyszczenia

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa Chromatografia Chromatografia kolumnowa Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie Chromatogram czarnego atramentu analiza jakościowa analiza ilościowa Optymalizacja eluentu Optimum 0.2

Bardziej szczegółowo

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II Ćwiczenie 2 Zastosowanie ekstrakcji do fazy stałej (Solid Phase Extraction, SPE) do wydzielenia frakcji wielopierścieniowych węglowodorów aromatycznych

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 CHROMATOGRAFIA GAZOWA WPROWADZENIE DO TECHNIKI ORAZ ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego 1. Wstęp Chromatografia jest techniką umożliwiającą rozdzielanie składników

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Oznaczanie benzoesanu denatonium w skażonym alkoholu etylowym metodą wysokosprawnej

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 Separacja barwników roślinnych metodami chromatograficznymi LABORATORIUM PRZYRODNICZE

Bardziej szczegółowo

-- w części przypomnienie - Gdańsk 2010

-- w części przypomnienie - Gdańsk 2010 Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 4. --mechanizmy retencji i selektywności -- -- w części

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie witaminy E w oleju metodą HPLC ANALIZA PRODUKTÓW POCHODZENIA NATURALNEGO

Bardziej szczegółowo

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej WPROWADZENIE Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną techniką analityczną, stosowaną

Bardziej szczegółowo

1.Wstęp. Ćwiczenie nr 9 Zatężanie z wody związków organicznych techniką SPE (solid phase extraction)

1.Wstęp. Ćwiczenie nr 9 Zatężanie z wody związków organicznych techniką SPE (solid phase extraction) 1.Wstęp Ćwiczenie nr 9 Zatężanie z wody związków organicznych techniką SPE (solid phase extraction) W analizie mikrośladowych ilości związków organicznych w wodzie bardzo ważny jest etap wstępny, tj. etap

Bardziej szczegółowo

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA Chromatografia jest to metoda chemicznej analizy instrumentalnej, w której dokonuje się podziału substancji (w przeciwprądzie) między fazę nieruchomą i fazę ruchomą.

Bardziej szczegółowo

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową?

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową? 1. Chromatogram gazowy, na którym widoczny był sygnał toluenu (t w =110 C), otrzymany został w następujących warunkach chromatograficznych: - kolumna pakowana o wymiarach 48x0,25 cala (podaj długość i

Bardziej szczegółowo

RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013

RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013 RP WPRWADZENIE M. Kamioski PG WCh Gdaosk 2013 Fazy stacjonarne w RP-HPLC / RP-HPTLC CN, cyklodekstryny, - głównie substancje średnio polarne i polarne metabolity, organiczne składniki ścieków i inne Zestawienie

Bardziej szczegółowo

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych Ćwiczenie 1 Chromatografia gazowa wprowadzenie do techniki oraz analiza jakościowa Wstęp Celem ćwiczenia jest nabycie umiejętności obsługi chromatografu gazowego oraz wykonanie analizy jakościowej za pomocą

Bardziej szczegółowo

CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC

CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC MK-EG-AS Wydział Chemiczny Politechniki Gdańskiej Gdańsk 2009 Chromatograficzne układy faz odwróconych (RP) Potocznie: Układy chromatograficzne, w których

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 7 ANALIZA JAKOŚCIOWA W CHROMATOGRAFII GAZOWEJ INDEKSY RETENCJI Pracownia

Bardziej szczegółowo

CHROMATOGRAFIA ADSORPCYJNA I PODZIAŁOWA. 1. Rozdział barwników roślinnych metodą chromatografii adsorpcyjnej (techniką kolumnową)

CHROMATOGRAFIA ADSORPCYJNA I PODZIAŁOWA. 1. Rozdział barwników roślinnych metodą chromatografii adsorpcyjnej (techniką kolumnową) Ćwiczenie nr 7 CHROMATOGRAFIA ADSORPCYJNA I PODZIAŁOWA 1. Rozdział barwników roślinnych metodą chromatografii adsorpcyjnej (techniką kolumnową) Zasada: Barwniki roślinne charakteryzują się różnym powinowactwem

Bardziej szczegółowo

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2 Jolanta Jaroszewska-Manaj 1 1 Chromatograficzne metody rozdzielania i identyfikacji związków organicznych Jolanta Jaroszewska-Manaj 2 Jolanta Jaroszewska-Manaj 3 Jolanta Jaroszewska-Manaj 4 Jolanta Jaroszewska-Manaj

Bardziej szczegółowo

Kontrola produktu leczniczego. Piotr Podsadni

Kontrola produktu leczniczego. Piotr Podsadni Kontrola produktu leczniczego Piotr Podsadni Kontrola Kontrola - sprawdzanie czegoś, zestawianie stanu faktycznego ze stanem wymaganym. Zakres czynności sprawdzający zapewnienie jakości. Jakość to stopień,

Bardziej szczegółowo

EKSTRAKCJA W ANALITYCE. Anna Leśniewicz

EKSTRAKCJA W ANALITYCE. Anna Leśniewicz EKSTRAKCJA W ANALITYCE Anna Leśniewicz definicja: ekstrakcja to proces wymiany masy w układzie wieloskładnikowym i wielofazowym polegający na przeniesieniu jednego lub więcej składników z jednej fazy do

Bardziej szczegółowo

Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi

Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi Pracownia: Utylizacja odpadów i ścieków dla MSOŚ Instrukcja ćwiczenia nr 17 Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny

Bardziej szczegółowo

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II. OznaczanieBTEX i n-alkanów w wodzie zanieczyszczonej benzyną metodą GC/FID oraz GC/MS 1

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II. OznaczanieBTEX i n-alkanów w wodzie zanieczyszczonej benzyną metodą GC/FID oraz GC/MS 1 OznaczanieBTEX i n-alkanów w wodzie zanieczyszczonej benzyną metodą GC/FID oraz GC/MS 1 ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II Ćwiczenie 5 Oznaczanie BTEX oraz n-alkanów w wodzie zanieczyszczonej

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Wyodrębnianie i analiza terpenów ANALIZA PRODUKTÓW POCHODZENIA NATURALNEGO

Bardziej szczegółowo

Ćwiczenie nr 6. Przygotowanie próbki do analizy: Ekstrakcja jednokrotna i wielokrotna. Wysalanie.

Ćwiczenie nr 6. Przygotowanie próbki do analizy: Ekstrakcja jednokrotna i wielokrotna. Wysalanie. Ćwiczenie nr 6 Przygotowanie próbki do analizy: Ekstrakcja jednokrotna i wielokrotna. Wysalanie. Zanieczyszczenie środowiska węglowodorami Rozwój cywilizacji ludzkiej w ciągu ostatnich dziesiątków lat

Bardziej szczegółowo

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ Wprowadzenie Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną technika analityczną, stosowaną

Bardziej szczegółowo

Materiały polimerowe laboratorium

Materiały polimerowe laboratorium Materiały polimerowe laboratorium Wydział Chemiczny, Studia Stacjonarne II stopnia (magisterskie), rok 1, semestr 2 kierunek: INŻYNIERIA CHEMICZNA I PROCESOWA specjalność: Inżynieria procesów chemicznych

Bardziej szczegółowo

CHROMATOGRAFIA. Sprawdzono w roku 2014 przez K. Czapińską. Teoria Metody rozdzielcze i proces rozdzielania

CHROMATOGRAFIA. Sprawdzono w roku 2014 przez K. Czapińską. Teoria Metody rozdzielcze i proces rozdzielania 2 CHROMATOGRAFIA Zagadnienia teoretyczne Charakterystyka metody chromatograficznej, elementy układu chromatograficznego, chromatografia cieczowa (kolumnowa i cienkowarstwowa), chromatografia gazowa. Najczęściej

Bardziej szczegółowo

a) Ćwiczenie praktycze: Sublimacja kofeiny z kawy (teofiliny z herbaty i teobrominy z kakao)

a) Ćwiczenie praktycze: Sublimacja kofeiny z kawy (teofiliny z herbaty i teobrominy z kakao) ĆWICZENIE 5 SUBLIMACJA I CHROMATOGRAFIA Celem ćwiczenia jest zapoznanie się z metodami oczyszczania i rozdziału substancji organicznych. Sublimacja jest metodą, za pomocą której można wyodrębnić i oczyścić

Bardziej szczegółowo

R = CH 3. COOMe O CH 3 CH 3 CH3 CH 3. β-karoten. Rys. 1. Wzory strukturalne chlorofilu a, chlorofilu b oraz β-karotenu.

R = CH 3. COOMe O CH 3 CH 3 CH3 CH 3. β-karoten. Rys. 1. Wzory strukturalne chlorofilu a, chlorofilu b oraz β-karotenu. Zastosowanie niskociśnieniowej chromatografii adsorpcyjnej do separacji barwników ze szpinaku Wstęp Celem ćwiczenia jest zastosowanie adsorpcyjnej chromatografii kolumnowej do izolacji barwnych związków

Bardziej szczegółowo

Strona 1 z 6. Wydział Chemii Uniwersytetu Jagiellońskiego Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie

Strona 1 z 6. Wydział Chemii Uniwersytetu Jagiellońskiego Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie ROZDZIELANIE SUBSTANCJI Rozdzielanie substancji jest jednym z najistotniejszych problemów w pracy laboratoryjnej. Problem ten ma istotne znaczenie zarówno dla preparatyki (chemiczna synteza preparatów),

Bardziej szczegółowo

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ Prof. dr hab. inż. Agata Kot-Wasik Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska agawasik@pg.gda.pl ROZDZIELENIE

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 ZASTOSOWAIE ISKOCIŚIEIOWEJ CHROMATOGRAFII ADSORPCYJEJ DO SEPARACJI

Bardziej szczegółowo

CHROMATOGRAFIA. Sprawdzono w roku 2017 przez A. Hałkę-Grysińską. Teoria Metody rozdzielcze i proces rozdzielania

CHROMATOGRAFIA. Sprawdzono w roku 2017 przez A. Hałkę-Grysińską. Teoria Metody rozdzielcze i proces rozdzielania 2 Zagadnienia teoretyczne Charakterystyka metody chromatograficznej, elementy układu chromatograficznego, chromatografia cieczowa (kolumnowa i cienkowarstwowa), chromatografia gazowa. Najczęściej stosowane

Bardziej szczegółowo

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp Pracownia dyplomowa III rok Ochrona Środowiska Licencjat (OŚI) Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp Chromatografia jest metodą fizykochemiczną metodą rozdzielania składników jednorodnych

Bardziej szczegółowo

GraŜyna Chwatko Zakład Chemii Środowiska

GraŜyna Chwatko Zakład Chemii Środowiska Chromatografia podstawa metod analizy laboratoryjnej GraŜyna Chwatko Zakład Chemii Środowiska Chromatografia gr. chromatos = barwa grapho = pisze Michaił Siemionowicz Cwiet 2 Chromatografia jest metodą

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 OZNACZANIE CHLORKÓW METODĄ SPEKTROFOTOMETRYCZNĄ Z TIOCYJANIANEM RTĘCI(II)

Bardziej szczegółowo

Strona 1 z 6. Wydział Chemii UJ, Chemia medyczna Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie

Strona 1 z 6. Wydział Chemii UJ, Chemia medyczna Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie ROZDZIELANIE SUBSTANCJI Rozdzielanie substancji jest jednym z najistotniejszych problemów w pracy laboratoryjnej. Problem ten ma istotne znaczenie zarówno dla preparatyki (chemiczna synteza preparatów),

Bardziej szczegółowo

Ćwiczenie 1. Technika ważenia oraz wyznaczanie błędów pomiarowych. Ćwiczenie 2. Sprawdzanie pojemności pipety

Ćwiczenie 1. Technika ważenia oraz wyznaczanie błędów pomiarowych. Ćwiczenie 2. Sprawdzanie pojemności pipety II. Wagi i ważenie. Roztwory. Emulsje i koloidy Zagadnienia Rodzaje wag laboratoryjnych i technika ważenia Niepewność pomiarowa. Błąd względny i bezwzględny Roztwory właściwe Stężenie procentowe i molowe.

Bardziej szczegółowo

MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ

MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ 4 MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ CEL ĆWICZENIA Poznanie podstawowego sprzętu stosowanego w miareczkowaniu, sposoby przygotowywania

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 Ekstrakcja pestycydów chloroorganicznych z gleby i opracowanie metody

Bardziej szczegółowo

CHEMIA ŚRODOWISKA - laboratorium ĆWICZENIE 6. OZNACZANIE ŚLADOWYCH ILOŚCI FENOLU W WODACH POWIERZCHNIOWYCH

CHEMIA ŚRODOWISKA - laboratorium ĆWICZENIE 6. OZNACZANIE ŚLADOWYCH ILOŚCI FENOLU W WODACH POWIERZCHNIOWYCH CHEMIA ŚRODOWISKA - laboratorium ĆWICZENIE 6. OZNACZANIE ŚLADOWYCH ILOŚCI FENOLU W WODACH POWIERZCHNIOWYCH Głównymi chemicznymi zanieczyszczeniami wód są detergenty, pestycydy (fosforoorganiczne, polichlorowęglowodorowe),

Bardziej szczegółowo

Chemia środków ochrony roślin Katedra Analizy Środowiska. Instrukcja do ćwiczeń. Ćwiczenie 2

Chemia środków ochrony roślin Katedra Analizy Środowiska. Instrukcja do ćwiczeń. Ćwiczenie 2 UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Chemia środków ochrony roślin Katedra Analizy Środowiska Instrukcja do ćwiczeń Ćwiczenie 2 Ekstrakcja pestycydów chloroorganicznych z gleby i opracowanie metody analizy

Bardziej szczegółowo

EKSTRAKCJA DO FAZY STAŁEJ (SPE)

EKSTRAKCJA DO FAZY STAŁEJ (SPE) EKSTRAKCJA DO FAZY STAŁEJ (SPE) Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Celem procesu analitycznego jest uzyskanie informacji o interesującym nas przedmiocie

Bardziej szczegółowo

Metody chromatograficzne w chemii i biotechnologii, wykład 3. Łukasz Berlicki

Metody chromatograficzne w chemii i biotechnologii, wykład 3. Łukasz Berlicki Metody chromatograficzne w chemii i biotechnologii, wykład 3 Łukasz Berlicki Rozdział chromatograficzny Przepływ Faza ruchoma mieszanina Faza stacjonarna Chromatografia cieczowa adsorbcyjna Faza stacjonarna:

Bardziej szczegółowo

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1. Wstęp teoretyczny Zagadnienie rozdzielania

Bardziej szczegółowo

Problemy oznaczania pierwiastków w osadach i glebie Marcin Niemiec, Jacek Antonkiewicz, Małgorzata Koncewicz-Baran, Jerzy Wieczorek

Problemy oznaczania pierwiastków w osadach i glebie Marcin Niemiec, Jacek Antonkiewicz, Małgorzata Koncewicz-Baran, Jerzy Wieczorek Problemy oznaczania pierwiastków w osadach i glebie Marcin Niemiec, Jacek Antonkiewicz, Małgorzata Koncewicz-Baran, Jerzy Wieczorek Uniwersytet Rolniczy w Krakowie Katedra Chemii Rolnej i Środowiskowej

Bardziej szczegółowo

Analityka Zanieczyszczeń Środowiska

Analityka Zanieczyszczeń Środowiska Katedra Chemii Analitycznej Analityka Zanieczyszczeń Środowiska Oznaczanie Pestycydów w Wodach (GC) Prowadzący: mgr inż. Monika Kosikowska Gdańsk, 2010 1 1. Wprowadzenie Pestycydy to liczna i zróżnicowana

Bardziej szczegółowo

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu Cel ćwiczenia Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu, wyznaczenie równania izotermy Freundlicha oraz wpływu

Bardziej szczegółowo

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. 2017 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia

Bardziej szczegółowo

Pracownia Polimery i Biomateriały. Spalanie i termiczna degradacja polimerów

Pracownia Polimery i Biomateriały. Spalanie i termiczna degradacja polimerów Pracownia Polimery i Biomateriały INSTRUKCJA DO ĆWICZENIA Spalanie i termiczna degradacja polimerów Opracowała dr Hanna Wilczura-Wachnik Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny Technologii

Bardziej szczegółowo

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015.

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015. Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia chromatografii

Bardziej szczegółowo

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1 PREPARAT NR 1 O H 2 SO 4 COOH + HO t. wrz., 1 godz. O OCTAN IZOAMYLU Stechiometria reakcji Kwas octowy lodowaty Alkohol izoamylowy Kwas siarkowy 1.5 ekwiwalenta 1 ekwiwalentów 0,01 ekwiwalenta Dane do

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ Ćwiczenia laboratoryjne CHEMIA I TECHNOLOGIA MATERIAŁÓW BARWNYCH USUWANIE BARWNIKÓW ZE ŚCIEKÓW PRZEMYSŁU TEKSTYLNEGO Z WYKORZYSTANIEM

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 ZASTOSOWANIE SPEKTROFOTOMETRII W NADFIOLECIE I ŚWIETLE WIDZIALNYM

Bardziej szczegółowo

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ Badania kinetyki utleniania wybranych grup związków organicznych podczas procesów oczyszczania

Bardziej szczegółowo

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści Anna Kulaszewicz Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy lp. Dział Temat Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania i wymaganiami edukacyjnymi z

Bardziej szczegółowo

Katedra Chemii Organicznej. Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab.

Katedra Chemii Organicznej. Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab. Katedra Chemii Organicznej Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab. Sławomir Makowiec GDAŃSK 2019 Preparaty wykonujemy w dwuosobowych zespołach, każdy zespół

Bardziej szczegółowo

Teoria do ćwiczeń laboratoryjnych

Teoria do ćwiczeń laboratoryjnych Pracownia studencka Zakładu Analizy Środowiska Teoria do ćwiczeń laboratoryjnych Chromatografia cienkowarstwowa MONITORING ŚRODOWISKA Chromatografia cienkowarstwowa (ang. Thin Layer Chromatography, TLC)

Bardziej szczegółowo

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej W analizie ilościowej z zastosowaniem techniki HPLC wykorzystuje się dwa możliwe schematy postępowania: kalibracja zewnętrzna sporządzenie

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC Chromatografia Chromatografia cienkowarstwowa - TLC Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie analiza jakościowa analiza ilościowa Chromatogram czarnego atramentu Podstawowe rodzaje

Bardziej szczegółowo

CHROMATOGRAFIA CIENKOWARSTWOWA I KOLUMNOWA

CHROMATOGRAFIA CIENKOWARSTWOWA I KOLUMNOWA CHROMATOGRAFIA CIENKOWARSTWOWA I KOLUMNOWA Obowiązujący zakres materiału teoretycznego: Podstawy teoretyczne i zasady postępowania przedstawione są w zasadniczej części skryptu w rozdziale V.5. CHROMATOGRAFIA.

Bardziej szczegółowo

Oznaczanie wybranych farmaceutyków w próbach wody

Oznaczanie wybranych farmaceutyków w próbach wody Oznaczanie wybranych farmaceutyków w próbach wody WPROWADZENIE Dynamiczny rozwój społeczno gospodarczy doprowadził do degradacji środowiska wodnego, które w wyniku działalności człowieka narażone jest

Bardziej szczegółowo

Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne

Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne 1) OZNACZANIE ROZKŁADU MASY CZĄSTECZKOWEJ POLIMERÓW Z ASTOSOWANIEM CHROMATOGRAFII ŻELOWEJ; 2) PRZYGOTOWANIE PRÓBKI Z ZASTOSOWANIEM

Bardziej szczegółowo

Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp

Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp Celem ćwiczenia jest zapoznanie się z destylacją z parą wodną oraz ekstrakcją w układzie

Bardziej szczegółowo

2 k CHROMATOGRAFIA. Teoria Metody rozdzielcze i proces rozdzielania

2 k CHROMATOGRAFIA. Teoria Metody rozdzielcze i proces rozdzielania 2 k CHROMATOGRAFIA Zagadnienia teoretyczne Charakterystyka metody chromatograficznej, elementy układu chromatograficznego, chromatografia cieczowa (kolumnowa i cienkowarstwowa),. Najczęściej stosowane

Bardziej szczegółowo

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP 4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP Opracował: Krzysztof Kaczmarski I. WPROWADZENIE W chromatografii adsorpcyjnej rozdzielanie mieszanin jest uwarunkowane różnym powinowactwem adsorpcyjnym składników

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

Ilościowa analiza mieszaniny alkoholi techniką GC/FID Ilościowa analiza mieszaniny alkoholi techniką GC/FID WPROWADZENIE Pojęcie chromatografii obejmuje grupę metod separacji substancji, w których występują diw siły: siła powodująca ruch cząsteczek w określonym

Bardziej szczegółowo

8. CHROMATOGRAFIA CIENKOWARSTWOWA

8. CHROMATOGRAFIA CIENKOWARSTWOWA 8. CHROMATOGRAFIA CIENKOWARSTWOWA opracował: Wojciech Zapała I. WPROWADZENIE Chromatografia cieczowa naleŝy do najwaŝniejszych metod analizy mieszanin róŝnorodnych związków chemicznych. Polega ona na zróŝnicowanej

Bardziej szczegółowo

4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5

4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5 Wykonanie ćwiczenia 4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5 4A. Chromatografia adsorpcyjna Stanowisko badawcze składa się z: butli

Bardziej szczegółowo

Rozdział barwników roślinnych techniką cienkowarstwowej chromatografii adsorpcyjnej

Rozdział barwników roślinnych techniką cienkowarstwowej chromatografii adsorpcyjnej Rozdział barwników roślinnych techniką cienkowarstwowej chromatografii adsorpcyjnej Cel ćwiczenia Celem ćwiczenia jest teoretyczne i praktyczne zapoznanie studentów z techniką cienkowarstwowej chromatografii

Bardziej szczegółowo

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1 PREPARAT NR 2 2,4,6-TRIBROMOANILINA NH 2 NH 2 Br Br Br 2 AcOH, 0 o C, 1 godz. Br Stechiometria reakcji Anilina 1 ekwiwalent 3.11 ekwiwalenta Dane do obliczeń Związek molowa (g/mol) Gęstość (g/ml) Anilina

Bardziej szczegółowo

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej WPROWADZENIE Pojęcie chromatografii obejmuje grupę metod separacji substancji, w których występują diw siły: siła powodująca

Bardziej szczegółowo

EKSTRAKCJA I CHROMATOGRAFIA

EKSTRAKCJA I CHROMATOGRAFIA EKSTRAKCJA I CHROMATOGRAFIA W ANALITYCE CHC 023018W prof Grażyna Gryglewicz prof Stanisław Gryglewicz Anna Leśniewicz EKSTRAKCJA W ANALITYCE Anna Leśniewicz w klasycznym ujęciu: ekstrakcja to metoda pozwalająca

Bardziej szczegółowo

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH 8 RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH CEL ĆWICZENIA Wyznaczenie gramorównoważników chemicznych w procesach redoks na przykładzie KMnO 4 w środowisku kwaśnym, obojętnym i zasadowym z zastosowaniem

Bardziej szczegółowo

Pytania z Wysokosprawnej chromatografii cieczowej

Pytania z Wysokosprawnej chromatografii cieczowej Pytania z Wysokosprawnej chromatografii cieczowej 1. Jak wpłynie 50% dodatek MeOH do wody na retencję kwasu propionowego w układzie faz odwróconych? 2. Jaka jest kolejność retencji kwasów mrówkowego, octowego

Bardziej szczegółowo

ELEKTROFOREZA. Wykonanie ćwiczenia 8. ELEKTROFOREZA BARWNIKÓW W ŻELU AGAROZOWYM

ELEKTROFOREZA. Wykonanie ćwiczenia 8. ELEKTROFOREZA BARWNIKÓW W ŻELU AGAROZOWYM Wykonanie ćwiczenia 8. ELEKTROFOREZA BARWNIKÓW W ŻELU AGAROZOWYM Zadania: 1. Wykonać elektroforezę poziomą wybranych barwników w żelu agarozowym przy trzech różnych wartościach ph roztworów buforowych.

Bardziej szczegółowo

LABORATORIUM CHEMII ORGANICZNEJ PROGRAM ĆWICZEŃ

LABORATORIUM CHEMII ORGANICZNEJ PROGRAM ĆWICZEŃ LABORATORIUM CHEMII ORGANICZNEJ Rok studiów: II CC-DI semestr III Liczba godzin: 15 (5 spotkań 3h co 2 tygodnie, zajęcia rozpoczynają się w 3 tygodniu semestru) PROGRAM ĆWICZEŃ Ćwiczenie nr 1 Ćwiczenie

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie chlorków metodą spektrofotometryczną z tiocyjanianem rtęci(ii)

Bardziej szczegółowo

Pracownia analizy ilościowej dla studentów II roku Chemii specjalność Chemia podstawowa i stosowana. Argentometryczne oznaczanie chlorków w mydłach

Pracownia analizy ilościowej dla studentów II roku Chemii specjalność Chemia podstawowa i stosowana. Argentometryczne oznaczanie chlorków w mydłach Pracownia analizy ilościowej dla studentów II roku Chemii specjalność Chemia podstawowa i stosowana Argentometryczne oznaczanie chlorków w mydłach Ćwiczenie obejmuje: 1. Oznaczenie miana roztworu AgNO

Bardziej szczegółowo

OZNACZANIE WYBRANYCH FARMACEUTYKÓW W PRÓBACH WODY.

OZNACZANIE WYBRANYCH FARMACEUTYKÓW W PRÓBACH WODY. OZNACZANIE WYBRANYCH FARMACEUTYKÓW W PRÓBACH WODY. Wprowadzenie: Dynamiczny rozwój społeczno gospodarczy doprowadził do degradacji środowiska wodnego, które w wyniku działalności człowieka narażone jest

Bardziej szczegółowo

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej?

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej? Kolumnowa Chromatografia Cieczowa I 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej? 2. Co jest miarą polarności rozpuszczalników w chromatografii cieczowej?

Bardziej szczegółowo

Świadomi dla czystego powietrza

Świadomi dla czystego powietrza Świadomi dla czystego powietrza Szkolenia z zakresu przeciwdziałania niskiej emisji Zanieczyszczenia powietrza w Polsce Zanieczyszczeniem powietrza atmosferycznego jest wprowadzenie do powietrza substancji

Bardziej szczegółowo

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 9

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 9 CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ Ćwiczenie 9 Zastosowanie metod miareczkowania strąceniowego do oznaczania chlorków w mydłach metodą Volharda. Ćwiczenie obejmuje:

Bardziej szczegółowo

Ściąga eksperta. Mieszaniny. - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne?

Ściąga eksperta. Mieszaniny.  - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne? Mieszaniny Jak dzielimy substancje chemiczne? Mieszaninami nazywamy substancje złożone z kilku skład, zachowujących swoje właściwości. Mieszaniny uzyskuje się na drodze mechanicznego mieszania ze sobą

Bardziej szczegółowo