KOMÓRKA. Wielkość komórek. Zróżnicowanie komórek. Elementy składowe komórki: Mikroskop świetlny:

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "KOMÓRKA. Wielkość komórek. Zróżnicowanie komórek. Elementy składowe komórki: Mikroskop świetlny:"

Transkrypt

1 Wielkość komórek Jednostki: 1 μm = 10-3 mm, 1 nm = 10-3 μm KOMÓRKA najmniejsze komórki (komórki przytarczyc, niektóre komórki nerwowe) przeciętne komórki 4-5 μm 20 μm największe komórki (oocyty, niektóre komórki nerwowe) μm włókna mięśniowe wypustki komórek nerwowych do 30 cm do 1 m Zróżnicowanie komórek kształt Elementy składowe komórki: Mikroskop świetlny: komórki bezjądrzaste: erytrocyty, płytki krwi, komórki budujące soczewkę oka komórki wielojądrzaste i zespólnie: włókna mięśniowe szkieletowe jądro cytoplazma błona komórkowa syncytiotrofoblast w łożysku osteoklasty Mikroskop elektronowy: Organelle: rybosomy siateczka śródplazmatyczna aparat Golgiego mitochondria lizosomy peroksysomy centriole Błona biologiczna - uniwersalny budulec większości organelli komórkowych Błona biologiczna zbudowana jest z lipidów (głównie fosfolipidów) i białek. Cząsteczka fosfolipidu część hydrofilna część hydrofobowa Inne struktury: cytoszkielet pęcherzyki (transportowe, wydzielnicze) materiały zapasowe (glikogen, lipidy) W środowisku wodnym cząsteczki fosfolipidów tworzą dwuwarstwę o uporządkowanym układzie. Decyduje ona o integralności błony 1

2 białka Lipidy błon biologicznych: fosfolipidy (aminowe i cholinowe) cholesterol glikolipidy Białka transbłonowe Białka swobodnie pływają w dwuwarstwie lipidowej Białka błon biologicznych: klasyfikacja strukturalna: powierzchniowe transbłonowe (integralne) czynnościowa: strukturalne enzymatyczne receptorowe transportowe Białka powierzchniowe Jedno białko może pełnić kilka funkcji Błona biologiczna jest barierą dla substancji chemicznych i kontroluje ich transport pomiędzy środowiskiem a komórką i pomiędzy przedziałami wewnątrzkomórkowymi. Mechanizm otwierania kanałów Transport substancji niskocząsteczkowych (transbłonowy) - poprzez zawarte w błonie transbłonowe białka transportowe 1. Kanały zamknięty otwarty Transport bierny (dyfuzja): zgodnie z gradientem stężeń, bez nakładu energii Substancje transportowane: jony Przykłady: kanały sodowe, potasowe, wapniowe, chlorkowe kanały otwierane zmianą potencjału elektrycznego błony kanały otwierane ligandem (przyłączeniem cząsteczki sygnałowej) kanały otwierane mechanicznie 2. Przenośniki zmiana konformacji Transport ułatwiony: zgodnie z gradientem stężeń, bez nakładu energii Substancje transportowane: aminokwasy, cukry proste, nukleotydy, itp. Przenośniki i pompy mogą transportować jedną substancję (uniport) albo równocześnie dwie substancje (kotransport) 3. Pompy zmiana konformacji Transport aktywny: wbrew gradientowi stężeń, konieczna energia Substancje transportowane: wszystkie substancje niskocząsteczkowe Przykłady: pompa wapniowa, pompa protonowa uniport symport antyport Przykłady: Na + -K + ATPaza (pompa sodowo-potasowa) H + -K + ATPaza (wymiennik protonowo-potasowy) symporter Na + -glukoza 2

3 Transport substancji wysokocząsteczkowych i dużych struktur: transport pęcherzykowy Błona komórkowa oddziela komórkę od środowiska zewnętrznego błona komórkowa glikokaliks Równocześnie transportowana jest substancja/struktura oraz fragment błony najgrubsza trójwarstwowy obraz w mikroskopie elektronowym warstwa cukrowców na powierzchni (glikokaliks) specyficzne glikoproteidy odpowiedzialne za kontakt z innymi komórkami i z substancją międzykomórkową (cząsteczki adhezyjne) liczne białka transportowe i receptory nierównomierne rozmieszczenie ładunków elektrycznych po obu stronach błony (potencjał spoczynkowy) Glikokaliks Cząsteczki adhezyjne Warstwa cukrowcowa na zewnętrznej powierzchni błony komórkowej zbudowana z łańcuchów cukrowcowych połączonych z cząsteczkami białek (glikoproteidów) i lipidów (glikolipidów) kadheryny Glikoproteidy odpowiedzialne za wiązanie się komórek z otoczeniem (innymi komórkami i substancją międzykomórkową) kadheryny - wiązanie komórka-komórka selektyny - wiązanie komórka-komórka białka z nadrodziny immunoglobulin - wiązanie komórka-komórka integryny - wiązanie komórka-substancja międzykomórkowa Funkcje: ochrona komórki przed czynnikami mechanicznymi i chemicznymi udział w regulacji pobierania substancji przez komórkę (endocytozy) udział w kontaktowym rozpoznawaniu się komórek pośredniczenie w tworzeniu połączeń komórek ze sobą i z otoczeniem integryna elementy substancji międzykomórkowej Receptory i sygnalizacja międzykomórkowa FUNKCJONOWANIE Komórka reaguje na sygnał jeżeli posiada specyficzne receptory dla cząsteczek sygnałowych Sygnalizacja międzykomórkowa jest konieczna dla: normalnego funkcjonowania komórki podziałów różnicowania przeżycia PODZIAŁ RÓŻNICOWANIE receptor błona komórkowa Substancje sygnałowe: hormony neuroprzekaźniki czynniki wzrostowe cytokiny ŚMIERĆ cząsteczka sygnałowa Cząsteczkę rozpoznawaną i wiązaną przez receptor nazywamy ogólnie ligandem 3

4 Reakcja komórki zależy od jej możliwości i od rodzaju receptorów (różne receptory wywołują różne reakcje komórki na tę samą substancję sygnałową) sygnalizacja endokrynna (dokrewna) sygnalizacja parakrynna sygnalizacja autokrynna przekaźnictwo nerwowe sygnalizacja kontaktowa Lokalizacja receptorów zależy od tego, czy cząsteczki sygnałowe mogą dostać się do wnętrza komórki Jądro komórkowe Funkcje: magazynuje informację genetyczną (DNA) powiela informację genetyczną (replikacja DNA) przed podziałem komórki wytwarza rybosomy (jąderko) steruje syntezą białek w komórce, kierując w ten sposób wszystkimi procesami życiowymi DNA RNA białko transkrypcja translacja receptory błonowe (powierzchniowe) receptory wewnątrzkomórkowe (np. jądrowe, mitochondrialne) Główne składniki: chromatyna jąderko otoczka jądrowa Chemiczne składniki chromatyny: DNA białka - histony (H1, H2A, H2B, H3, H4) - białka niehistonowe (enzymatyczne, regulatorowe, strukturalne) Typy chromatyny: euchromatyna (jasna, luźna, aktywna transkrypcyjnie) heterochromatyna (ciemna, zwarta, nieaktywna transkrypcyjnie) - konstytutywna (stała dla wszystkich komórek, DNA niekodujący) - fakultatywna (zależna od typu komórki, wynik wyłączania genów w trakcie różnicowania) Budowa chromatyny Podjednostka: nukleosom rdzeń - oktamer histonów (2 X H2A, H2B, H3, H4) nawinięty fragment DNA (146 par zasad) Odcinek DNA łączący nukleosomy: 80 par zasad + histon H1 4

5 Budowa chromatyny c.d. DNA nukleofilament euchromatyna nukleosom Jąderko produkuje podjednostki rybosomów włókno chromatynowe heterochromatyna tworzenie bocznych pętli superspirala Obszary jąderka: 1 - jasne centra włókienkowe - nieaktywny rdna 2 - gęste obszary włókienkowe - pre-rrna 3 - obszary ziarniste - podjednostki rybosomów podział chromosom Etapy produkcji podjednostek rybosomów: transkrypcja rdna pre-rrna cięcie pre-rrna na mniejsze fragmenty rrna przyłączanie białek importowanych z cytoplazmy podjednostki rybosomów Otoczka jądrowa kontroluje wymianę substancji pomiędzy jądrem a cytoplazmą przez znajdujące się w niej pory Kompleks poru jądrowego cytoplazma Białka kompleksu: receptory białka transportowe białka transportowe jądro Transport jądrowo-cytoplazmatyczny: z jądra do cytoplazmy: mrna, trna, podjednostki rybosomów z cytoplazmy do jądra: wszystkie białka jądrowe Zbudowana z dwóch błon: błona wewnętrzna z blaszką jądrową (laminy A,B,C) błona zewnętrzna - kontynuacja błon siateczki śródplazmatycznej Pomiędzy błonami przestrzeń okołojądrowa (do 100 nm) Otoczka jądrowa uważana jest za szczególny obszar siateczki śródplazmatycznej Jak działa kompleks poru: małe cząsteczki przechodzą swobodnie duże cząsteczki są rozpoznawane przez receptory a następnie przenoszone przez białka transportowe Rybosomy - syntetyzują białka 49 białek 33 białka Podjednostki rybosomów łączą się w cytoplazmie dopiero po przyłączeniu mrna Polirybosomy (polisomy): rybosomy połączone nicią mrna (w trakcie translacji) - rybosomy związane z błonami siateczki szorstkiej produkują: białka błon biologicznych, białka wydzielnicze, białka lizosomowe - rybosomy wolne (cytoplazmatyczne) produkują: białka jądrowe, mitochondriów, peroksysomów, cytoszkieletu, cytoplazmy Docelowa lokalizacja białka zależy od tzw. odcinka sygnałowego: krótkiego fragmentu łańcucha polipeptydowego zlokalizowanego zazwyczaj na jednym z końców cząsteczki białkowej 5

6 rybosom odcinek sygnałowy Białka mają odmienne odcinki sygnałowe umożliwiające wbudowanie ich do: siateczki śródplazmatycznej jądra mitochondriów peroksysomów cytoszkieletu Biosynteza białka (na przykładzie białka wbudowywanego do siateczki śródplazmatycznej) Odcinki sygnałowe są rozpoznawane przez odpowiednie receptory znajdujące się w docelowych organellach. Po związaniu odcinka sygnałowego z receptorem, białko zostaje wbudowane do organelli: do jądra - przechodzi przez por w otoczce jądrowej do siateczki, mitochondriów i peroksysomów - przechodzi przez specjalne kanały białkowe, translokony, obecne w ich błonach Białko może mieć także odcinek stop - zazwyczaj wewnątrz cząsteczki - powoduje on zatrzymanie białka w błonie (w ten sposób wbudowywane są białka błon). Do siateczki białka wbudowywane są podczas translacji, do innych organelli po zakończeniu translacji SRP receptor i translokon 1. Przyłączenie mrna do małej podjednostki rybosomu. 2. Przyłączenie dużej podjednostki do małej - tworzy się kompletny rybosom. 3. Rozpoczęcie translacji - jako pierwszy powstaje odcinek sygnałowy 4. Przyłączenie cząsteczki rozpoznającej sygnał - SRP - do odcinka sygnałowego 5. Przyłączenie kompleksu SRP-odcinek sygnałowy do receptora SRP w błonie siateczki śródplazmatycznej Siateczka śródplazmatyczna 6. Skierowanie odcinka sygnałowego do translokonu w błonie siateczki - białko zaczyna przechodzić przez błonę. 7. Przyłączenie dużej podjednostki rybosomu do błony siateczki przy udziale białek mocujących (ryboforyn) obecnych w błonie. 8. Dalsze przechodzenie białka przez błonę, odcięcie odcinka sygnałowego. 9. Jeżeli białko nie ma odcinka stop, przechodzi w całości przez błonę i wewnątrz siateczki ulega sfałdowaniu (przyjmuje strukturę trzeciorzędową). 10. Jeżeli białko ma odcinek stop, zostaje wbudowane w błonę siateczki i tam się fałduje. 11. Po ukończeniu translacji rybosom rozpada się na oddzielne podjednostki. szorstka gładka spłaszczone cysterny kanaliki rybosomy brak rybosomów receptory dla SRP, translokony, ryboforyny funkcje: funkcje: - produkcja lipidów - synteza białek - neutralizacja leków i trucizn - wstępna glikozylacja białek - gromadzenie jonów Ca 2+ (kalciosomy) Aparat Golgiego Bieguny diktiosomu CIS - wypukły - błona (5 nm) podobna do błon siateczki TRANS - wklęsły - błona (7,5 nm) podobna do błony komórkowej - wewnętrzna powierzchnia błony bogata w cukry Diktiosom - podjednostka aparatu Golgiego Przez diktiosom przepływają (transport pęcherzykowy) fragmenty błony i białka z siateczki śródplazmatycznej. W trakcie przepływu od bieguna cis do trans błona i transportowane białka ulegają modyfikacji chemicznej. Błona stopniowo zmienia charakter na podobny do błony komórkowej. 6

7 Jak działa diktiosom małe pęcherzyki oddzielają się od siateczki i łączą z błoną diktiosomu po stronie cis podczas przechodzenia przez kolejne cysterny diktiosomu, do białek błony i białek transportowanych wewnątrz pęcherzyków zostają przyłączane grupy cukrowcowe (glikozylacja), niekiedy również fosforanowe i siarczanowe w ostatniej cysternie po stronie trans białka są sortowane i pakowane do różnych pęcherzyków, które oddzielają się od tej cysterny Proces oddzielania pęcherzyków wymaga współdziałania tzw. białek okrywających (COP I, COP II, klatryna) Z diktiosomu wypączkowują trzy rodzaje pęcherzyków: małe pęcherzyki z materiałem do wydzielenia na drodze egzocytozy konstytutywnej duże pęcherzyki z materiałem do wydzielenia na drodze egzocytozy regulowanej pęcherzyki hydrolazowe zawierające enzymy trawienne - prekursory lizosomów Egzocytoza Funkcje aparatu Golgiego: przebudowa błon i odnowa błony komórkowej glikozylacja przepływających białek, ich sortowanie i kierowanie do różnych pęcherzyków tworzenie pęcherzyków i ziarn wydzielniczych - udział w procesie wydzielania tworzenie pęcherzyków hydrolazowych transport pęcherzyków zawierających substancje do wydzielenia fuzja pęcherzyków z błoną komórkową - wydzielenie substancji Dwa rodzaje egzocytozy: konstytutywna (ciągła, wolna, małe pęcherzyki) Endocytoza: fagocytoza pinocytoza endocytoza receptorowa sygnał regulowana (na sygnał, np. nerwowy lub hormonalny), szybka, duże ziarna wydzielnicze 7

8 Fagocytoza Pinocytoza Endocytoza receptorowa: etapy procesu wczesny endosom pobierane duże cząstki stałe błona komórkowa wspina się otaczając cząstkę udział cytoszkieletu potrzebna energia powstają duże pęcherzyki (fagosomy) pobierany płyn błona komórkowa wpukla się bez udziału cytoszkieletu bez udziału energii powstają małe pęcherzyki (pinosomy) późny endosom 1. Przyłączenie ligandów do receptorów na powierzchni błony komórkowej 2. Podbłonowa agregacja klatryny, skupienie receptorów i utworzenie dołeczka okrytego 3. Endocytoza - utworzenie pęcherzyka okrytego 4. Oddzielenie klatryny od pęcherzyka 5. Połączenie pęcherzyka z wczesnym endosomem Endocytoza receptorowa: etapy procesu c.d. wczesny endosom późny endosom 6. We wczesnym endosomie: niskie ph (pompa protonowa), oddzielenie ligandów od receptorów, powrót receptorów transportem pęcherzykowym do błony komórkowej (recyrkulacja receptorów). 7. Przemieszczenie endosomu w głąb komórki - staje się późnym endosomem 8. W późnym endosomie: przyłączenie pęcherzyków hydrolazowych zawierających enzymy trawienne - późny endosom przekształca się w lizosom 9. Trawienie ligandów Lizosomy pęcherzyki, w których zachodzi trawienie wewnątrzkomórkowe; zawierają enzymy trawienne (hydrolazy) i trawione substancje lizosom Lizosomy powstają przez połączenie (fuzję) pęcherzyków hydrolazowych zawierających enzymy trawienne z pęcherzykami zawierającymi substancje, które mają zostać strawione Powstawanie pęcherzyków hydrolazowych 1. Synteza enzymów trawiennych (hydrolaz) w siateczce szorstkiej 2. Transport pęcherzykowy enzymów do diktiosomu a. G. 3. W diktiosomie do enzymów przyłączane są grupy mannozo-6-fosforanu (znacznik) 4. Znacznik rozpoznawany jest i wiązany przez receptory w błonie ostatniej cysterny diktiosomu po stronie trans 5. Od tej cysterny odrywa się pęcherzyk okryty zawierający hydrolazy związane z receptorami. Hydrolazy (esterazy, glikozydazy, peptydazy) mogą trawić wszystkie rodzaje substancji wysokocząsteczkowych. Hydrolazy w pęcherzykach hydrolazowych są nieaktywne, gdyż związane są z receptorami. 8

9 (2) z pęcherzykami powstałymi w komórce, zawierającymi jej własne struktury (autofagosomami) - powstają autolizosomy fagocytoza LIZOSOM pinocytoza, endocytoza receptorowa LIZOSOM Pęcherzyki hydrolazowe mogą się łączyć: (1) z pęcherzykami powstałymi w wyniku endocytozy: z fagosomami z pinosomami z późnymi endosomami - powstają heterolizosomy Wewnątrz lizosomów panuje niskie ph, w wyniku czego hydrolazy oddzielają się od receptorów, stają się aktywne i trawią zawarte w lizosomach substancje. Produkty trawienia (substancje niskocząsteczkowe) przechodzą przez błonę lizosomu do cytoplazmy, gdzie mogą służyć do syntezy nowych substancji użytecznych dla komórki, lub do produkcji energii. Receptory dla mannozo-6-fosforanu powracają transportem pęcherzykowym do diktiosomu. Proteasomy Białka mogą być również trawione poza lizosomami, przez znajdujące się w cytoplazmie kompleksy enzymatyczne - proteasomy siateczka śródplazmatyczna lizosomy endosomy Błona komórkowa pęcherzyki hydrolazowe fagosomy, pinosomy, pęcherzyki okryte pęcherzyki wydzielnicze Rozpoznawane i trawione przez proteasomy są tylko te białka, które zostały oznakowane przez przyłączenie do nich innego białka - ubikwityny aparat Golgiego Transport pęcherzykowy pomiędzy organellami i błoną komórkową określamy jako przepływ błon w komórce Mitochondria i peroksysomy nie uczestniczą w przepływie błon, zatem (1) namnażają się przez podział i nie mogą powstać de novo, (2) ich błony mają unikatowy charakter i (3) ich białka są syntetyzowane na wolnych rybosomach i posttranslacyjnie wbudowywane do organelli MITOCHONDRIA Przedziały mitochondrialne błona zewnętrzna błona wewnętrzna (tworzy grzebienie lamelarne lub tubularne) przestrzeń międzybłonowa macierz 9

10 Błona wewnętrzna: Błona zewnętrzna: białka/lipidy 1:1 poryny - nieselektywna przepuszczalność < 5 kda translokony dla importu białek (TOM) Przestrzeń międzybłonowa: kinazy nukleotydów miejsca kontaktowe (styk obu błon i translokonów) białka/lipidy 4:1 specyficzny lipid (kardiolipina) liczne białka transportowe (w pełni kontrolowany transport) translokony dla importu białek (TIM) łańcuch przenośników elektronów grzybki mitochondrialne - kompleks syntazy ATP Macierz: aparat genetyczny (mtdna, mtrna, mt-rybosomy) enzymy cyklu Krebsa enzymy β-oksydacji kwasów tłuszczowych ciałka gęste (złogi fosforanów wapnia) Główna funkcja mitochondriów, produkcja ATP wymaga współdziałania (1) enzymów cyklu Krebsa, (2) łańcucha przenośników elektronów i (3) syntazy ATP 2 3 Trzy składniki łańcucha oddechowego pompują protony z macierzy do przestrzeni międzybłonowej. Powstały gradient protonowy służy jako źródło energii dla syntezy ATP w grzybkach (a także dla aktywnego transportu przez błonę wewnętrzną oraz dla importu białek) przestrzeń międzybłonowa 1 błona wewnętrzna macierz dehydrogenaza NADH cytochromy b c1 oksydaza cytochromowa syntaza ATP Mitchell, Nagroda Nobla 1978 Grzybek mitochondrialny (F 0 -F 1 ATPaza) składa się z nóżki (F 0 ) zawierającej transporter protonowy i główki (F 1 ) - syntazy ATP. Grzybek działa jak turbina molekularna transporter protonowy Inne funkcje mitochondriów: F 0 β-oksydacja kwasów tłuszczowych ostatnie etapy syntezy hormonów sterydowych udział w regulacji poziomu Ca 2+ w komórce produkcja ciepła udział w procesie apoptozy 2000 obr/min Boyer & Walker, Nagroda Nobla

11 Mitochondria zawierają własny aparat genetyczny: pętlowy mt DNA wszystkie rodzaje mtrna rybosomy enzymy niezbędne do procesów replikacji, transkrypcji i translacji... Jednak jest on zbyt ubogi, aby zapewnić organelli pełną autonomię podjednostki syntazy ATP podjednostki oksydazy cytochromowej podjednostki dehydrogenazy NADH długość genomu: par zasad podjednostki dehydrogenazy NADH mtdna koduje: 12S i 16S rrna do rybosomów mitochondrialnych 22 cząsteczki trna 13 białek błony wewnętrznej pozostałe białka mitochondrialne są kodowane w DNA jądrowym, syntetyzowane w cytoplazmie na wolnych rybosomach i po translacji wbudowywane do mitochondriów Mitochondria ewolucyjnie wywodzą się z prymitywnych bakterii, które posiadały zdolność do produkcji ATP (teoria endosymbiotyczna) Peroksysomy mają przeważnie formę pęcherzyków, ale w niektórych komórkach mogą być różnokształtne pierwotna bakteria pierwotna komórka eukariotyczna FAGOCYTOZA (?) SYMBIOZA, TRANSFER GENÓW mitochondrium jądro Enzymy peroksysomowe: Cytoszkielet oksydazy peroksysomowe katalaza enzymy ß-oksydacji kwasów tłuszczowych enzymy biosyntezy lipidów aminotransferazy Główne funkcje peroksysomów: utlenianie różnych substratów, w tym detoksyfikacja rozkład nadtlenku wodoru ß-oksydacja długołańcuchowych kw. tłuszczowych synteza cholesterolu, kwasów żółciowych i eterolipidów (plazmalogenów) degradacja puryn Typ włókien Średnica Białko Funkcja mikrotubule 25 nm tubulina ruch, podporowa mikrofilamenty 6 nm aktyna ruch, podporowa filamenty 10 nm różne podporowa pośrednie białka 11

12 tubulina protofilament Mikrotubule rureczki zbudowane z tubuliny - + Dynamiczne (wydłużają się i skracają) koniec + - wydłużanie koniec - stabilny, zazwyczaj zakotwiczony w pobliżu centrioli Mikrotubule nietrwałe (cytoplazmatyczne) Mikrotubule trwałe (po zakończeniu wzrostu nie rozpadają się): neurotubule w wypustkach komórek nerwowych mikrotubule budujące złożone struktury: rzęski, witki i centriole W strukturach mikrotubule łączą się w dublety lub triplety Aksonema rzęsek i witek: 9 obwodowych dubletów i 2 mikrotubule centralne Centriola: 9 obwodowych tripletów, para centrioli = centrosom Mikrofilamenty (filamenty aktynowe) zbudowane z aktyny -- + Centriole i otaczający je materiał zawierający tubulinę G indukują i regulują wzrost mikrotubul cytoplazmatycznych (centrum organizacji mikrotubul) nietrwałe twałe (w połączeniach międzykomórkowych, w niektórych komórkach nabłonkowych - sieć krańcowa, w kom. mięśniowych) E Za zjawiska ruchu komórkowego odpowiedzialne są tzw. mechanoenzymy (białka motoryczne), które wykorzystując energię z ATP kroczą po powierzchni mikrotubul i mikrofilamentów dyneina kinezyna - + mikrotubula Po powierzchni mikrotubul mogą kroczyć dwa mechanoenzymy: dyneina - w kierunku końca - kinezyna - w kierunku końca + Do mechanoenzymów mogą się przyczepiać różne struktury, które są w ten sposób transportowane wzdłuż mikrotubul, jak po szynach : E mikrotubula pęcherzyki organelle (ruch organelli) chromosomy duże białka 12

13 Po powierzchni filamentów aktynowych może kroczyć tylko jeden rodzaj mechanoenzymu: miozyna, wyłącznie w kierunku końca +. Filamenty aktynowe zakotwiczają się tym końcem w błonie komórkowej, a układ ten odpowiada za zjawiska ruchowe, w których uczestniczy błona: tworzenie wpukleń i fałdów błony, wysuwanie i wciąganie wypustek (fagocytoza, ruch pełzakowaty): miozyna I Filamenty pośrednie zbudowane z łańcuchów białkowych skręconych w formę liny (wytrzymałe elastyczne) nie współpracują z mechanoenzymami, pełnią wyłącznie funkcje podporowe (wewnątrz komórki i w połączeniach międzykomórkowych) są zbudowane z różnych białek, zależnie od miejsca występowania skurcz komórki: (np. komórki mięśniowe): miozyna II (agreguje w filamenty miozynowe) Nazwa Białka budujące Występowanie Materiały zapasowe i wtręty cytoplazmatyczne laminy jądrowe laminy A i B jądra wszystkich komórek filamenty keratynowe cytokeratyny komórki nabłonkowe filamenty wimentynowe wimentyna komórki tk. łącznej filamenty desminowe desmina komórki mięśniowe filamenty glejowe GFAP (kwaśne komórki neurogleju włókienkowe białko glejowe) neurofilamenty białka komórki nerwowe neurofilamentów glikogen wtręty krystaliczne i parakrystaliczne ziarna barwnika krople lipidowe nekroza apoptoza Śmierć komórki: martwica (nekroza) apoptoza (zaprogramowana śmierć) Martwica: - przerwanie błony komórkowej - zahamowanie procesów życiowych - rozpad komórki - odczyn zapalny Apoptoza: - aktywacja kolejnych genów (program) - produkcja i aktywacja szczególnych białek Czynniki wywołujące apoptozę: uszkodzenie DNA określone cząsteczki sygnałowe działające na tzw. receptory śmierci brak składników odżywczych lub czynników wzrostowych fragmentacja DNA pączkowanie błony tworzenie ciałek apoptotycznych Faza indukcji: aktywacja receptorów śmierci lub produkcja specyficznych białek indukujących apoptozę uwalnianie cytochromu c z mitochondriów Faza egzekucji: aktywacja kaspaz (enzymów proteolitycznych) trawienie białek wewnątrzkomórkowych zaburzenie procesów metabolicznych śmierć komórki Morfologiczne cechy apoptozy: fragmentacja DNA rozpad jądra na kilka fragmentów zagęszczenie cytoplazmy rozpad komórki na małe fragmenty (ciałka apoptotyczne) otoczone błoną 13

WITAMY NA KURSIE HISTOLOGII

WITAMY NA KURSIE HISTOLOGII KOMÓRKA WITAMY NA KURSIE HISTOLOGII www.histologia.cm-uj.krakow.pl Wielkość komórek ZróŜnicowanie komórek Jednostki: 1 µm = 10-3 mm, 1 nm = 10-3 µm kształt najmniejsze komórki (komórki przytarczyc, niektóre

Bardziej szczegółowo

błona zewnętrzna błona wewnętrzna (tworzy grzebienie lamelarne lub tubularne) przestrzeń międzybłonowa macierz Błona wewnętrzna: Macierz:

błona zewnętrzna błona wewnętrzna (tworzy grzebienie lamelarne lub tubularne) przestrzeń międzybłonowa macierz Błona wewnętrzna: Macierz: Mitochondria KOMÓRKA Cz. III błona zewnętrzna błona wewnętrzna (tworzy grzebienie lamelarne lub tubularne) przestrzeń międzybłonowa macierz Błona wewnętrzna: Błona zewnętrzna: białka/lipidy 1:1 poryny

Bardziej szczegółowo

KOMÓRKA. Cz. II. Egzocytoza. Endocytoza: fagocytoza. pinocytoza - niezależna od klatryny - zależna od klatryny (endocytoza receptorowa)

KOMÓRKA. Cz. II. Egzocytoza. Endocytoza: fagocytoza. pinocytoza - niezależna od klatryny - zależna od klatryny (endocytoza receptorowa) KOMÓRKA Egzocytoza Cz. II transport pęcherzyków zawierających substancje do wydzielenia fuzja pęcherzyków z błoną komórkową - wydzielenie substancji Fuzja błon Dwa rodzaje egzocytozy: konstytutywna: ciągła

Bardziej szczegółowo

KOMÓRKA. Cz. II. Egzocytoza. Endocytoza: fagocytoza. pinocytoza - niezależna od klatryny - zależna od klatryny (endocytoza receptorowa)

KOMÓRKA. Cz. II. Egzocytoza. Endocytoza: fagocytoza. pinocytoza - niezależna od klatryny - zależna od klatryny (endocytoza receptorowa) KOMÓRKA Egzocytoza Cz. II błona komórkowa wydzielina pęcherzyk wydzielniczy transport pęcherzyków zawierających substancje do wydzielenia fuzja pęcherzyków z błoną komórkową - wydzielenie substancji Fuzja

Bardziej szczegółowo

WITAMY NA KURSIE HISTOLOGII

WITAMY NA KURSIE HISTOLOGII WITAMY NA KURSIE HISTOLOGII W XIX wieku... Histologia to nauka o mikroskopowej budowie komórek, tkanek i narządów W XXI wieku... Kurs histologii: teoria... Histologia to nauka o powiązaniach struktury

Bardziej szczegółowo

(węglowodanów i tłuszczów) Podstawowym produktem (nośnikiem energii) - ATP

(węglowodanów i tłuszczów) Podstawowym produktem (nośnikiem energii) - ATP śycie - wymaga nakładu energii źródłem - promienie świetlne - wykorzystywane do fotosyntezy - magazynowanie energii w wiązaniach chemicznych Wszystkie organizmy (a zwierzęce wyłącznie) pozyskują energię

Bardziej szczegółowo

Transport przez błony

Transport przez błony Transport przez błony Transport bierny Nie wymaga nakładu energii Transport aktywny Wymaga nakładu energii Dyfuzja prosta Dyfuzja ułatwiona Przenośniki Kanały jonowe Transport przez pory w błonie jądrowej

Bardziej szczegółowo

Mitochondria. siłownie komórki

Mitochondria. siłownie komórki śycie - wymaga nakładu energii źródłem - promienie świetlne - wykorzystywane do fotosyntezy - magazynowanie energii w wiązaniach chemicznych Wszystkie organizmy ( a zwierzęce wyłącznie) pozyskują energię

Bardziej szczegółowo

oksydacyjna ADP + Pi + (energia z utleniania zredukowanych nukleotydów ) ATP

oksydacyjna ADP + Pi + (energia z utleniania zredukowanych nukleotydów ) ATP Życie - wymaga nakładu energii źródłem - promienie świetlne - wykorzystywane do fotosyntezy - magazynowanie energii w wiązaniach chemicznych Wszystkie organizmy (a zwierzęce wyłącznie) pozyskują energię

Bardziej szczegółowo

Transport makrocząsteczek (białek)

Transport makrocząsteczek (białek) Transport makrocząsteczek (białek) Transport makrocząsteczek sortowanie białek - sekwencje sygnałowe lata 70-te XX w. - Günter Blobel - hipoteza sygnałowa; 1999r - nagroda Nobla Sekwencja sygnałowa: A

Bardziej szczegółowo

Właściwości błony komórkowej

Właściwości błony komórkowej Właściwości błony komórkowej płynność asymetria selektywna przepuszczalność Transport przez błony Współczynnik przepuszczalności [cm/s] RóŜnice składu jonowego między wnętrzem komórki ssaka a otoczeniem

Bardziej szczegółowo

Właściwości błony komórkowej

Właściwości błony komórkowej Właściwości błony komórkowej płynność asymetria selektywna przepuszczalność Transport przez błony Cząsteczki < 150Da Błony - selektywnie przepuszczalne RóŜnice składu jonowego między wnętrzem komórki ssaka

Bardziej szczegółowo

Budowa komórkowa organizmów Składniki plazmatyczne i nieplazmatyczne komórki - budowa i funkcje

Budowa komórkowa organizmów Składniki plazmatyczne i nieplazmatyczne komórki - budowa i funkcje Budowa komórkowa organizmów Składniki plazmatyczne i nieplazmatyczne komórki - budowa i funkcje KOMÓRKA najmniejszy samoodtwarzający się żywy układ biologiczny ciało komórki tworzy protoplazma, którą oddziela

Bardziej szczegółowo

Poziomy organizacji żywej materii 1. Komórkowy- obejmuje struktury komórkowe (organelle) oraz komórki 2. Organizmalny tworzą skupienia komórek

Poziomy organizacji żywej materii 1. Komórkowy- obejmuje struktury komórkowe (organelle) oraz komórki 2. Organizmalny tworzą skupienia komórek Poziomy organizacji żywej materii 1. Komórkowy- obejmuje struktury komórkowe (organelle) oraz komórki 2. Organizmalny tworzą skupienia komórek (tkanki), narządy (organy), ich układy i całe organizmy wielokomórkowe

Bardziej szczegółowo

Tkanka nerwowa. Komórki: komórki nerwowe (neurony) sygnalizacja komórki neurogleju (glejowe) ochrona, wspomaganie

Tkanka nerwowa. Komórki: komórki nerwowe (neurony) sygnalizacja komórki neurogleju (glejowe) ochrona, wspomaganie Komórki: komórki nerwowe (neurony) sygnalizacja komórki neurogleju (glejowe) ochrona, wspomaganie Tkanka nerwowa Substancja międzykomórkowa: prawie nieobecna (blaszki podstawne) pobudliwość przewodnictwo

Bardziej szczegółowo

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :.

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :. CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A imię i nazwisko :. klasa :.. ilość punktów :. Zadanie 1 Przeanalizuj schemat i wykonaj polecenia. a. Wymień cztery struktury występujące zarówno w komórce roślinnej,

Bardziej szczegółowo

SPIS TREŚCI VII CYTOPLAZMATYCZNA, POZAKOMÓRKOWA I BŁONOWA.. 51

SPIS TREŚCI VII CYTOPLAZMATYCZNA, POZAKOMÓRKOWA I BŁONOWA.. 51 SPIS TREŚCI Wykaz skrótów................. XIII Część I.WIADOMOŚCI WSTE PNE.. 1 Rozdział 1. Ogólna charakterystyka komórki 1 1.1. Definicja komórki i organelli...... 1 1.2. Niektóre dane z początków historii

Bardziej szczegółowo

1. Podstawy, fizjologia komórki

1. Podstawy, fizjologia komórki 8 jest najmniejszą jednostką strukturalną żywego organizmu, co oznacza, że tylko ona (a nie żadna mniejsza jednostka) jest w stanie wykonywać podstawowe jego funkcje, to jest przemianę materii, wzrost

Bardziej szczegółowo

Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER)

Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER) Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER) Pochodzenie ER inwaginacja błony - (kanały trnslokacyjne) i rozrost cysterny spłaszczone woreczki tubule Siateczka śródplazmatyczna retikulum

Bardziej szczegółowo

Właściwości błony komórkowej

Właściwości błony komórkowej Właściwości błony komórkowej płynność asymetria selektywna przepuszczalność szybka dyfuzja: O 2, CO 2, N 2, benzen Dwuwarstwa lipidowa - przepuszczalność Współczynnik przepuszczalności [cm/s] 1 Transport

Bardziej szczegółowo

Histologia i biologia komórki

Histologia i biologia komórki Histologia i biologia komórki dr n. med. Bogusław Nedoszytko Wydział Zamiejscowy w Gdyni Podstawy biologii i genetyki dr n. med. Bogusław Nedoszytko Wydział Zamiejscowy w Gdyni Atlas Histologiczny dr n.

Bardziej szczegółowo

Komórka - budowa i funkcje

Komórka - budowa i funkcje Komórka - budowa i funkcje Komórka - definicja Komórka to najmniejsza strukturalna i funkcjonalna jednostka organizmów żywych zdolna do przeprowadzania wszystkich podstawowych procesów życiowych (takich

Bardziej szczegółowo

Profil metaboliczny róŝnych organów ciała

Profil metaboliczny róŝnych organów ciała Profil metaboliczny róŝnych organów ciała Uwaga: tkanka tłuszczowa (adipose tissue) NIE wykorzystuje glicerolu do biosyntezy triacylogliceroli Endo-, para-, i autokrynna droga przekazu informacji biologicznej.

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ 1. Gen to odcinek DNA odpowiedzialny

Bardziej szczegółowo

Organelle komórkowe. mgr Zofia Ostrowska

Organelle komórkowe. mgr Zofia Ostrowska Organelle komórkowe mgr Zofia Ostrowska 1. Wyróżniamy dwa typy komórek 2. Eucaryota Zadanie 34. (2 pkt) Matura 2006 p.r. Komórki żywych organizmów są bardzo różnorodne. Poniższe rysunki przedstawiają komórkę

Bardziej szczegółowo

Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER)

Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER) Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER) Pochodzenie ER inwaginacja błony - (kanały trnslokacyjne) i rozrost cysterny spłaszczone woreczki tubule Siateczka śródplazmatyczna retikulum

Bardziej szczegółowo

Przedziały komórkowe siateczka endoplazmatyczna (ER)

Przedziały komórkowe siateczka endoplazmatyczna (ER) Przedziały komórkowe siateczka endoplazmatyczna (ER) Pochodzenie ER inwaginacja błony - (kanały trnslokacyjne) i rozrost cysterny spłaszczone woreczki tubule Siateczka śródplazmatyczna retikulum endoplazmatyczne

Bardziej szczegółowo

Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER) Pochodzenie ER

Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER) Pochodzenie ER Przedziały wewnątrzkomórkowe siateczka śródplazmatyczna (ER) Pochodzenie ER inwaginacja błony - (kanały trnslokacyjne) i rozrost cysterny spłaszczone woreczki tubule Siateczka śródplazmatyczna retikulum

Bardziej szczegółowo

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Bliskie spotkania z biologią METABOLIZM dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Metabolizm całokształt przemian biochemicznych i towarzyszących

Bardziej szczegółowo

Komórka stuktura i funkcje. Bogusław Nedoszytko. WSZPIZU Wydział w Gdyni

Komórka stuktura i funkcje. Bogusław Nedoszytko. WSZPIZU Wydział w Gdyni Komórka stuktura i funkcje Bogusław Nedoszytko WSZPIZU Wydział w Gdyni Jądro komórkowe Struktura i funkcje Podziały komórkowe Jądro komórkowe 46 chromosomów 2,6 metra DNA 3 miliardy par nukleotydów (A,T,G,C)

Bardziej szczegółowo

Komórka eukariotyczna organizacja

Komórka eukariotyczna organizacja Komórka eukariotyczna organizacja Centrum informacyjne jądro Układ wykonawczy cytoplazma cytoplazma podstawowa (cytozol) organelle cytoplazma + jądro komórkowe = protoplazma Komórka eukariotyczna organizacja

Bardziej szczegółowo

Składniki cytoszkieletu. Szkielet komórki

Składniki cytoszkieletu. Szkielet komórki Składniki cytoszkieletu. Szkielet komórki aktynowe pośrednie aktynowe pośrednie 1 Elementy cytoszkieletu aktynowe pośrednie aktynowe filamenty aktynowe inaczej mikrofilamenty filamenty utworzone z aktyny

Bardziej szczegółowo

BUDOWA I FUNKCJONOWANIE KOMÓRKI

BUDOWA I FUNKCJONOWANIE KOMÓRKI Zadanie 1 (1 pkt). Uzasadnij, za pomocą jednego argumentu, że: lizosomy są grabarzami obumarłych składników cytoplazmy lub całych komórek. Zadanie 2 (2 pkt.). Schemat przedstawia budowę komórki eukariotycznej.

Bardziej szczegółowo

Transport pęcherzykowy

Transport pęcherzykowy Transport pęcherzykowy zachowanie asymetrii sortowanie przenoszonego materiału zachowanie odrębności organelli precyzyjne oznakowanie Transport pęcherzykowy szlak wydzielniczy przemieszczanie i sortowanie

Bardziej szczegółowo

CYTOSZKIELET. Mikrotubule. podjednostki strukturalne. 450 aminokwasów. 13 (11-16) 55kDa i 53kDa strukturalna polarność

CYTOSZKIELET. Mikrotubule. podjednostki strukturalne. 450 aminokwasów. 13 (11-16) 55kDa i 53kDa strukturalna polarność CYTOSZKIELET Mikrotubule podjednostki strukturalne 13 (11-16) 55kDa i 53kDa strukturalna polarność 450 aminokwasów Mikrotubule wydłuŝanie / /skracanie Mikrotubule elongacja + - in vitro in vivo - dodawanie

Bardziej szczegółowo

Przedziały komórkowe siateczka endoplazmatyczna (ER)

Przedziały komórkowe siateczka endoplazmatyczna (ER) Pochodzenie ER Przedziały komórkowe siateczka endoplazmatyczna (ER) inwaginacja błony - (kanały trnslokacyjne) i rozrost cysterny spłaszczone woreczki tubule Siateczka śródplazmatyczna retikulum endoplazmatyczne

Bardziej szczegółowo

TATA box. Enhancery. CGCG ekson intron ekson intron ekson CZĘŚĆ KODUJĄCA GENU TERMINATOR. Elementy regulatorowe

TATA box. Enhancery. CGCG ekson intron ekson intron ekson CZĘŚĆ KODUJĄCA GENU TERMINATOR. Elementy regulatorowe Promotory genu Promotor bliski leży w odległości do 40 pz od miejsca startu transkrypcji, zawiera kasetę TATA. Kaseta TATA to silnie konserwowana sekwencja TATAAAA, występująca w większości promotorów

Bardziej szczegółowo

TRANSKRYPCJA - I etap ekspresji genów

TRANSKRYPCJA - I etap ekspresji genów Eksparesja genów TRANSKRYPCJA - I etap ekspresji genów Przepisywanie informacji genetycznej z makrocząsteczki DNA na mniejsze i bardziej funkcjonalne cząsteczki pre-mrna Polimeraza RNA ETAP I Inicjacja

Bardziej szczegółowo

TEORIA KOMÓRKI (dlaczego istnieją osobniki?)

TEORIA KOMÓRKI (dlaczego istnieją osobniki?) Wstęp do biologii 2. TEORIA KOMÓRKI (dlaczego istnieją osobniki?) Jerzy Dzik Instytut Paleobiologii PAN Instytut Zoologii UW 2015 WSPÓLNE WŁAŚCIWOŚCI dzisiejszych organizmów procesy życiowe katalizowane

Bardziej szczegółowo

Organelle komórkowe. mgr Zofia Ostrowska

Organelle komórkowe. mgr Zofia Ostrowska Organelle komórkowe mgr Zofia Ostrowska 1. Wyróżniamy dwa typy komórek 2. Eucaryota Zadanie 34. (2 pkt) Matura 2006 p.r. Komórki żywych organizmów są bardzo różnorodne. Poniższe rysunki przedstawiają komórkę

Bardziej szczegółowo

Fizjologia człowieka

Fizjologia człowieka Fizjologia człowieka Wykład 2, część A CZYNNIKI WZROSTU CYTOKINY 2 1 Przykłady czynników wzrostu pobudzających proliferację: PDGF - cz.wzrostu z płytek krwi działa na proliferację i migrację fibroblastów,

Bardziej szczegółowo

Temat: Komórka jako podstawowa jednostka strukturalna i funkcjonalna organizmu utrwalenie wiadomości.

Temat: Komórka jako podstawowa jednostka strukturalna i funkcjonalna organizmu utrwalenie wiadomości. SCENARIUSZ LEKCJI BIOLOGII DLA KLASY I GIMNAZJUM Temat: Komórka jako podstawowa jednostka strukturalna i funkcjonalna organizmu utrwalenie wiadomości. Cele: Utrwalenie pojęć związanych z budową komórki;

Bardziej szczegółowo

Transport pęcherzykowy

Transport pęcherzykowy Transport pęcherzykowy zachowanie asymetrii sortowanie przenoszonego materiału precyzyjne oznakowanie zachowanie odrębności organelli Transport pęcherzykowy etapy transportu Transport pęcherzykowy przemieszczanie

Bardziej szczegółowo

Materiały dydaktyczne do kursów wyrównawczych z przedmiotu biologia

Materiały dydaktyczne do kursów wyrównawczych z przedmiotu biologia Człowiek najlepsza inwestycja Materiały dydaktyczne do kursów wyrównawczych z przedmiotu biologia Autor: dr inż. Anna Kostka Projekt POKL Poddziałanie 4.1.2. KOMÓRKA pobiera składniki odŝywcze oddycha

Bardziej szczegółowo

Tkanka mięśniowa pobudliwość kurczliwość Miofilamenty nie kurczą się, lecz przesuwają względem siebie ( główki miozyny kroczą po aktynie)

Tkanka mięśniowa pobudliwość kurczliwość Miofilamenty nie kurczą się, lecz przesuwają względem siebie ( główki miozyny kroczą po aktynie) Tkanka mięśniowa Aparat kuczliwy: miofilamenty cienkie (aktyna i białka pomocnicze) miofilamenty grube (miozyna 2) pobudliwość kurczliwość Miofilamenty nie kurczą się, lecz przesuwają względem siebie (

Bardziej szczegółowo

OPTYMALNY POZIOM SPOŻYCIA BIAŁKA ZALECANY CZŁOWIEKOWI JANUSZ KELLER STUDIUM PODYPLOMOWE 2011

OPTYMALNY POZIOM SPOŻYCIA BIAŁKA ZALECANY CZŁOWIEKOWI JANUSZ KELLER STUDIUM PODYPLOMOWE 2011 OPTYMALNY POZIOM SPOŻYCIA BIAŁKA ZALECANY CZŁOWIEKOWI JANUSZ KELLER STUDIUM PODYPLOMOWE 2011 DLACZEGO DOROSŁY CZŁOWIEK (O STAŁEJ MASIE BIAŁKOWEJ CIAŁA) MUSI SPOŻYWAĆ BIAŁKO? NIEUSTAJĄCA WYMIANA BIAŁEK

Bardziej szczegółowo

FIZJOLOGIA ORGANELLI (jak działa komórka?)

FIZJOLOGIA ORGANELLI (jak działa komórka?) Wstęp do biologii 3. FIZJOLOGIA ORGANELLI (jak działa komórka?) Jerzy Dzik Instytut Paleobiologii PAN Instytut Zoologii UW 2016 KOMÓRKA elementarnym osobnikiem wyodrębnienie błoną od środowiska przestrzenne

Bardziej szczegółowo

Co zaciekawi (bio)fizyka w komórce?

Co zaciekawi (bio)fizyka w komórce? Co zaciekawi (bio)fizyka w komórce? Przykłady komórek Komórki eukariotyczne posiadają jądro komórkowe oraz cytoplazmę, w której znajdują się składniki komórkowe plazmatyczne: błona komórkowa, cytoplazma

Bardziej szczegółowo

Wykład 14 Biosynteza białek

Wykład 14 Biosynteza białek BIOCHEMIA Kierunek: Technologia Żywności i Żywienie Człowieka semestr III Wykład 14 Biosynteza białek WYDZIAŁ NAUK O ŻYWNOŚCI I RYBACTWA CENTRUM BIOIMMOBILIZACJI I INNOWACYJNYCH MATERIAŁÓW OPAKOWANIOWYCH

Bardziej szczegółowo

TEORIA KOMÓRKI (dlaczego istnieją osobniki?)

TEORIA KOMÓRKI (dlaczego istnieją osobniki?) Wstęp do biologii 2. TEORIA KOMÓRKI (dlaczego istnieją osobniki?) Jerzy Dzik Instytut Paleobiologii PAN Instytut Zoologii UW 2017 WSPÓLNE WŁAŚCIWOŚCI dzisiejszych organizmów procesy życiowe katalizowane

Bardziej szczegółowo

ROLA WAPNIA W FIZJOLOGII KOMÓRKI

ROLA WAPNIA W FIZJOLOGII KOMÓRKI ROLA WAPNIA W FIZJOLOGII KOMÓRKI Michał M. Dyzma PLAN REFERATU Historia badań nad wapniem Domeny białek wiążące wapń Homeostaza wapniowa w komórce Komórkowe rezerwuary wapnia Białka buforujące Pompy wapniowe

Bardziej szczegółowo

FIZJOLOGIA ORGANELLI (jak działa komórka?)

FIZJOLOGIA ORGANELLI (jak działa komórka?) Wstęp do biologii 3. FIZJOLOGIA ORGANELLI (jak działa komórka?) Jerzy Dzik Instytut Paleobiologii PAN Instytut Zoologii UW 2015 KOMÓRKA elementarnym osobnikiem wyodrębnienie błoną od środowiska przestrzenne

Bardziej szczegółowo

DNA musi współdziałać z białkami!

DNA musi współdziałać z białkami! DNA musi współdziałać z białkami! Specyficzność oddziaływań między DNA a białkami wiążącymi DNA zależy od: zmian konformacyjnych wzdłuż cząsteczki DNA zróżnicowania struktury DNA wynikającego z sekwencji

Bardziej szczegółowo

Fizjologia nauka o czynności żywego organizmu

Fizjologia nauka o czynności żywego organizmu nauka o czynności żywego organizmu Stanowi zbiór praw, jakim podlega cały organizm oraz poszczególne jego układy, narządy, tkanki i komórki prawa rządzące żywym organizmem są wykrywane doświadczalnie określają

Bardziej szczegółowo

Bliskie spotkania z biologią. METABOLIZM część II. dr hab. Joanna Moraczewska, prof. UKW

Bliskie spotkania z biologią. METABOLIZM część II. dr hab. Joanna Moraczewska, prof. UKW Bliskie spotkania z biologią METABOLIZM część II dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki METABOLIZM KATABOLIZM - rozkład związków chemicznych

Bardziej szczegółowo

Plan działania opracowała Anna Gajos

Plan działania opracowała Anna Gajos Plan działania 15.09-15.10 opracowała Anna Gajos Jakie zagadnienia trzeba opanować z następujących działów: 1. Budowa chemiczna organizmów. 2. Budowa i funkcjonowanie komórki 3. Cykl komórkowy 4. Metabolizm

Bardziej szczegółowo

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2 Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2 Nr lekcji Temat Zakres treści 1 Zapoznanie z PSO, wymaganiami edukacyjnymi i podstawą programową PSO, wymagania edukacyjne i podstawa programowa

Bardziej szczegółowo

Mięśnie. dr Magdalena Markowska

Mięśnie. dr Magdalena Markowska Mięśnie dr Magdalena Markowska Zjawisko ruchu 1) Jako możliwość przemieszczania przestrzennego mięśnie poprzecznie prążkowane 2) Pompa serce 3) Jako podstawa do utrzymywania czynności życiowych mięśnie

Bardziej szczegółowo

Wykład 1. Od atomów do komórek

Wykład 1. Od atomów do komórek Wykład 1. Od atomów do komórek Skład chemiczny komórek roślinnych Składniki mineralne (nieorganiczne) - popiół Substancje organiczne (sucha masa) - węglowodany - lipidy - kwasy nukleinowe - białka Woda

Bardziej szczegółowo

SPRAWDZIAN klasa II ORGANELLA KOMÓRKOWE, MITOZA, MEJOZA

SPRAWDZIAN klasa II ORGANELLA KOMÓRKOWE, MITOZA, MEJOZA SPRAWDZIAN klasa II ORGANELLA KOMÓRKOWE, MITOZA, MEJOZA 1. Najwięcej Aparatów Golgiego będzie w komórkach: Mięśnia Trzustki Serca Mózgu 2. Podaj 3 cechy transportu aktywnego... 3. Czym się różni dyfuzja

Bardziej szczegółowo

Interfaza to niemal 90% cyklu komórkowego. Dzieli się na 3 fazy: G1, S i G2.

Interfaza to niemal 90% cyklu komórkowego. Dzieli się na 3 fazy: G1, S i G2. W wyniku podziału komórki powstaje komórka potomna, która ma o połowę mniej DNA od komórki macierzystej i jest o połowę mniejsza. Aby komórka potomna była zdolna do kolejnego podziału musi osiągnąć rozmiary

Bardziej szczegółowo

Wykorzystując go wykonał doświadczenie, a następnie na podstawie obserwacji spod mikroskopu sporządził rysunek:

Wykorzystując go wykonał doświadczenie, a następnie na podstawie obserwacji spod mikroskopu sporządził rysunek: Budowa komórkowa Zadanie 1 (1 pkt) Uzasadnij, za pomocą jednego argumentu, że: lizosomy są grabarzami obumarłych składników cytoplazmy lub całych komórek. Zadanie 2 (2 pkt.) W komórkach roślinnych i zwierzęcych

Bardziej szczegółowo

Nośnikiem informacji genetycznej są bardzo długie cząsteczki DNA, w których jest ona zakodowana w liniowej sekwencji nukleotydów A, T, G i C

Nośnikiem informacji genetycznej są bardzo długie cząsteczki DNA, w których jest ona zakodowana w liniowej sekwencji nukleotydów A, T, G i C MATERIAŁ GENETYCZNY KOMÓRKI BIOSYNTEZA BIAŁEK MATERIAŁ GENETYCZNY KOMÓRKI Informacja genetyczna - instrukcje kierujące wszystkimi funkcjami komórki lub organizmu zapisane jako określone, swoiste sekwencje

Bardziej szczegółowo

System błon w komórkach eukariotycznych. Transport przez błony plazmatyczne. Błona komórkowa - model płynnej mozaiki

System błon w komórkach eukariotycznych. Transport przez błony plazmatyczne. Błona komórkowa - model płynnej mozaiki System błon w komórkach eukariotycznych. Transport przez błony plazmatyczne. Prof. dr hab. n. med. Małgorzata Milkiewicz Zakład Biologii Medycznej Błona komórkowa - model płynnej mozaiki 1 Błona komórkowa

Bardziej szczegółowo

Mitochondria - siłownie komórki

Mitochondria - siłownie komórki Transformatory energii (mitochondria i chloroplasty) ewolucja eukariontów endosymbioza prakomórki eukariotycznej z prabakterią purpurową lub pracyjanobakterią Pochodzenie mitochondriów i chloroplastów

Bardziej szczegółowo

Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii. Izolacja mitochondriów z komórek eukariotycznych

Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii. Izolacja mitochondriów z komórek eukariotycznych Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii Biochemia - laboratorium Izolacja mitochondriów z komórek eukariotycznych Ćwiczenie i instrukcję przygotował: dr inż. Andrzej

Bardziej szczegółowo

Geny i działania na nich

Geny i działania na nich Metody bioinformatyki Geny i działania na nich prof. dr hab. Jan Mulawka Trzy królestwa w biologii Prokaryota organizmy, których komórki nie zawierają jądra, np. bakterie Eukaryota - organizmy, których

Bardziej szczegółowo

Reakcje zachodzące w komórkach

Reakcje zachodzące w komórkach Reakcje zachodzące w komórkach W każdej sekundzie we wszystkich organizmach żywych zachodzi niezliczona ilość reakcji metabolicznych. Metabolizm (gr. metabole - przemiana) to przemiany materii i energii

Bardziej szczegółowo

Ruch i mięśnie. dr Magdalena Markowska

Ruch i mięśnie. dr Magdalena Markowska Ruch i mięśnie dr Magdalena Markowska Zjawisko ruchu Przykład współpracy wielu układów Szkielet Szkielet wewnętrzny: szkielet znajdujący się wewnątrz ciała, otoczony innymi tkankami. U kręgowców składa

Bardziej szczegółowo

(MIKROSKOP ELEKTRONOWY, ORGANELLE KOMÓRKOWE).

(MIKROSKOP ELEKTRONOWY, ORGANELLE KOMÓRKOWE). ĆWICZENIE 2. Temat: ULTRASTRUKTURA KOMÓRKI (1). (MIKROSKOP ELEKTRONOWY, ORGANELLE KOMÓRKOWE). 1. Podstawy technik mikroskopowo-elektronowych (Schemat N/2/1) 2. Budowa i działanie mikroskopu elektronowego

Bardziej szczegółowo

Cytoplazma podstawowa: Siateczka ródplazmatyczna (retikulum endoplazmatyczne): Aparat Golgiego:

Cytoplazma podstawowa: Siateczka ródplazmatyczna (retikulum endoplazmatyczne): Aparat Golgiego: Cytoplazma podstawowa: Cytoplazma podstawowa, nazywana równieŝ macierzą lub matriks cytoplazmatyczną, a takŝe cytosolem, stanowi środowisko dla innych składników wewnątrz komórki. Jej struktura w mikroskopie

Bardziej szczegółowo

Przemiana materii i energii - Biologia.net.pl

Przemiana materii i energii - Biologia.net.pl Ogół przemian biochemicznych, które zachodzą w komórce składają się na jej metabolizm. Wyróżnia się dwa antagonistyczne procesy metabolizmu: anabolizm i katabolizm. Szlak metaboliczny w komórce, to szereg

Bardziej szczegółowo

Oddychanie komórkowe. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych. Oddychanie zachodzi w mitochondriach Wykład 7.

Oddychanie komórkowe. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych. Oddychanie zachodzi w mitochondriach Wykład 7. Wykład 7. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych Literatura dodatkowa: Oddychanie to wielostopniowy proces utleniania substratów związany z wytwarzaniem w komórce metabolicznie użytecznej

Bardziej szczegółowo

Joanna Bereta, Aleksander Ko j Zarys biochemii. Seria Wydawnicza Wydziału Bio chemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego

Joanna Bereta, Aleksander Ko j Zarys biochemii. Seria Wydawnicza Wydziału Bio chemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego Joanna Bereta, Aleksander Ko j Zarys biochemii Seria Wydawnicza Wydziału Bio chemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego Copyright by Wydział Bio chemii, Biofizyki i Biotechnologii

Bardziej szczegółowo

UKŁAD DOKREWNY cz. 2. Wysepki trzustkowe (Langerhansa): grupy komórek dokrewnych produkujących hormony białkowe

UKŁAD DOKREWNY cz. 2. Wysepki trzustkowe (Langerhansa): grupy komórek dokrewnych produkujących hormony białkowe Wysepki trzustkowe (Langerhansa): grupy komórek dokrewnych produkujących hormony białkowe UKŁAD DOKREWNY cz. 2 Elementy składowe: komórki dokrewne kapilary okienkowe włókna nerwowe Typy komórek dokrewnych

Bardziej szczegółowo

Spis treści CYKL KOMÓRKOWY

Spis treści CYKL KOMÓRKOWY Spis treści 1 CYKL KOMÓRKOWY 1.1 Faza M 1.2 Faza G1 (część interfazy) 1.3 Faza S (część interfazy) 1.4 Faza G2 (część interfazy) 1.5 Faza G0 2 MITOZA (podział pośredni) 2.1 Profaza 2.2 Metafaza 2.3 Anafaza

Bardziej szczegółowo

Wprowadzenie do biologii molekularnej.

Wprowadzenie do biologii molekularnej. Wprowadzenie do biologii molekularnej. Materiały dydaktyczne współfinansowane ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Biologia molekularna zajmuje się badaniem biologicznych

Bardziej szczegółowo

Tkanka nerwowa. pobudliwość przewodnictwo

Tkanka nerwowa. pobudliwość przewodnictwo Komórki: komórki nerwowe (neurony) - sygnalizacja, neurosekrecja komórki neurogleju (glejowe) - ochrona, wspomaganie Tkanka nerwowa Substancja międzykomórkowa: prawie nieobecna (blaszki podstawne) pobudliwość

Bardziej szczegółowo

SKUTKI POWSTANIA JĄDRA (jak działa genom?)

SKUTKI POWSTANIA JĄDRA (jak działa genom?) Wstęp do biologii 4. SKUTKI POWSTANIA JĄDRA (jak działa genom?) Jerzy Dzik Instytut Paleobiologii PAN Instytut Zoologii UW 2015 KONSEKWENCJE eukariotyczności cytoszkielet zapewnił precyzyjny rozdział chromosomów

Bardziej szczegółowo

Rozdział 1 Komórki wprowadzenie Komórki pod mikroskopem Wynalezienie mikroskopu świetlnego doprowadziło do odkrycia komórek Pod mikroskopem można

Rozdział 1 Komórki wprowadzenie Komórki pod mikroskopem Wynalezienie mikroskopu świetlnego doprowadziło do odkrycia komórek Pod mikroskopem można Rozdział 1 Komórki wprowadzenie Komórki pod mikroskopem Wynalezienie mikroskopu świetlnego doprowadziło do odkrycia komórek Pod mikroskopem można oglądać komórki, organelle, a nawet cząsteczki Komórka

Bardziej szczegółowo

Na początek przyjrzymy się więc, jak komórka rośliny produkuje ATP, korzystając z energii światła w fazie jasnej fotosyntezy.

Na początek przyjrzymy się więc, jak komórka rośliny produkuje ATP, korzystając z energii światła w fazie jasnej fotosyntezy. Fotosynteza jako forma biosyntezy Bogactwo molekuł biologicznych przedstawionych w poprzednim rozdziale to efekt ich wytwarzania w komórkach w wyniku różnorodnych powiązanych ze sobą procesów chemicznych.

Bardziej szczegółowo

Nukleotydy w układach biologicznych

Nukleotydy w układach biologicznych Nukleotydy w układach biologicznych Schemat 1. Dinukleotyd nikotynoamidoadeninowy Schemat 2. Dinukleotyd NADP + Dinukleotydy NAD +, NADP + i FAD uczestniczą w procesach biochemicznych, w trakcie których

Bardziej szczegółowo

Podział komórkowy u bakterii

Podział komórkowy u bakterii Mitoza Podział komórkowy u bakterii Najprostszy i najszybszy podział komórkowy występuje u bakterii, które nie mają jądra komórkowego, lecz jedynie pojedynczy chromosom tzw. chromosom bakteryjny. Podczas

Bardziej szczegółowo

JĄDRO KOMÓRKOWE I ORGANIZACJA CHROMATYNY

JĄDRO KOMÓRKOWE I ORGANIZACJA CHROMATYNY Wykład: 2 JĄDRO KOMÓRKOWE I ORGANIZACJA CHROMATYNY Prof. hab. n. med. Małgorzata Milkiewicz Zakład Biologii Medycznej Jądro komórkowe 1 Jądro komórkowe Otoczka jądrowa zewnętrzna membrana jądrowa wewnętrzna

Bardziej szczegółowo

Spis treści 1 Komórki i wirusy Budowa komórki Budowa k

Spis treści 1 Komórki i wirusy Budowa komórki Budowa k Spis treści 1 Komórki i wirusy.......................................... 1 1.1 Budowa komórki........................................ 1 1.1.1 Budowa komórki prokariotycznej.................... 2 1.1.2

Bardziej szczegółowo

Tkanka mięśniowa. pobudliwość kurczliwość

Tkanka mięśniowa. pobudliwość kurczliwość Aparat kurczliwy: miofilamenty cienkie ( i białka pomocnicze) miofilamenty grube (miozyna 2) Tkanka mięśniowa troponina tropomiozyna troponina lub kaldesmon i kalponina łańcuchy lekkie miozyna 2 pobudliwość

Bardziej szczegółowo

Cytoplazma. Cytoplazma. cytoplazma + jądro komórkowe = protoplazma. cytoplazma organelle podstawowa (cytozol) Kompleksy białkowe (+RNA)

Cytoplazma. Cytoplazma. cytoplazma + jądro komórkowe = protoplazma. cytoplazma organelle podstawowa (cytozol) Kompleksy białkowe (+RNA) Cytoplazma cytoplazma + jądro komórkowe = protoplazma Cytoplazma cytoplazma organelle podstawowa (cytozol) złoŝony koloid wodny cząsteczek i makrocząsteczek Kompleksy białkowe (+RNA) Cytoplazma podstawowa

Bardziej szczegółowo

AMBITNY GIMNAZJALISTA CYTOLOGIA

AMBITNY GIMNAZJALISTA CYTOLOGIA AMBITNY GIMNAZJALISTA CYTOLOGIA Katarzyna Stalinska Ambitny Gimnazjalista to cykl fiszek dla uczniów, które pozwalają usystematyzować treści, wykraczające ponad podstawę programową nauczania biologii w

Bardziej szczegółowo

UKŁAD DOKREWNY cz. 2. beta. delta. alfa

UKŁAD DOKREWNY cz. 2. beta. delta. alfa Wysepki trzustkowe (Langerhansa): grupy komórek dokrewnych produkujących hormony białkowe, zlokalizowane na terenie zrazików, otoczone przez struktury części zewnątrzwydzielniczej UKŁAD DOKREWNY cz. 2

Bardziej szczegółowo

Tkanka nabłonkowa HISTOLOGIA OGÓLNA (TKANKI)

Tkanka nabłonkowa HISTOLOGIA OGÓLNA (TKANKI) HISTOLOGIA OGÓLNA (TKANKI) Elementy składowe tkanki: komórki (o podobnym pochodzeniu, zbliŝonej strukturze i funkcji) substancja międzykomórkowa (produkowana przez komórki) Główne rodzaje tkanek zwierzęcych:

Bardziej szczegółowo

TKANKA ŁĄCZNA. Komórki. Włókna. Substancja podstawowa. Substancja międzykomórkowa

TKANKA ŁĄCZNA. Komórki. Włókna. Substancja podstawowa. Substancja międzykomórkowa Funkcje tkanki łącznej: TKANKA ŁĄCZNA łączy, utrzymuje i podpiera inne tkanki pośredniczy w rozprowadzaniu tlenu, substancji odŝywczych i biologicznie czynnych w organizmie odpowiada za większość procesów

Bardziej szczegółowo

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II 10 października 2013: Elementarz biologii molekularnej www.bioalgorithms.info Wykład nr 2 BIOINFORMATYKA rok II Komórka: strukturalna i funkcjonalne jednostka organizmu żywego Jądro komórkowe: chroniona

Bardziej szczegółowo

BIOLOGIA KOMÓRKI - KARIOKINEZY

BIOLOGIA KOMÓRKI - KARIOKINEZY BIOLOGIA KOMÓRKI - KARIOKINEZY M A Ł G O R Z A T A Ś L I W I Ń S K A 60 µm 1. KOMÓRKI SĄ ZBYT MAŁE, BY OBSERWOWAĆ JE BEZ POWIĘKSZENIA Wymiary komórek podaje się w mikrometrach (µm): 1 µm = 10-6 m; 1000

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ BŁONĘ KOMÓRKOWĄ I. WSTĘP TEORETYCZNY Każda komórka, zarówno roślinna,

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Wykład 5 Droga od genu do

Bardziej szczegółowo

Układ pokarmowy Cz. 3

Układ pokarmowy Cz. 3 Trzustka to złożony gruczoł o budowie zrazikowej, posiadający dominującą część zewnątrzwydzielniczą i małe skupiska komórek dokrewnych (wysepki trzustkowe Langerhansa). Układ pokarmowy Cz. 3 Trzustka i

Bardziej szczegółowo

UKŁAD ROZRODCZY MĘSKI. Jądro i najądrze. Kanalik nasienny

UKŁAD ROZRODCZY MĘSKI. Jądro i najądrze. Kanalik nasienny Jądro i najądrze UKŁAD ROZRODCZY nasieniowód głowa najądrza przewodziki wyprowadzające MĘSKI trzon najądrza kanalik nasienny przegroda łącznotkankowa śródjądrze biaława sieć jądra błona surowicza ogon

Bardziej szczegółowo

Źródła energii dla mięśni. mgr. Joanna Misiorowska

Źródła energii dla mięśni. mgr. Joanna Misiorowska Źródła energii dla mięśni mgr. Joanna Misiorowska Skąd ta energia? Skurcz włókna mięśniowego wymaga nakładu energii w postaci ATP W zależności od czasu pracy mięśni, ATP może być uzyskiwany z różnych źródeł

Bardziej szczegółowo

Spis treści. 1. Wiadomości wstępne Skład chemiczny i funkcje komórki Przedmowa do wydania czternastego... 13

Spis treści. 1. Wiadomości wstępne Skład chemiczny i funkcje komórki Przedmowa do wydania czternastego... 13 Przedmowa do wydania czternastego... 13 Częściej stosowane skróty... 15 1. Wiadomości wstępne... 19 1.1. Rys historyczny i pojęcia podstawowe... 19 1.2. Znaczenie biochemii w naukach rolniczych... 22 2.

Bardziej szczegółowo

ATP. Slajd 1. Slajd 2 1997 rok Nagroda Nobla: P.D. Boyer (USA), J.E. Walker (GB) i J.C. Skou (D) Slajd 3. BIOENERGETYKA KOMÓRKI oddychanie i energia

ATP. Slajd 1. Slajd 2 1997 rok Nagroda Nobla: P.D. Boyer (USA), J.E. Walker (GB) i J.C. Skou (D) Slajd 3. BIOENERGETYKA KOMÓRKI oddychanie i energia Slajd 1 BIOENERGETYKA KOMÓRKI oddychanie i energia WYKŁAD 6. Agnieszka Zembroń-Łacny 1. cukry, lipidy, aminokwasy 2. mitochondria 3. energia chemiczna (ATP) Slajd 2 1997 rok Nagroda Nobla: P.D. Boyer (USA),

Bardziej szczegółowo