PROCENY, PROMILE I PUNKTY PROCENTOWE

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROCENY, PROMILE I PUNKTY PROCENTOWE"

Transkrypt

1 PROCENY, PROMILE I PUNKTY PROCENTOWE Procenty, promile W życiu codziennym i w szkole często spotykamy się z pojęciem procentu. Zmiany kursów akcji na giełdzie, rachunki bankowe, obniżki i podwyżki cen towarów, frekwencja uczniów na zajęciach szkolnych itp. podawane są z użyciem procentów. Chcąc powiedzieć, że połowa uczniów naszej klasy to chłopcy, możemy użyć określenia: chłopcy stanowią 50% uczniów naszej klasy. Zad. 1 Na dwustugramowym opakowaniu zagęszczonego mleka jest informacja. że zawiera ono 7,5% tłuszczu. Oblicz, ile gramów tłuszczu jest w tym mleku. Zad. 2 Znajdź liczbę, której 12% stanowi 57. Zad. 3 Znajdź liczbę, której: a) 12,5% stanowi 35, b) 105% stanowi 575. Zad. 4 Spośród dwudziestu zadań uczeń nie rozwiązał trzech, a jedno rozwiązał źle. Oblicz, ile procent wszystkich zadań uczeń rozwiązał poprawnie. Zad. 5 O ile procent zwiększy się (zmniejszy się) pole kwadratu, jeżeli długość jego boku: a) zwiększymy o 10%, b) zmniejszymy o 10%? Zad. 6 O ile procent zwiększy się (zmniejszy się) objętość sześcianu, jeżeli długość jego krawędzi: a) zwiększymy o 10%, b) zmniejszymy o 10%? Zad. 7 Cena gontu bitumicznego, stosowanego w budownictwie, w którą wliczono 7% podatku VAT, jest równa 17,12 zł za metr kwadratowy. a) Jaka będzie cena tego towaru, jeśli podatek VAT zostanie zwiększony do 22%? b) O ile procent wzrośnie wówczas cena towaru? Wynik podaj z dokładnością do 0,01. Na przedmiotach wykonanych z metali szlachetnych (złota, srebra i platyny) znajdują się specjalne oznaczenia zwane próbami. Jeśli na wyrobie ze złota jest wybita liczba 750, to 750 znaczy, że w l g wyrobu jest g złota. Liczba 750 oznacza, że w danym wyrobie jest % o czystego złota. Zad. 8 Złota bransoletka ma próbę 750 i waży 25 g, a pierścionek próby 960 waży 10 g. Ile gramów czystego złota zawierają oba te przedmioty łącznie?

2 Zad. 9 Oblicz, jakim promilem liczby 125 jest liczba 2. Przykład Ile trzeba zmieszać roztworu wodnego soli kuchennej o stężeniu 26% z roztworem soli kuchennej o stężeniu 4%, aby otrzymać 11 kg roztworu o stężeniu 18%? Oznaczamy: x - liczba kilogramów roztworu soli o stężeniu 26%. Wtedy: 11 - x - liczba kilogramów roztworu soli o stężeniu 4%, 0,26x - liczba kilogramów soli w roztworze o stężeniu 26% (I), 0,04 (l l - x) - liczba kilogramów soli w roztworze o stężeniu 4% (II), 0,18*11 - liczba kilogramów soli w roztworze o stężeniu 18% (III). Czystej soli w naczyniu I i II razem jest tyle, ile ma być w naczyniu III. Zatem 0,26x+ 0,04 (11-x) = 0, ,26x + 0,44-0,04x = 1,98 0,22x =1,98-0,44 0,22x =1,54 x = 7, więc 11 - x = 4. Odp.: Należy zmieszać 7 kg roztworu soli o stężeniu 26% i 4 kg roztworu o stężeniu 4%. Zad. 10 Z trzydziestu kilogramów trzyprocentowej solanki odparowano wodę i otrzymano solankę czteroprocentową. Ile solanki było na początku? Zad. 11 W jednej ze szkół zaproponowano uczniom wybór j ednej z dyscyplin sportowych w ramach dodatkowej lekcji wychowania fizycznego. Wyniki wyboru przedstawiono na diagramie kołowym. a) Która z dyscyplin cieszy się największą popularnością? b) Ile procent ogółu uczniów wybrało pływanie? c) Ile procent ogółu uczniów trenuje biegi? d) Jeśli w tej szkole jest 480 uczniów, to: ilu z nich uprawia koszykówkę, o ilu uczniów więcej trenuje piłkę nożną niż biegi? Zad. 12 Skład chemiczny organizmu człowieka przedstawia się następująco: woda - 65% masy ciała, białka - 20% masy ciała, tłuszcze - 10% masy ciała, węglowodany i sole mineralne - 5% masy ciała. Sporządź diagram kołowy obrazujący powyższe dane. Zad. 13 Wykorzystując dane z przykładu 8., oblicz, ile kilogramów każdego składnika zawiera organizm dorosłego człowieka o masie 75 kg.

3 Punkty procentowe Często słyszysz informację, że coś wzrosło lub zmalało o kilka punktów procentowych Na przykład bezrobocie wzrosło o 4 punkty procentowe, inflacja zmalała o 1,5 punktu proce towego. Punkty procentowe to różnica dwóch wielkości podanych w procentach. Zmiany niektórych wielkości w życiu gospodarczym i społecznym podawane są głównie w pr centach. Dlatego wnioski z nich płynące łatwiej jest podawać w punktach procentowych. Zad. 14 Diagram obok przedstawia w procentach liczbę gospodarstw domowych posiadających telefony komórkowe (dane wg CBOS). O ile punktów procentowych i ile razy wzrosła liczba gospodarstw domowych, posiadających telefony komórkowe, w latach ? Rozwiązanie. Zauważamy, że w roku 1997 dwa procent liczby gospodarstw domowych posiadało telefony komórkowe, a w roku 2001 w 42% liczby gospodarstw domowych były telefony komórkowe. Mówimy, że nastąpił wzrost o 40 punktów procentowych, co w tym przypadku nie jest równoważne ze wzrostem o 40%. Porównując słupki na diagramie zauważamy, że w stosunku do roku 1997 liczba posiadaczy telefonów komórkowych zwiększyła się 21 razy, czyli wzrosła o 2000%. Zad. 15 W pewnym okresie bezrobocie wzrosło z 12% do 18%. a) O ile punktów procentowych wzrosło bezrobocie? b) Ile razy wzrosła liczba bezrobotnych w tym okresie? Rozwiązanie, a) = 6 punktów procentowych. b) Odp.: a) Bezrobocie wzrosło o 6 punktów procentowych. b) Liczba bezrobotnych wzrosła 1,5 razy, czyli o 50%. 18% = 1,5 12% Zad. 16 Oprocentowanie kredytów w Banku Ambrozja zmalało z 6% do 5,76%. a) O ile punktów procentowych bank obniżył oprocentowanie kredytów? b) O ile procent kredytobiorca zapłaci mniej odsetek po obniżce stopy procentowej? Zad. 17 W wypożyczalni znajduje się 120 kaset wideo. Kasety z bajkami dla dzieci to 30% wszystkich kaset. Kasety z filmami sensacyjnymi stanowią 25% kaset z bajkami. Ile w wypożyczalni jest kaset o innej tematyce? Zad. 18 Cena towaru wzrosła z 48 zł do 64 zł. O ile procent wzrosła cena towaru? Zad. 19 Produkcja w zakładzie X wzrosła w pewnym okresie 2 razy. O ile procent wzrosła produkcja? Zad. 20 Aby otrzymać stop mosiądzu, użyto 18,36 kg miedzi i 8,64 kg cynku. Ile procent miedzi i ile procent cynku zawiera mosiądz? Zad. 21 Sprzedawca samochodów przewidywał, że w 2002 r. sprzedaż wzrośnie i zakupił o 45% więcej pojazdów niż w roku Jego przewidywania okazały się. nieścisłe i nie sprzedał 28% z liczby zakupionych pojazdów. O ile procent wzrosła sprzedaż samochodów w roku 2002 w porównaniu z rokiem 2001? Zad. 22

4 Oblicz, ile czystego srebra jest w kolczykach próby 925 ważących 4 g. Zad. 23 Pan Nowak zarabia o 10% więcej niż pan Kowalski. O ile procent pan Kowalski zarabia mniej niż pan Nowak? Zad. 24 Aby ukończyć kurs podnoszący kwalifikacje, trzeba z czterech testów zgromadzić średnio 60% z ogólnej liczby punktów. Ala uzyskała 72% punktów z pierwszego testu, 65% punktów z drugiego testu, 83% punktów z trzeciego testu. Ile co najmniej procent punktów musi uzyskać z czwartego testu, aby otrzymać świadectwo ukończenia kursu? Zad. 25 Liczba mieszkańców miasta A wzrasta każdego roku o 10%, zaś liczba mieszkańców miasta B każdego roku maleje o 10%. Rok temu w mieście A było mieszkańców. Za dwa lata, według prognoz, w obu miastach będzie taka sama liczba mieszkańców. Ilu mieszkańców było w mieście B rok temu? Zad. 26 Partia Szczęśliwych" miała 12% poparcia wśród wyborców, a partia Wesołych" 8%. W wyborach poparcie każdej partii wzrosło o 4 punkty procentowe. a) Ile razy wzrosło poparcie każdej z partii? b) O ile procent wzrosła liczba wyborców każdej z partii w odniesieniu do wyników badań Zad. Woda morska zawiera około 3% soli. Ile kilogramów słodkiej wody należy dodać do 40 kg wody morskiej, aby otrzymana woda zawierała 2% soli? Zad. 27 Do pięciu litrów trzydziestopięcioprocentowej solanki dolano cztery litry dwu-dziestoprocentowej solanki. Do nowej mieszaniny dolano 11 litrów czystej wody. Oblicz, ilu procentową solankę otrzymano. Zad. 28 W pewnym kraju do głosowania uprawnionych było 29 min osób. Frekwencja w wyborach była równa 45%. Oblicz, ile ludzi głosowało na partię X, jeżeli otrzymała ona 15% liczby głosów. Zad. 29 W 1990 roku 8,7 min ludzi w USA deklarowało indiańskie pochodzenie, co stanowiło 3,5% całej populacji tego kraju. Znajdź liczbę ludności USA w 1990 roku z dokładnością do l min. Zad. 30 Objętość stopu na skutek podgrzania zwiększyła się o 5%. O ile procent zmniejszyła się gęstość (masa właściwa) tego stopu? Wynik podaj z dokładnością do 0,01%.

5 Test wielokrotnego wyboru:

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 2. Odp.: 52; 3,472; 1 377/450 Zadanie 2. Oblicz: 40 % z 28 % liczby 38, 24,6 % z 15 % liczby 27,4. Odp.: 4,256; 1,01106 Zadanie 3.

Bardziej szczegółowo

Procent (od łac. per centum - na sto) to sposób wyrażenia liczby jako ułamka o mianowniku 100. Procent oznaczamy symbolem %.

Procent (od łac. per centum - na sto) to sposób wyrażenia liczby jako ułamka o mianowniku 100. Procent oznaczamy symbolem %. 1. Co to jest procent?... 1 2. Jak obliczyć procent podanej liczby?... 2 3. Jak znaleźć liczbę, której pewien procent znamy?... 7 4. Jak obliczyć, jakim procentem jednej liczby jest druga liczba?... 12

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy S t r o n a 1 DZIAŁANIA NA POTĘGACH Zadanie 1. Przedstaw liczbę w postaci potęgi liczby 2: Zadanie 2. Przedstaw liczbę w postaci potęgi liczby 2: Zadanie 3. Zadanie 4. Zadanie 5. Czwarta część liczby,

Bardziej szczegółowo

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?

Bardziej szczegółowo

Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł.

Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł. Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł. Zadanie 2 Cena towaru bez podatku VAT jest równa 90 zł. Towar ten

Bardziej szczegółowo

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 %

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zad. 2 ( 15 pkt ) Zamień ułamki na procenty: a) 0,36; 0,03; 3,6; 0,4; 0,375;

Bardziej szczegółowo

1 2. Zamień procent na ułamek: a) 57 % 1 4. Zamień promil na ułamek: a) 74. 1 5. Zamień procent na promil: a) 21 %

1 2. Zamień procent na ułamek: a) 57 % 1 4. Zamień promil na ułamek: a) 74. 1 5. Zamień procent na promil: a) 21 % pitagoras.xon.pl II. OLIZENI PROENTOWE 00% 000 PROENT I PROMIL : Słowo procent pochodzi od łacińskiego wyrażenia pro centum - "na sto". Jeden procent zapisujemy symbolem % i oznacza to jedną setną część

Bardziej szczegółowo

KARTA PRACY Z PROCENTÓW - nowa

KARTA PRACY Z PROCENTÓW - nowa KARTA PRACY Z PROCENTÓW - nowa ZADANIE 1. Zamień procenty na ułamki ( : 100 ) 25%= 50%= % % 62%= 16 % 138%= 11 % 2%= 33 % 2340%= 3 % 0,4%= 66 % 0,35%= % 1,05%= 1%= 2,3%= 4%= 27,4%= 16%= 0,004%= 28%= %

Bardziej szczegółowo

Pro Centrum et Pro Mille procenty & promile po polsku

Pro Centrum et Pro Mille procenty & promile po polsku Paweł Tatarzycki Pro Centrum et Pro Mille procenty & promile po polsku Procenty spotykamy podczas wyborów, inwestując pieniądze, czy kupując tańsze produkty podczas wyprzedaży. Slogan SALE kojarzy coraz

Bardziej szczegółowo

OPIS LEKCJI MATEMATYKI PRZEPROWADZONEJ W KLASIE PIERWSZEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZUWZGLĘDNIENIEM MULTIMEDIALNO-CZYTELNICZEJ ŚCIEŻKI EDUKACYJNEJ.

OPIS LEKCJI MATEMATYKI PRZEPROWADZONEJ W KLASIE PIERWSZEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZUWZGLĘDNIENIEM MULTIMEDIALNO-CZYTELNICZEJ ŚCIEŻKI EDUKACYJNEJ. OPIS LEKCJI MATEMATYKI PRZEPROWADZONEJ W KLASIE PIERWSZEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZUWZGLĘDNIENIEM MULTIMEDIALNO-CZYTELNICZEJ ŚCIEŻKI EDUKACYJNEJ. Raz w tygodniu mam w klasie pierwszej dwie godziny matematyki

Bardziej szczegółowo

ZESTAW ZADAŃ Konkurs Finanse w matematyce

ZESTAW ZADAŃ Konkurs Finanse w matematyce ZESTAW ZADAŃ Konkurs Finanse w matematyce 1. 2. 3. 4. 5. 6. 7. 8. 9. Cena wymurowania pierwszego metra komina to 540zł. Każdy następny metr jest droższy o 90zł. Zatem wybudowanie komina o wysokości 20m

Bardziej szczegółowo

I Ułamki zwykłe i dziesiętne. Zadania: 1.Działania na ułamkach zwykłych i dziesiętnych 1.1. Oblicz:

I Ułamki zwykłe i dziesiętne. Zadania: 1.Działania na ułamkach zwykłych i dziesiętnych 1.1. Oblicz: I Ułaki zwykłe i dziesiętne..działania na ułakach zwykłych i dziesiętnych.. Oblicz: a) 0, b) 7, 7 c), 7 7 6 d) (,,) e) 7 0 : f) (,) : 6.. Najdłuższą jaszczurką na Ziei jest waran paskowaty. Ciało największego

Bardziej szczegółowo

2. Procenty i stężenia procentowe

2. Procenty i stężenia procentowe 2. PROCENTY I STĘŻENIA PROCENTOWE 11 2. Procenty i stężenia procentowe 2.1. Oblicz 15 % od liczb: a. 360, b. 2,8 10 5, c. 0.024, d. 1,8 10 6, e. 10 Odp. a. 54, b. 4,2 10 4, c. 3,6 10 3, d. 2,7 10 7, e.

Bardziej szczegółowo

Test z procentów. 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i

Test z procentów. 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i 1 S t r o n a p r z y g o t o w a n i e d o m a t u r y p o d s t a w o w e j z m a t e m a t y k i Test z procentów 1. Liczba po zamianie na procent wyniesie: 2. Liczba po zamianie na procent wyniesie:

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

Konspekt do lekcji matematyki w klasie I

Konspekt do lekcji matematyki w klasie I Konspekt do lekcji matematyki w klasie I Prowadzący: Edyta Pikor Miejsce: Publiczne Gimnazjum w Jacie Temat lekcji: O ile procent więcej, o ile procent mniej. Punkty procentowe. Cel główny: Poznanie podstawowych

Bardziej szczegółowo

egzaminugimnazjalnego

egzaminugimnazjalnego Ksią ż kadostosowana donowejformuł y egzaminugimnazjalnego Spis treści Liczby Tydzień I Działania na liczbach... 10 Tydzień II Potęgi i pierwiastki... 16 Tydzień III Procenty... 22 Tydzień IV Statystyka...

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2013/2014 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 10 stron.

Bardziej szczegółowo

Temat: Obliczenia procentowe w życiu rozwiązywanie zadań.

Temat: Obliczenia procentowe w życiu rozwiązywanie zadań. Spotkanie 9-10 (temat na dwa spotkania) Temat: Obliczenia procentowe w życiu rozwiązywanie zadań. Komentarz [BA1]: Plan zajęć 1. Podatek VAT co to jest? VAT (od ang. - Value Added Tax) - podatek od wartości

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Kod ucznia.. KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Witamy Cię na pierwszym etapie Konkursu Matematycznego. Przed przystąpieniem do rozwiązywania zadań przeczytaj uważnie

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

Obliczanie jakim procentem jednej liczby jest druga liczba

Obliczanie jakim procentem jednej liczby jest druga liczba Obliczanie jakim procentem jednej liczby jest druga liczba Przedmowa Początek tego opracowania jest napisany z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach,

Bardziej szczegółowo

TEST. str. 1. Punktacja testu: odpowiedź poprawna 2 punkty, odpowiedź błędna 0 punktów. Na rozwiązanie testu i krzyżówki masz 70 minut. POWODZENIA!

TEST. str. 1. Punktacja testu: odpowiedź poprawna 2 punkty, odpowiedź błędna 0 punktów. Na rozwiązanie testu i krzyżówki masz 70 minut. POWODZENIA! Przed Tobą test zadań zamkniętych i krzyżówka. W każdym zadaniu zamkniętym tylko jedna odpowiedź jest poprawna. Swoje odpowiedzi do testu zaznacz w karcie odpowiedzi. Krzyżówkę rozwiąż na kartce, na której

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I Podstawowe prawa i pojęcia chemiczne. Fizyczne prawa gazowe. Zad. 1. Ile cząsteczek wody znajduje się w 0,12 mola uwodnionego azotanu(v) ceru Ce(NO 3 ) 2 6H 2 O? Zad. 2. W wyniku reakcji 40,12 g rtęci

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i wyrażenia algebraiczne... 7 Funkcje... 12 Wielokąty, koła i okręgi... 18 Przekształcenia geometryczne... 23 Figury podobne... 28

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

Skrypt 5. Procenty. 8. Obliczenia procentowe w praktyce - o ile procent więcej, o ile mniej, punkty procentowe

Skrypt 5. Procenty. 8. Obliczenia procentowe w praktyce - o ile procent więcej, o ile mniej, punkty procentowe Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 5 Procenty 1. Procenty, promile i ułamki

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

Stanis³aw Kalisz, Jan Kulbicki, Henryk Rudzki. Egzamin gimnazjalny MATEMATYKA. Zbiór zadañ i arkuszy zgodny z now¹ formu³¹ obowi¹zuj¹c¹ od roku 2012

Stanis³aw Kalisz, Jan Kulbicki, Henryk Rudzki. Egzamin gimnazjalny MATEMATYKA. Zbiór zadañ i arkuszy zgodny z now¹ formu³¹ obowi¹zuj¹c¹ od roku 2012 Stanis³aw Kalisz, Jan Kulbicki, Henryk Rudzki Egzamin gimnazjalny MATEMATYKA Zbiór zadañ i arkuszy zgodny z now¹ formu³¹ obowi¹zuj¹c¹ od roku 01 Wydanie drugie rozszerzone PRZYGOTUJ SIÊ I ZDAJ! OPOLE Wydawnictwo

Bardziej szczegółowo

EGZAMINY GIMNAZJALNE W LATACH 2002-2010 MATEMATYKA. Zadania z matematyki: egzamin gimnazjalny rok 2002

EGZAMINY GIMNAZJALNE W LATACH 2002-2010 MATEMATYKA. Zadania z matematyki: egzamin gimnazjalny rok 2002 EGZAMINY GIMNAZJALNE W LATACH 2002-2010 MATEMATYKA Zadania z matematyki: egzamin gimnazjalny rok 2002 Zadanie 6 ( 0 1 ) Zadanie 7 ( 0-1) Entuzjaści kolarstwa Zadanie 8 (0 1) Narciarze 2 Zadanie 9 ( 0 1

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Zadanie: 2 (1 pkt) Zmieszano 100 g 30% roztworu azotanu (V) sodu z 500 g wody. Oblicz Cp otrzymanego roztworu.

Zadanie: 2 (1 pkt) Zmieszano 100 g 30% roztworu azotanu (V) sodu z 500 g wody. Oblicz Cp otrzymanego roztworu. Zadanie: 1 (1 pkt) Oblicz rozpuszczalność chlorowodoru (HCl) w wodzie, jeśli wiesz, że stężony kwas solny, czyli nasycony wodny roztwór chlorowodoru ma stężenie 36%. Zadanie: 2 (1 pkt) Zmieszano 100 g

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

Metale i niemetale. Krystyna Sitko

Metale i niemetale. Krystyna Sitko Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale

Bardziej szczegółowo

1. Podstawowe prawa i pojęcia chemiczne

1. Podstawowe prawa i pojęcia chemiczne 1. PODSTAWOWE PRAWA I POJĘCIA CHEMICZNE 5 1. Podstawowe prawa i pojęcia chemiczne 1.1. Wyraź w gramach masę: a. jednego atomu żelaza, b. jednej cząsteczki kwasu siarkowego. Odp. 9,3 10 23 g; 1,6 10 22

Bardziej szczegółowo

Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ

Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ ZDUŃSKA WOLA 16.04.2014R. Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ Kod ucznia Instrukcja dla uczestnika konkursu 1. Proszę wpisać odpowiednie litery (wielkie) do poniższej tabeli

Bardziej szczegółowo

Marta Stańczak Klasa I a Zespół Placówek Oświatowych im. Adama Mickiewicza Gimnazjum w Kuczborku-Osadzie

Marta Stańczak Klasa I a Zespół Placówek Oświatowych im. Adama Mickiewicza Gimnazjum w Kuczborku-Osadzie Marta Stańczak Klasa I a Zespół Placówek Oświatowych im. Adama Mickiewicza Gimnazjum w Kuczborku-Osadzie Pojęcie procentu PROCENT - to inaczej ułamek o mianowniku 100. Jeden procent danej liczby, to jedna

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

Wyrażanie stężeń. Materiały pomocnicze do zajęć wspomagających z chemii. opracował: dr Błażej Gierczyk Wydział Chemii UAM

Wyrażanie stężeń. Materiały pomocnicze do zajęć wspomagających z chemii. opracował: dr Błażej Gierczyk Wydział Chemii UAM Wyrażanie stężeń Materiały pomocnicze do zajęć wspomagających z chemii opracował: dr Błażej Gierczyk Wydział Chemii UAM Stężenie procentowe Stężenie procentowe (procent wagowy, procent masowy) wyraża stosunek

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

Test z matematyki. Małe olimpiady przedmiotowe

Test z matematyki. Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, test składa się z

Bardziej szczegółowo

ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI

ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI Konkursy w województwie podkarpackim w roku szkolnym 202/203 ZESTAW POPRAWNYCH ODPOWIEDZI Numer zadania Zadania otwarte schemat oceniania: DO ARKUSZA - ETAP WOJEWÓDZKI Poprawna odpowiedź L. punktów. A

Bardziej szczegółowo

Matematyka gimnazjum klasa I

Matematyka gimnazjum klasa I Matematyka gimnazjum klasa I Wprowadzenia Zadania Proces Źródła Ewaluacja Konkluzja Często ucząc się zadajecie pytania: Po co się tego uczę? Gdzie mi się to przyda? Zadania, które będziecie wykonywać mają

Bardziej szczegółowo

Sytuacja na rynku kredytowym. wyniki ankiety do przewodniczących komitetów kredytowych II kwartał 2015 r.

Sytuacja na rynku kredytowym. wyniki ankiety do przewodniczących komitetów kredytowych II kwartał 2015 r. Sytuacja na rynku kredytowym wyniki ankiety do przewodniczących komitetów kredytowych II kwartał 2015 r. Sytuacja na rynku kredytowym wyniki ankiety do przewodniczących komitetów kredytowych II kwartał

Bardziej szczegółowo

Cena lodówki wraz z 7% podatkiem VAT wynosi 1337 zł 50 gr. Oblicz ile wynosi podatek VAT.

Cena lodówki wraz z 7% podatkiem VAT wynosi 1337 zł 50 gr. Oblicz ile wynosi podatek VAT. www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Cenę płaszcza zimowego obniżono wiosna o 15% i wówczas cena wynosiła 510 zł. Oblicz cenę płaszcza przed obniżka. ZADANIE 2 Ksiażka

Bardziej szczegółowo

PODSTAWY STECHIOMETRII

PODSTAWY STECHIOMETRII PODSTAWY STECHIOMETRII 1. Obliczyć bezwzględne masy atomów, których względne masy atomowe wynoszą: a) 7, b) 35. 2. Obliczyć masę próbki wody zawierającej 3,01 10 24 cząsteczek. 3. Która z wymienionych

Bardziej szczegółowo

Skrypt 4. Liczby rzeczywiste: Opracowanie L5

Skrypt 4. Liczby rzeczywiste: Opracowanie L5 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 4 Liczby rzeczywiste: 26.

Bardziej szczegółowo

Portfele Comperii - wrzesień 2011

Portfele Comperii - wrzesień 2011 1 S t r o n a Portfele Comperii - wrzesień 2011 Czym są Portfele Comperii? Portfele Comperii (dawniej zwane Wskaźnikami Comperii ) to analiza ukazująca, jak w ostatnich kilku tygodniach (a także miesiąc

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

629-35 - 69, 628-37 - 04. 621-07 - 57, 628-90 - 17 INTERNET: http://www.korpo.pol.pl/cbos E-mail: cbos@pol.pl

629-35 - 69, 628-37 - 04. 621-07 - 57, 628-90 - 17 INTERNET: http://www.korpo.pol.pl/cbos E-mail: cbos@pol.pl CBOS CENTRUM BADANIA OPINII SPOŁECZNEJ SEKRETARIAT ZESPÓŁ REALIZACJI BADAŃ 629-35 - 69, 628-37 - 04 UL. ŻURAWIA 4A, SKR. PT.24 00-503 W A R S Z A W A TELEFAX 629-40 - 89 621-07 - 57, 628-90 - 17 INTERNET:

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW 2008/2009

KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW 2008/2009 ...... kod pracy ucznia pieczątka nagłówkowa szkoły Drogi Uczniu, KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW 2008/2009 Witaj na I etapie konkursu chemicznego. Przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas

Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2013 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame

Bardziej szczegółowo

II Konkurs Matematyka i Ekonomia dla uczniów klas V - VI szkół podstawowych Etap I - półfinał 11 kwietnia 2014 r.

II Konkurs Matematyka i Ekonomia dla uczniów klas V - VI szkół podstawowych Etap I - półfinał 11 kwietnia 2014 r. II Konkurs Matematyka i Ekonomia dla uczniów klas V - VI szkół podstawowych Etap I - półfinał 11 kwietnia 2014 r. Test składa się z 20 zadań wielokrotnego wyboru (w każdym zadaniu dokładnie jedna odpowiedź

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości

Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości Zad.1 Za pomocą mierników elektronicznych, mierzących czas z dokładnością do 0,01(s), trójka uczniów mierzyła

Bardziej szczegółowo

Konkurs wiedzy ekonomicznej

Konkurs wiedzy ekonomicznej POZIOMO: 1. zdolność pieniądza do przechowywania wartości 2. pośrednik giełdowy 3. stan rachunku lub konta 4. punkt wymiany walut 5. waluta zjednoczonej Europy 6. spadek cen kursu papierów wartościowych

Bardziej szczegółowo

ZASTOSOWANIE PROCENTÓW W ZADANIACH

ZASTOSOWANIE PROCENTÓW W ZADANIACH ZASTOSOWANIE PROCENTÓW W ZADANIACH Wyraz procent pochodzi z języka łacińskiego od słowa procentrum i znaczy od stu lub na sto. Zastępuje się go znakiem %. Procenty były znane Hindusom już w V wieku naszej

Bardziej szczegółowo

Ekonometria. Zadania regresja prosta.

Ekonometria. Zadania regresja prosta. Ekonometria (semestr letni 013 014) RP &P K 1 Ekonometria. Zadania regresja prosta. 1. W pewnej sieci sklepów analizowano skuteczność akcji promocyjnych (obniżania cen O) na podstawie indeksu przyrostu

Bardziej szczegółowo

Informacja do zadań 1. 2. Woda morska zawiera średnio 3,5% soli.

Informacja do zadań 1. 2. Woda morska zawiera średnio 3,5% soli. Informacja do zadań 1. 2. Woda morska zawiera średnio 3,5% soli. Zadanie 1. (0.1) Które zdanie jest prawdziwe? A. W 100 g wody morskiej znajduje się 3,5 g soli. B. W 103,5 g wody morskiej znajduje się

Bardziej szczegółowo

Odpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 )

Odpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 ) PRZYKŁADOWE ZADANIA Z DZIAŁÓW 9 14 (stężenia molowe, procentowe, przeliczanie stężeń, rozcieńczanie i zatężanie roztworów, zastosowanie stężeń do obliczeń w oparciu o reakcje chemiczne, rozpuszczalność)

Bardziej szczegółowo

Małe Olimpiady Przedmiotowe. Test z matematyki

Małe Olimpiady Przedmiotowe. Test z matematyki Małe Olimpiady Przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa nr 17 Szkoła Podstawowa nr 18 Drogi Uczniu, Test składa się z

Bardziej szczegółowo

STATYSTYKA. Poziom podstawowy

STATYSTYKA. Poziom podstawowy STATYSTYKA Poziom podstawowy Zadanie (8 pkt.) Histogram obrazuje utarg stacji benzynowej w ciągu tygodnia. a) Którego dnia stacja była zamknięta? b) Którego dnia sprzedano więcej benzyny niż w czwartek?

Bardziej szczegółowo

Temat: Funkcja i jej własności

Temat: Funkcja i jej własności SCENARIUSZ LEKCJI przedmiot i poziom: podręcznik: matematyka, gimnazjum Egzamin gimnazjalny. Standardy wymagań w pytaniach i odpowiedziach (Część matematyczno przyrodnicza.) - Oficyna Edukacyjna * Krzysztof

Bardziej szczegółowo

Scenariusz lekcji z przedmiotu matematyka

Scenariusz lekcji z przedmiotu matematyka Scenariusz lekcji z przedmiotu matematyka Temat lekcji: Inwestuję z głową ( 90 min - lekcja podawczo ćwiczeniowa) Inwestuję z głową w akcje i kontrakty terminowe (90 minut - lekcja podawczo-ćwiczeniowa)

Bardziej szczegółowo

Zasady zdrowego żywienia

Zasady zdrowego żywienia Metadane scenariusza Zasady zdrowego żywienia 1. Cele lekcji a) Wiadomości Uczeń: - zna zasady prawidłowego żywienia, - zna piramidę zdrowego żywienia, - zna zapotrzebowanie energetyczne dla osób w danym

Bardziej szczegółowo

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2014/2015 III stopień - wojewódzki Kryteria oceniania

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2014/2015 III stopień - wojewódzki Kryteria oceniania Gimnazjum nr 26 w Gdańsku im. Jana III Sobieskiego ul. R. Traugutta 92 sekretariat@gim26.gda.pl 80-226 Gdańsk www.gim26.gda.pl tel. 58-341-02-33 fax 58-344-05-02 Zad.1. (0 1) Konkurs matematyczny dla uczniów

Bardziej szczegółowo

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie)

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie) Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki.

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Przykładowy test z zakresu matematyki PRZYKŁADOWY ARKUSZ EGZAMINACYJNY W TRZECIEJ KLASIE GIMNAZJUM Z ZAKRESU MATEMATYKI

Przykładowy test z zakresu matematyki PRZYKŁADOWY ARKUSZ EGZAMINACYJNY W TRZECIEJ KLASIE GIMNAZJUM Z ZAKRESU MATEMATYKI Strona 1 Przykładowy test z zakresu matematyki WPISUJE UCZEŃ KOD UCZNIA DATA URODZENIA UCZNIA dzień miesiąc rok PRZYKŁADOWY ARKUSZ EGZAMINACYJNY W TRZECIEJ KLASIE GIMNAZJUM Z ZAKRESU MATEMATYKI 1. Instrukcja

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

REGULAMIN REKRUTACJI DO KLASY SPORTOWEJ O PROFILU PIŁKA NOŻNA I PIŁKA SIATKOWA W GIMNAZJUM IM. JANA PAWŁA II W KOZACH W ROKU SZKOLNYM 2015/2016

REGULAMIN REKRUTACJI DO KLASY SPORTOWEJ O PROFILU PIŁKA NOŻNA I PIŁKA SIATKOWA W GIMNAZJUM IM. JANA PAWŁA II W KOZACH W ROKU SZKOLNYM 2015/2016 REGULAMIN REKRUTACJI Załącznik nr 3 do Zarządzenia nr 9/2014/2015 DO KLASY SPORTOWEJ O PROFILU PIŁKA NOŻNA I PIŁKA SIATKOWA W GIMNAZJUM IM. JANA PAWŁA II W KOZACH W ROKU SZKOLNYM 2015/2016 Warunki kwalifikacji

Bardziej szczegółowo

Sytuacja na rynku kredytowym

Sytuacja na rynku kredytowym Sytuacja na rynku kredytowym wyniki ankiety do przewodniczàcych komitetów kredytowych I kwarta 2012 Warszawa, styczeƒ 2012 r. Podsumowanie wyników ankiety Kredyty dla przedsiębiorstw Polityka kredytowa:

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA

Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA GIMNAZJUM Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA Zadanie 1. Trzy lata temu posadzono przed domem krzew. Co roku

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min I Ty możesz zostać Pitagorasem Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz II Luty 2014 Liczba punktów 30, czas pracy 90min mgr Iwona Tlałka Zadanie 1. (0 1) I Ty możesz zostać Pitagorasem

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: szkolny 27 listopada 2012 r. 90 minut Informacje dla ucznia

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

1. Liczby wymierne dodatnie

1. Liczby wymierne dodatnie 1 1. Liczby wymierne dodatnie 1.7. Uczeń stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (także jednostek prędkości, gęstości,

Bardziej szczegółowo

Zadania statystyka semestr 6TUZ

Zadania statystyka semestr 6TUZ Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono

Bardziej szczegółowo

Informacja dla ucznia

Informacja dla ucznia Informacja dla ucznia Test, który będziesz rozwiązywać, składa się z zadań o róŝnym stopniu trudności. W zadaniach tych wystarczy znaleźć jedyną prawidłową odpowiedź spośród czterech podanych (oznaczonych

Bardziej szczegółowo

Sytuacja na rynku kredytowym

Sytuacja na rynku kredytowym Sytuacja na rynku kredytowym wyniki ankiety do przewodniczących komitetów kredytowych I kwartał 2013 Warszawa, styczeń 2013 r. Podsumowanie wyników ankiety Kredyty dla przedsiębiorstw Polityka kredytowa:

Bardziej szczegółowo

XXII MINIKONKURS MATEMATYCZNY

XXII MINIKONKURS MATEMATYCZNY KOD UCZNIA XXII MINIKONKURS MATEMATYCZNY DLA UCZNIÓW KLAS 4 etap szkolny 1. Liczba o dwa większa od liczby dwa razy większej od 6724 to: A. 6 728 B. 2 688 C. 13 42 D. 13 40 2. Do stołówki przyszła grupa

Bardziej szczegółowo

8 / 2001 NIECO LEPIEJ

8 / 2001 NIECO LEPIEJ Sierpniowy pomiar koniunktury w placówkach bankowych wskazuje na pewną poprawę nastrojów bankowców szczebla oddziałów. Index PENGAB uzyskał wartość 2,1 punków, o 7 punktów procentowych więcej niż w lipcu.

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Repetytorium z matematyki elementarnej. Danuta Zaremba

Repetytorium z matematyki elementarnej. Danuta Zaremba Repetytorium z matematyki elementarnej Danuta Zaremba Wstęp Repetytorium to powstało z myślą o studentach, którzy chcą zdobyć uprawnienia do nauczania matematyki w szkole. Jako przyszli nauczyciele powinni

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

Cel ogólny: - ćwiczenie umiejętności posługiwania się procentami w sytuacjach zadaniowych.

Cel ogólny: - ćwiczenie umiejętności posługiwania się procentami w sytuacjach zadaniowych. Klasa I Technikum Lekcja Temat lekcji: ĆWICZENIA W OBLICZANIU PROCENTÓW. Cel ogólny: - ćwiczenie umiejętności posługiwania się procentami w sytuacjach zadaniowych. Cele edukacyjne: powinien: Znać pojęcie

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

KIEPSKIE OCENY - DOBRE PROGNOZY

KIEPSKIE OCENY - DOBRE PROGNOZY KIEPSKIE OCENY - DOBRE PROGNOZY Pierwszy tegoroczny pomiar koniunktury bankowej został przeprowadzony w dniach -7 stycznia, na próbie placówek, reprezentujących wszystkie typy banków krajowych. Wyniki

Bardziej szczegółowo