Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl"

Transkrypt

1 Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW

2 Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja parametrów systemu Implementacja systemu Podsumowanie 2

3 Steganografia i steganoanaliza E Dane do ukrycia Funkcja steganograficzna M Dane z ukrytą wiadomością C Dane nośne Klucz steganograficzny Kanał Komunikacyjny Opcjonalne E1 Wiadomość oryginalna Odwrotna funkcja steganograficzna M1 Dane z ukrytą wiadomością Decyzja Funkcja steganoalityczna 3

4 Cel pracy Opracowanie możliwie skutecznego zintegrowanego systemu testów wykrywających przekazy steganograficzne umożliwiającego: Wykrywanie nowych technik ukrywania przekazów steganograficznych, Konstrukcję nowych testów wykrywających zastosowanie poznanych technik ukrywania danych, Systematyczne testowanie danych cyfrowych na obecność przekazów steganograficznych. 4

5 Teza pracy Możliwa jest budowa zintegrowanego systemu steganoanalitycznego oraz jego optymalizacja pod względem poziomu błędów pierwszego i drugiego rodzaju, szybkości działania oraz wielkości użytych zasobów komputera poprzez: Odpowiedni wybór testów wykrywających przekazy steganograficzne oraz kolejności ich wykonywania, Opracowanie koncepcji systemu testowania, Wykorzystanie informacji o dotychczasowej częstości pojawiania się przekazów steganograficznych. 5

6 Koncepcja systemu Plik Import danych Obiekt cyfrowy Ekstrakcja cech Baza wiedzy Klasyfikacja i Tak Nie 6

7 Faza testowania Plik Import danych i ekstrakcja cech Sygnatury Znajdź sygnatury Tak Nie Anomalie Znajdź anomalie Tak Progi decyzyjne Nie Testy gładkości 7

8 Części składowe systemu Rozpoznawcza podgląd graficzny interaktywność Trenująca wszystkie testy tryb wsadowy Testowa wybrane testy optymalizacja klasyfikatora 8

9 Typy testów Statyczne sygnatury Lokalne anomalie w strukturze danych Efekty dwukrotnego kodowania Efekty pojemnościowe Klasa Nazwa (programu) Opis Zmienna decyzyjna Wartość progowa Warunek decyzyjny Implementacja (Matlab) Klasa, do której dany test należy Nazwa programu, którego dotyczy test Opis testu Wartość testowana Wartość progowa Opis formalny warunku testu Implementacja warunku Jakość P = { P, P, P, P } Wielkość błędu klasyfikacji Złożoność On ( ) Szacowana złożoność obliczeniowa testu 9

10 Przykład deskryptora testów Klasa Nazwa (programu) Opis Zmienna decyzyjna Wartość progowa Warunek decyzyjny Implementacja (Matlab) Jakość Złożoność P= { P, P, P, P} On () Sygnatura Courier 1.0 Znajduje określony ciąg bitów w drugim wierszu obrazu. v(c)=bitand(1,m(2,:,c)),c = 1..3 * s g n = [10] 0, x np x < 1, width ( m ) >, c { r, g, b } lsb(m(2,x,c)== 1, x P s1(c)=sum(lsb(2,1:2:y,c)==0); s2(c)=sum(lsb(2,2:2:y,c)==1); test(c)=(abs(s1+s2-y )<=2); P ={0,1,1,0} O( width( image)) 10

11 Przykład deskryptora testów Klasa Nazwa (programu) Opis Zmienna decyzyjna Wartość progowa Warunek decyzyjny Implementacja (Matlab) Anomalie Stealth Files Znajduje ciąg liter na końcu pliku. d=dataload(filename);l=length(d);d(l-7:l) λ thr =< 97,122> <65,90> min( s) = int(' a') s = f( x: length( f)), max( s) = int(' z') thr=[97,122]; sum(d(l-7:l)>=thr(1) & d(l-7:l)<=thr(2))==8 Jakość Złożoność P= { PPPP,,, } On () *26 1 P10 ( n) = P( bi [ a.. Z]) = ~ ( ) i= 1.. n O( width( image)) n n 11

12 Jakość testów korelacyjnych 12

13 Wybrane testy Symbol Opis Wzór Smt1 Smt2 Smt3 Smt4 Blc Gładkość wektora Gładkość macierzy Kontrast 2D - 1 Kontrast 2D - 2 Blokowość N i= 2 MN i= 2, j= 1 X X / N i X X /( M N) ( M 1) ( N 1) i= 2, j= 2 ( M 1)( N 1) i= 2, j= 2 i, j i 1, j i 1 4 X X X X X i, j i, j 1 i, j+ 1 i 1, j i+ 1, j 4 X X X X X i, j i 1, j 1 i 1, j+ 1 i+ 1, j 1 i+ 1, j+ 1 M /8 N M N/8 ( X X ) + ( X X ) 8 k+ 1, j 8 k+ 1, j 1 i,8 l+ 1 i 1,8 l+ 1 k= 1 j= 1 i= 1 l= 1 13

14 Kryterium Fishera Wybór najlepszych testów Lepsze jest kryterium Bayesa Rozkłady nie są Gaussowskie Utrata informacji przy redukcji wymiaru uur W X ( X X ) :max ( X ) + ( ) 14

15 Kryterium Bayesa 15

16 Podstawowe parametry systemu P = { h, h} d 0 1 P = { P( H ), P( H )} h 0 1 P = { P, P P, P } e 10 00, 11 01, c = { c, c c, c } = { c, c } λ thr 10 00, 11 01, 1 2 PH ( ) ( Ph, c) = 1 PH ( ) c 0 1 c

17 Poprawienie jakości klasyfikacji P( E ) = P ( x) dx dx dx, x R ij j r g b x R x G x B r i g i b i 3 P( E ) = P ( x) dx dx dx, x R 10 0 x R x G x B r 1 g 1 b 1 r g b 3 P( E ) = P ( x) dx dx dx, x R 01 1 x R x G x B r 0 g 0 b 0 r g b 3 17

18 Poprawienie fazy testowania Uaktualnianie parametrów systemu N P H + N + 1 P'( H0 ) = N P( H0), N + 1 N' = N + 1 ( 0) 1, ' ' ' ' ' dist λ = dist λ err hyp P ( P, ) P ( P, ( C, P )) err thr err thr for D for D 0 1 in :{ c, P, P P, D} P λ P ' hyp ' thr ' err hyp dist, err ( D) ' hyp ' hyp (, cp, P ) ( P λ ) dist, out :{ P, P } Warunek konieczny na optymalizację ' err ' thr dist P : P <= 0.1 P <= 0.1 e

19 Heurystyka wyboru testów Kolejno wykonywane testy wg klas Sygnatury Anomalie Gładkość obszaru Kolejność w klasach według prawdopodobieństwa pojawiania się pozytywnego wyniku testu c c i i sygn anom glad Ord( T ) P( H ), c C = { C, C, C } 19

20 Moduł fazy rozpoznawczej 20

21 Implementacja parametrów systemu Opis Rozkład prawdopodobieństwa Próg decyzyjny Prawdopodobieństwo błędu decyzji D i, kiedy jest słuszna hipoteza Prawdopodobieństwo błędu fałszywego alarmu Prawdopodobieństwo błędu przeoczenia przekazu Prawdopodobieństwo błędu przeoczenia w dziedzinie trójwymiarowej H j Opis formalny P( x) Implementacja - Matlab uuuur uur ur PH ( 0) c1 λthr indi = find( hj < hi δ); δ = 1 PH ( 0) c2 P( Eij ) = Pj ( x) dx R PE ( 10 ) = P0 ( xdx ) i x X PE ( 01) = P1 ( xdx ) 1 x X P( E ) P( x) dx x R x G x B r 0 g 0 b 0 ur uur uur h = hist( X )/ length( X ); i i i uuuur uur ur indi = find( hj < hi); uur uuuur P = sum( h ( ind )); ij j i uuuur uur uur ind1 = find( h0 < h1); uur uuuur P = sum( h ( ind )); uuuur uur uur ind0 = find( h0 > h1); uur uuuur P = sum( h ( ind )); uuuur uur uur ( ); uur uuuur P = sum( h ( ind )); = ind0 = find h0 > h

22 Podsumowanie Opracowanie nowych testów wykrywających przekazy steganograficzne Opis i implementacja wybranych testów oraz ocena ich jakości pod kątem poziomu błędów klasyfikacji Konstrukcja zintegrowanego systemu do wykrywania przekazów steganograficznych Optymalizacja parametrów programu wykrywającego przekazy steganograficzne klasyfikator Bayesa heurystyka wyboru kolejności testów wykorzystanie częstości pozytywnych wyników testów wykorzystanie reprezentacji graficznej danych statystyczna metoda wykrywania nowych sygnatur 22

23 Wnioski System generuje fałszywe alarmy w przypadku obrazów cyfrowych nieznanego pochodzenia W przypadku zawężonym do obrazów wykonanych aparatem cyfrowym i zmodyfikowanym wyłącznie jednym z wybranych programów poziom błędów jest pomijalny Problem jest dynamiczny i zmienia się wraz z oprogramowaniem do steganografii 23

24 Plan dalszych prac Zbadanie nowych programów steganograficznych Opracowanie nowych testów Testowanie zawartości Internetu Wykorzystanie teorii sieci neuronowych Zastosowanie algorytmów genetycznych 24

Zasady organizacji projektów informatycznych

Zasady organizacji projektów informatycznych Zasady organizacji projektów informatycznych Systemy informatyczne w zarządzaniu dr hab. inż. Joanna Józefowska, prof. PP Plan Definicja projektu informatycznego Fazy realizacji projektów informatycznych

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Techniki ukrywania informacji w danych cyfrowych i narzędzia je wykrywające

Techniki ukrywania informacji w danych cyfrowych i narzędzia je wykrywające IV. TECHNIKA, TECHNOLOGIA I BEZPIECZEŃSTWO INFORMATYCZNE 105 Magdalena Pejas Techniki ukrywania informacji w danych cyfrowych i narzędzia je wykrywające Już od starożytności w celach militarnych stosowano

Bardziej szczegółowo

PROJEKTOWANIE. kodowanie implementacja. PROJEKT most pomiędzy specyfikowaniem a kodowaniem

PROJEKTOWANIE. kodowanie implementacja. PROJEKT most pomiędzy specyfikowaniem a kodowaniem PROJEKTOWANIE określenie wymagań specyfikowanie projektowanie kodowanie implementacja testowanie produkt konserwacja Faza strategiczna Analiza Dokumentacja Instalacja PROJEKT most pomiędzy specyfikowaniem

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Mail: Pokój 214, II piętro

Mail: Pokój 214, II piętro Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,

Bardziej szczegółowo

Sprzętowo wspomagane metody klasyfikacji danych

Sprzętowo wspomagane metody klasyfikacji danych Sprzętowo wspomagane metody klasyfikacji danych Jakub Botwicz Politechnika Warszawska, Instytut Telekomunikacji Plan prezentacji 1. Motywacje oraz cele 2. Problemy klasyfikacji danych 3. Weryfikacja integralności

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Modyfikacja algorytmów retransmisji protokołu TCP.

Modyfikacja algorytmów retransmisji protokołu TCP. Modyfikacja algorytmów retransmisji protokołu TCP. Student Adam Markowski Promotor dr hab. Michał Grabowski Cel pracy Celem pracy było przetestowanie i sprawdzenie przydatności modyfikacji klasycznego

Bardziej szczegółowo

Technologia dynamicznego podpisu biometrycznego

Technologia dynamicznego podpisu biometrycznego Technologia dynamicznego podpisu biometrycznego Prof. Andrzej Czyżewski, Politechnika Gdańska VI Konferencja i Narodowy Test Interoperacyjności Podpisu Elektronicznego CommonSign 2016, 26 27. X. 2016 r.

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

e-sprawdzian instrukcja programu do sprawdzania wiedzy ucznia przy pomocy komputera (WINDOWS & LINUX)

e-sprawdzian instrukcja programu do sprawdzania wiedzy ucznia przy pomocy komputera (WINDOWS & LINUX) instrukcja programu do sprawdzania wiedzy ucznia przy pomocy komputera (WINDOWS & LINUX) Spis treści: 1. Wstęp. 2. Prawne aspekty używania programu. 3. Jak zdobyć e-sprawdzian. 4. Uruchomienie programu.

Bardziej szczegółowo

Zestaw zagadnień na egzamin dyplomowy inżynierski

Zestaw zagadnień na egzamin dyplomowy inżynierski Zestaw zagadnień na egzamin dyplomowy inżynierski Matematyka; matematyka dyskretna 1. Podstawowe działania na macierzach. 2. Przestrzeń wektorowa: definicja, przykłady, odwzorowania liniowe 3. Układy równań

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy

Bardziej szczegółowo

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii

Bardziej szczegółowo

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi. Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Spis treści. Wstęp... 11. Część I Internet rozwiązania techniczne... 13

Spis treści. Wstęp... 11. Część I Internet rozwiązania techniczne... 13 Wstęp... 11 Część I Internet rozwiązania techniczne... 13 1. Modelowanie dynamiki natężenia przesyłów TCP/IP... 15 1.1. Wprowadzenie... 15 1.2. Model matematyczny aproksymacji fluid flow... 16 1.2.1. Model

Bardziej szczegółowo

BIOINFORMATYKA. Copyright 2011, Joanna Szyda

BIOINFORMATYKA. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ.

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Praca dyplomowa. Program do monitorowania i diagnostyki działania sieci CAN. Temat pracy: Temat Gdańsk Autor: Łukasz Olejarz

Praca dyplomowa. Program do monitorowania i diagnostyki działania sieci CAN. Temat pracy: Temat Gdańsk Autor: Łukasz Olejarz Temat Gdańsk 30.06.2006 1 Praca dyplomowa Temat pracy: Program do monitorowania i diagnostyki działania sieci CAN. Autor: Łukasz Olejarz Opiekun: dr inż. M. Porzeziński Recenzent: dr inż. J. Zawalich Gdańsk

Bardziej szczegółowo

Opis ultradźwiękowego generatora mocy UG-500

Opis ultradźwiękowego generatora mocy UG-500 R&D: Ultrasonic Technology / Fingerprint Recognition Przedsiębiorstwo Badawczo-Produkcyjne OPTEL Sp. z o.o. ul. Otwarta 10a PL-50-212 Wrocław tel.: +48 71 3296853 fax.: 3296852 e-mail: optel@optel.pl NIP

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

Najwyżej ocenione raporty dla Mr Buggy 4

Najwyżej ocenione raporty dla Mr Buggy 4 Najwyżej ocenione raporty dla Mr Buggy 4 Uwagi Komisji: 1. Żaden z raportów nie otrzymał maksymalnej liczby punktów. 2. Poniżej prezentowane są oryginalne wersje raportów z usuniętymi danymi mogącymi identyfikować

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Trafność czyli określanie obszaru zastosowania testu

Trafność czyli określanie obszaru zastosowania testu Trafność czyli określanie obszaru zastosowania testu Trafność jest to dokładność z jaką test mierzy to, co ma mierzyć Trafność jest to stopień, w jakim test jest w stanie osiągnąć stawiane mu cele Trafność

Bardziej szczegółowo

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa. GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

System wspomagania harmonogramowania przedsięwzięć budowlanych

System wspomagania harmonogramowania przedsięwzięć budowlanych System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika

Bardziej szczegółowo

Konwerter Plan testów. Jakub Rauch Tomasz Gołębiowski Adam Busch Bartosz Franaszek 1 czerwca 2008

Konwerter Plan testów. Jakub Rauch Tomasz Gołębiowski Adam Busch Bartosz Franaszek 1 czerwca 2008 Konwerter Plan testów Jakub Rauch Tomasz Gołębiowski Adam Busch Bartosz Franaszek 1 czerwca 2008 1 Spis treści 1 Wprowadzenie 3 1.1 Cel........................................ 3 1.2 Zamierzeni odbiorcy

Bardziej szczegółowo

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i Materiały Nr 9 9 Piotr NIKLAS* pomiar częstotliwości, składowe harmoniczne, automatyka elektroenergetyczna

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3)

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3) Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna

Bardziej szczegółowo

Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych

Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Mateusz Kobos, 07.04.2010 Seminarium Metody Inteligencji Obliczeniowej Spis treści Opis algorytmu i zbioru

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Wykład VII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Steganografia Steganografia - nauka o komunikacji w taki sposób,

Bardziej szczegółowo

Edukacja techniczno-informatyczna I stopień studiów. I. Pytania kierunkowe

Edukacja techniczno-informatyczna I stopień studiów. I. Pytania kierunkowe I stopień studiów I. Pytania kierunkowe Pytania kierunkowe KMiETI 7 KTMiM 7 KIS 6 KMiPKM 6 KEEEiA 5 KIB 4 KPB 3 KMRiMB 2 1. Omów sposób obliczeń pracy i mocy w ruchu obrotowym. 2. Co to jest schemat kinematyczny?

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Modelowanie glikemii w procesie insulinoterapii

Modelowanie glikemii w procesie insulinoterapii Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą

Bardziej szczegółowo

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów

Bardziej szczegółowo

Diagnostyka procesów przemysłowych Kod przedmiotu

Diagnostyka procesów przemysłowych Kod przedmiotu Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

System wizyjny OMRON Xpectia FZx

System wizyjny OMRON Xpectia FZx Ogólna charakterystyka systemu w wersji FZ3 w zależności od modelu można dołączyć od 1 do 4 kamer z interfejsem CameraLink kamery o rozdzielczościach od 300k do 5M pikseli możliwość integracji oświetlacza

Bardziej szczegółowo

Nazwa Projektu. Plan testów. Wersja N.NN

Nazwa Projektu. Plan testów. Wersja N.NN Nazwa Projektu Plan testów Wersja N.NN Projekt realizowany jest w ramach Programu e-cło współfinansowanego ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

Drzewa decyzyjne. Jak klasyfikować obiekty o cechach nominalnych (opisowych), tj. pochodzących ze skończonego zbioru, bez uporządkowania?

Drzewa decyzyjne. Jak klasyfikować obiekty o cechach nominalnych (opisowych), tj. pochodzących ze skończonego zbioru, bez uporządkowania? Drzewa decyzyjne 1 Jak klasyfikować obiekty o cechach nominalnych (opisowych), tj. pochodzących ze skończonego zbioru, bez uporządkowania? Przykłady cech nominalnych: płeć ϵ {kobieta, mężczyzna}, palenie

Bardziej szczegółowo

Klasyfikacja. Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji. Eksploracja danych. Klasyfikacja wykład 1

Klasyfikacja. Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji. Eksploracja danych. Klasyfikacja wykład 1 Klasyfikacja Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji Klasyfikacja wykład 1 Niniejszy wykład poświęcimy kolejnej metodzie eksploracji danych klasyfikacji. Na początek

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Rewolucja cyfrowa i jej skutki Rewolucja cyfrowa - dane cyfrowe: podstawowy rodzaj informacji multimedialnych,

Bardziej szczegółowo

Testy z użytkownikami jako narzędzia wspomagające projektowanie interfejsów użytkownika

Testy z użytkownikami jako narzędzia wspomagające projektowanie interfejsów użytkownika Projektowanie miejsc pracy przy komputerze Testy z użytkownikami jako narzędzia wspomagające projektowanie interfejsów użytkownika dr inż. Walery Susłow mgr inż. Michał Statkiewicz Podstawowe pojęcia Interfejs

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Optymalizacja Automatycznych Testów Regresywnych

Optymalizacja Automatycznych Testów Regresywnych Optymalizacja Automatycznych Testów Regresywnych W Organizacji Transformującej do Agile Adam Marciszewski adam.marciszewski@tieto.com Agenda Kontekst projektu Typowe podejście Wyzwania Cel Założenia Opis

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

MODELOWANIE OBIEKTOWE

MODELOWANIE OBIEKTOWE (Wykład na podstawie literatury: M.Śmiałek Zrozumieć UML 2.0, Helion 2005) UML Unified Modeling Language (język do specyfikowania, wizualizowania, konstruowania i dokumentacji tzw. artefactów oraz czynności

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

Jak efektywnie wykrywać podatności bezpieczeństwa w aplikacjach? OWASP 19.11.2014. The OWASP Foundation http://www.owasp.org

Jak efektywnie wykrywać podatności bezpieczeństwa w aplikacjach? OWASP 19.11.2014. The OWASP Foundation http://www.owasp.org Jak efektywnie wykrywać podatności bezpieczeństwa w aplikacjach? dr inż. Jakub Botwicz CISSP, ECSA, GWAPT 19.11.2014 jakub.botwicz@gmail.com Copyright The Foundation Permission is granted to copy, distribute

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych

Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych ZARZĄDZANIE ENERGIĄ I TELEINFORMATYKA, ZET 03 Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych Jacek Wasilewski Politechnika Warszawska

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 Projektowanie kerneli Zasady optymalizacji: należy maksymalizować liczbę wątków (w rozsądnych granicach, granice zależą

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium ZALICZENIE Zadanie nr 3 Rozpoznawanie ręcznie pisanych cyfr autorzy: A. Gonczarek, P. Klukowski, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem

Bardziej szczegółowo

Modelowanie procesów współbieżnych

Modelowanie procesów współbieżnych Modelowanie procesów współbieżnych dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Modelowanie... Literatura M.

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

FORMULARZ OFERTOWY. do zapytania ofertowego z dn. 04.02.2013r.

FORMULARZ OFERTOWY. do zapytania ofertowego z dn. 04.02.2013r. FORMULARZ OFERTOWY do zapytania ofertowego z dn. 04.02.2013r. Nazwa podmiotu składającego ofertę: Adres podmiotu: Termin ważności oferty: Cena netto za poniższy zakres: SZCZEGÓŁY OFERTY: Lp. 1.1 Nazwa

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r.

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r. Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu Ireneusz Szcześniak Politechnika Śląska 20 czerwca 2002 r. 2 Plan prezentacji Wprowadzenie Prezentacja trójwymiarowych sieci

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Wyszukiwanie tekstów

Wyszukiwanie tekstów Wyszukiwanie tekstów Dziedzina zastosowań Elektroniczne encyklopedie Wyszukiwanie aktów prawnych i patentów Automatyzacja bibliotek Szukanie informacji w Internecie Elektroniczne teksy Ksiązki e-book Artykuły

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych:

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych: Zmienna i typ Pascal typy danych Zmienna to obiekt, który może przybierać różne wartości. Typ zmiennej to zakres wartości, które może przybierać zmienna. Deklarujemy je w nagłówku poprzedzając słowem kluczowym

Bardziej szczegółowo

StatSoft profesjonalny partner w zakresie analizy danych

StatSoft profesjonalny partner w zakresie analizy danych Analiza danych Data mining Sterowanie jakością Analityka przez Internet StatSoft profesjonalny partner w zakresie analizy danych StatSoft Polska Sp. z o.o. StatSoft Polska Sp. z o.o. ul. Kraszewskiego

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo