Budowa i diagnostyka pułapki magneto optycznej Badanie zderzeń zimnych atomów rubidu w polu świetlnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Budowa i diagnostyka pułapki magneto optycznej Badanie zderzeń zimnych atomów rubidu w polu świetlnym"

Transkrypt

1 Budowa i diagnostyka pułapki magneto optycznej Badanie zderzeń zimnych atomów rubidu w polu świetlnym Andrzej Noga Praca magisterska wykonana pod kierunkiem dr Witolda Chałupczaka Zakład Optyki Atomowej Instytut Fizyki Uniwersytet Jagielloński Kraków, 2001

2 Spis treści WSTĘP 1 1. OPIS UKŁADU PUŁAPKI MAGNETO OPTYCZNEJ Układ laserów Laser diodowy z zewnętrznym rezonatorem Kontrola własności spektralnych laserów Strojenie diody laserowej pracującej w wolnej generacji Stabilizacja temperatury i prądu diody laserowej Dioda laserowa z zewnętrznym rezonatorem strojenie i kontrola sprzężenia zwrotnego Stabilizacja częstotliwości lasera na linii atomowej Przesunięcie częstotliwości światła modulatorem akusto optycznym Wzmocnienie światła pułapkującego technika injection locking Parametry pracy laserów Kształtowanie wiązki światła Izolatory optyczne Schemat układu pułapki magneto optycznej Układ próżniowy Detekcja ciśnienia Źródło atomów rubidu Pole magnetyczne DIAGNOSTYKA PUŁAPKI MAGNETO OPTYCZNEJ 2.1. Pomiar rozmiaru chmury zimnych atomów Sposób wykonania pomiaru Rozmiar chmury zimnych atomów wyniki Liczba atomów w chmurze Sposób wykonania pomiaru Kalibracja filtrów neutralnych Kalibracja fotopowielacza i jego charakterystyka Wyznaczenie liczby atomów w chmurze Liczba atomów w chmurze wyniki Gęstość atomów w chmurze Zależność wielkości charakteryzujących chmurę zimnych atomów od parametrów pracy pułapki Zależność wielkości charakteryzujących chmurę zimnych atomów od ciśnienia par rubidu Zależność wielkości charakteryzujących chmurę zimnych atomów od gradientu pola magnetycznego BADANIE ZDERZEŃ ZIMNYCH ATOMÓW 3.1. Klasyfikacja zimnych zderzeń Zderzenia elastyczne Zderzenia nieelastyczne Zderzenia w stanie podstawowym Zderzenia w stanie pojedynczo wzbudzonym Zderzenia w stanie podwójnie wzbudzonym Omówienie wybranych rodzajów zderzeń Zderzenia prowadzące do zmiany struktury subtelnej (FSC) Zderzenia prowadzące do ucieczki radiacyjnej (RE) Zderzenia prowadzące do zmiany struktury nadsubtelnej (HSC) Badanie zimnych zderzeń Metoda strat ( trap loss method ) Wyznaczenie raty zimnych zderzeń β Rata zimnych zderzeń β - wyniki Interpretacja otrzymanych wyników 55 PODSUMOWANIE 59 DODATEK BIBLIOGRAFIA

3 WSTĘP Na przełomie ostatnich kilkunastu lat opanowano i rozwinięto technikę spowalniania (chłodzenia) atomów przy użyciu sił optycznych. Standardowym narzędziem fizyków służącym do spowalniania atomów jest pułapka magneto optyczna (MOT), umożliwiająca schłodzenie (oraz pułapkowanie) atomów do temperatur rzędu 100 µk. Tak przygotowana próbka zimnych atomów jest punktem wyjścia do dalszych eksperymentów, z których warto wymienić badania z zakresu optyki nieliniowej, zachowań kolektywnych atomów (kondensat Bose go - Einsteina), a także, ze względu na zaniedbywalnie mały efekt Dopplera, bardzo dokładne pomiary spektroskopowe. Jednym z tych niezwykle interesujących zagadnień są tzw. zimne zderzenia, tzn. zderzenia atomów w reżimie niskich temperatur osiąganych w standardowych pułapkach magneto optycznych. Wykazują one wiele własności odróżniających je od zderzeń w normalnych warunkach. Jedną z charakterystycznych cech zimnych atomów jest ich czułość na długozasięgowe oddziaływania międzyatomowe. Wynika to z faktu, że energia kinetyczna (prędkość υ ~ 1m/s) atomów jest mała w porównaniu do energii oddziaływania między nimi, nawet na dużych odległościach międzyatomowych R ~ 1000 Å. Drugą bardzo istotną cechą wyróżniającą zimne zderzenia jest czas ich trwania, wynikający z wymienionych wcześniej własności tzn. powolnego ruchu atomów oraz odległości, przy których zaczynają oddziaływać. Czas trwania procesu zderzenia jest rzędu kilkuset nanosekund i jest dłuższy niż czas życia atomu wzbudzonego. Oznacza to, że podczas zderzeń możliwa jest emisja spontaniczna oraz absorpcja fotonów, co stwarza interesujące możliwości sterowania przebiegiem procesu przy użyciu światła. Ciekawym zagadnieniem z tym związanym jest produkcja zimnych stabilnych molekuł. W Zakładzie Optyki Atomowej Uniwersytetu Jagiellońskiego w Krakowie od kilku lat są prowadzone badania przy użyciu pułapki magneto optycznej. Pułapka ta nie była jednak projektowana w celu badania zimnych zderzeń, dlatego postanowiono skonstruować niezależne stanowisko lepiej przystosowane do tego typu eksperymentów. Celem niniejszej pracy magisterskiej było zestawienie, uruchomienie oraz diagnostyka nowej pułapki magneto optycznej. Cel ten został zrealizowany, dodatkowo przeprowadzono podstawowe pomiary dotyczące zderzeń pomiędzy zimnymi atomami. W pierwszym rozdziale została opisana aparatura (układ optyczny oraz układ próżniowy), stanowiąca jako całość pułapkę magneto optyczną. Rozdział drugi obejmuje diagnostykę pułapki magneto optycznej. W rozdziale trzecim omówiono podstawowe rodzaje zimnych zderzeń, zaprezentowano uzyskane dane doświadczalne oraz przedstawiono ich intuicyjną interpretację. 1

4 2

5 1. OPIS UKŁADU PUŁAPKI MAGNETO - OPTYCZNEJ Omawiana w niniejszej pracy magisterskiej pułapka magneto optyczna (MOT) została zaprojektowana w celu spowalniania (chłodzenia) i pułapkowania atomów metali alkalicznych, a w szczególności izotopu rubidu 85 Rb. Aparaturę można podzielić na dwa główne bloki funkcjonalne: - układ laserowy - układ próżniowy 1.1. Układ laserów Do poprawnej pracy pułapki magneto optycznej niezbędne są dwa lasery: pułapkujący i repompujący. Zadaniem lasera pułapkującego jest dostarczenie promieniowania o ściśle określonej częstotliwości (odstrojonego w omawianej pułapce o δ = 10 MHz w stronę niższych częstości ( ku czerwieni ) od przejścia rezonansowego 5 2 S 1/2 (F = 3) 5 2 P 3/2 (F = 4) ). Laser ten wzbudza atomy do stanu 5 2 P 3/2 (F = 4), a także ze względu na niewielką odległość między poziomami - do stanu 5 2 P 3/2 (F = 3), skąd następuje emisja spontaniczna m.in. do stanu 5 2 S 1/2 (F = 2). Jest to zjawisko pompowania optycznego, wskutek którego cała populacja atomów zastaje przeniesiona do poziomu energetycznego 5 2 S 1/2 (F = 2), nieaktywnego z punktu widzenia procesu pułapkowania. Aby temu zapobiec stosuje się dodatkowy laser (repompujący), dostrojony w pobliże przejścia 5 2 S 1/2 (F = 2) 5 2 P 3/2 (F = 2,3), skąd możliwa jest emisja spontaniczna do aktywnego stanu 5 2 S 1/2 (F = 3). Na rys.1.1 przedstawiono omawianą strukturę energetyczną rubidu 85 Rb oraz linie laserów. 5P 2 3/2 [Mhz] F =4 121 F =3 F = F =1 5P 2 1/2 F =3 362 F =2 D1 794 nm D2 780 nm PUŁAPKOWANIE REPOMPOWANIE F=3 5S 2 1/ F=2 Rys.1.1. Struktura poziomów energetycznych rubidu 85 Rb 3

6 Badanie zderzeń pomiędzy zimnymi atomami w zależności od natężenia światła pułapkującego może dostarczyć wielu cennych informacji, z tego powodu laser pułapkujący powinien mieć możliwie dużą moc. Ponieważ światło generowane przez używany laser pułapkujący ma stosunkowo niewielką moc (P = 6.6 mw), konieczne jest jego wzmocnienie. W tym celu stosuje się dodatkowy laser pełniący funkcję wzmacniacza promieniowania (p.1.1.8). W opisywanej aparaturze jako źródeł światła zastosowano lasery diodowe HITACHI 7852G o maksymalnej mocy emitowanego promieniowania P = 50 mw. Zaletą diod laserowych jest ich niewielki koszt, łatwość przestrajania oraz prostota obsługi. Natomiast wadami laserów diodowych są: ograniczony zakres przestrajania oraz stosunkowo niewielka moc generowanego światła Laser diodowy z zewnętrznym rezonatorem Jednym z warunków nałożonych na laser pułapkujący jest szerokość spektralna emitowanego przez niego światła. Do stabilnej pracy pułapki wymagana jest szerokość rzędu 1 MHz. Jednak dioda laserowa pracująca w wolnej generacji * emituje promieniowanie zbyt szerokie spektralnie. Aby je zawęzić do wymaganej wielkości stosuje się zewnętrzny rezonator. Dodatkową zaletą takiego rozwiązania jest łatwiejsze przestrajanie lasera. W opisywanej aparaturze lasery pułapkujący i repompujący pracują w reżimie sprzężenia zwrotnego od zewnętrznego rezonatora w konfiguracji Littmana - Metcalfa [1.1]. Niestety, moc wyjściowa lasera pracującego w sprzężeniu zwrotnym jest znacznie niższa niż podczas pracy w wolnej generacji Kontrola własności spektralnych laserów Aby pułapka magneto optyczna mogła poprawnie działać, promieniowanie generowane przez lasery musi spełniać określone warunki. Konieczna jest zatem stała kontrola własności spektralnych laserów. Parametry, które muszą być monitorowane to: a) długość fali W celu zgrubnego określenia długości fali wykorzystuje się spektrograf siatkowy o rozdzielczości 180 GHz/mm. Światło poszczególnych laserów jest doprowadzone do szczeliny wejściowej spektrografu za pomocą światłowodów. Obraz wyjściowy powstający na matówce z wykalibrowaną skalą jest rejestrowany przy użyciu kamery CCD i obserwowany na monitorze. Innym przyrządem pozwalającym określić długość fali jest Wavemeter firmy Burlaigh o rozdzielczości 0,001 Å. Podobnie jak w przypadku spektrografu, światło jest tu doprowadzone przy użyciu światłowodu. Jednak ze względu swoją na konstrukcję, Wavemeter może pracować jednocześnie tylko z jednym laserem jednomodowym. Nie jest zatem możliwe, przy użyciu tego przyrządu, jednoczesne monitorowanie wszystkich używanych laserów. b) praca jednomodowa Do kontroli widma lasera używa się przestrajalnego konfokalnego interferometru Fabry-Perot (analizator widma) o finezji F = 100, przedział dyspersji FSR = 1.5 GHz. Umożliwia on kontrolę * Praca bez zewnętrznego rezonatora 4

7 pracy jednomodowej, a także szerokości linii. Należy jednak pamiętać, że minimalna szerokość linii jaka może być zaobserwowana przy pomocy analizatora widma, jest większa lub równa jego szerokości aparaturowej. c) szerokość linii Do oszacowania szerokości spektralnej linii wykorzystuje się sygnał spektroskopii nasyceniowej wolny od poszerzenia dopplerowskiego. Przy użyciu lasera o szerokości linii rzędu ułamka szerokości naturalnej poziomu atomowego, powinno się otrzymać dobrze rozdzielone widmo struktury nadsubtelnej badanego przejścia. Jeżeli pomimo poprawnego wyjustowania układu spektroskopii nasyceniowej rozdzielczość spektralna jest niska, oznacza to, że laser ma szerokie widmo Strojenie diody laserowej pracującej w wolnej generacji Strojenie diody laserowej pracującej w wolnej generacji odbywa się poprzez zmianę temperatury ( T ) oraz prądu diody ( I ). Zmiana tych parametrów powoduje kilka efektów: zmianę współczynnika załamania n = n(t) ośrodka, zmianę odległości pomiędzy pasmami w półprzewodniku, a także zmianę długości kryształu wskutek rozszerzalności cieplnej [1.1]. W wyniku tych zjawisk, przy strojeniu lasera następuje zarówno przesuwanie profilu wzmocnienia, jak i modów podłużnych ( w domenie częstości ). Ponieważ profil wzmocnienia przesuwa się szybciej niż mody, występuje zjawisko przeskoku modów ( mode hop ). Polega ono na nieciągłej zmianie częstości generowanego promieniowania przy ciągłej zmianie parametrów T oraz I. Możliwa jest zatem sytuacja, że dioda laserowa będzie mieć przeskok modu w rozważanym zakresie spektralnym (780 nm). Należy tak dobrać prąd i temperaturę diody, aby w żądanym zakresie laser stroił się w sposób ciągły. Ponieważ poszczególne egzemplarze diod laserowych (nawet tego samego typu) mają różne charakterystyki strojenia, dla każdej z nich należy dobierać wartości temperatury i prądu indywidualnie Stabilizacja temperatury i prądu diody laserowej Częstość światła generowanego przez diodę laserową zależy od prądu i temperatury. Niezbędne są zatem układy pozwalające kontrolować i stabilizować te parametry. a) stabilizacja temperatury Do stabilizacji temperatury użyto dedykowanego układu elektronicznego wykonanego przez firmę PROFI. Stabilizacja temperatury odbywa się poprzez układ sprzężenia zwrotnego typu PID (w skład którego wchodzą układy: proporcjonalny P, całkujący I oraz różniczkujący D). Dioda laserowa jest w kontakcie termicznym z miedzianym bloczkiem spoczywającym na module Peltiera. Do bloczku miedzianego są przyklejone czujniki temperatury: termistor NTC 47 kω oraz LM 35. Termistor pracuje w układzie sprzężenia zwrotnego, natomiast drugi czujnik pełni funkcję pomocniczą, umożliwia bowiem odczyt temperatury w C. Ważne jest, aby termistor był umiejscowiony stosunkowo blisko elementu Peltiera, dzięki czemu unika się opóźnienia w przekazie ciepła od elementu termoelektrycznego do czujnika NTC. Opóźnienie to uniemożliwiało poprawną pracę układu stabilizacji. Gorąca strona modułu peltierowskiego spoczywa 5

8 na masywnym aluminiowym bloku pełniącym funkcję radiatora. Dobry transfer ciepła pomiędzy poszczególnymi elementami zapewnia pasta silikonowa. Elektroniczny układ kontroli temperatury umożliwia odczyt bieżącej temperatury w C, bieżącego napięcia na termistorze, ustawienie zadanego napięcia, odczyt sygnału błędu (dodatkowe wyjście w standardzie BNC) oraz regulację stałych PID. Zmiana temperatury powoduje zmianę oporności termistora, a w konsekwencji zmianę napięcia. Różnica tego napięcia od napięcia zadanego jest sygnałem błędu, który jest następnie podawany na wzmacniacze PID, i po zsumowaniu, steruje przepływem prądu przez moduły termoelektryczne Peltiera. Stałe PID (proporcjonalna, całkująca i różniczkująca) zostały dobrane doświadczalnie poprzez obserwację sygnału błędu na oscyloskopie, tak aby układ dochodził do zadanej temperatury w sposób optymalny. b) stabilizacja prądu Do stabilizacji prądu użyto dedykowanego układu elektronicznego firmy PROFI. Umożliwia on regulację prądu diody, posiada wejście na zewnętrzną modulację prądu (standard BNC), ma także możliwość kontroli mocy emitowanego przez diodę światła (w tym celu wykorzystywana jest fotodioda zintegrowana z diodą laserową). W celu uniknięcia zakłóceń z sieci energetycznej, zarówno elektronika jak i same lasery są zasilane z akumulatorów. Układ posiada możliwość ustalenia limitu prądu maksymalnie do 150 ma. Wartość ta odpowiada maksymalnemu prądowi jaki może być wstrzykiwany do stosowanych diod laserowych. Dodatkowo zastosowano diodę Schottky ego połączoną równolegle z diodą laserową, zabezpieczającą laser przed niewłaściwą polaryzacją prądu. Obydwa układy kontroli prądu i temperatury są zamknięte w metalowej obudowie pełniącej funkcję ekranu elektromagnetycznego i charakteryzują się bardzo wysoką stabilnością pracy Dioda laserowa z zewnętrznym rezonatorem strojenie i kontrola sprzężenia zwrotnego a) strojenie Zastosowanie zewnętrznego rezonatora - oprócz zawężenia linii - prowadzi do znacznie większej liczby dopuszczalnych modów podłużnych (ze względu na wydłużenie rezonatora) w profilu wzmocnienia diody laserowej. Często ułatwia to dostrojenie lasera do zadanej częstości, zwłaszcza w przypadku, gdy laser pracujący w wolnej generacji ma w tym obszarze spektralnym przeskok modu. Dostrojenie lasera pracującego w reżimie sprzężenia zwrotnego do zadanej częstości polega na odpowiednim dobraniu trzech parametrów: temperatury i prądu diody oraz ustawienia lustra w zewnętrznym rezonatorze. b) kontrola sprzężenia zwrotnego Często, pomimo zastosowania zewnętrznego rezonatora, laser generuje promieniowanie o częstości wyznaczonej przez wewnętrzny rezonator (wolna generacja). Sytuacja taka jest możliwa w kilku przypadkach: - nieprawidłowym wyjustowaniu zewnętrznego rezonatora - dobraniu takich wartości temperatury i prądu, dla których korzystniejsza energetycznie jest praca w wolnej generacji. 6

9 Praca w reżimie sprzężenia zwrotnego jest konieczna zarówno do zawężenia spektralnego generowanego promieniowania (niezbędne w przypadku lasera pułapkującego), jak i do efektywnego przestrajania lasera poprzez zmianę długości zewnętrznego rezonatora za pomocą elementu piezoelektrycznego (konieczne do stabilizacji częstości lasera na przejściu atomowym). Istotne jest zatem, aby podczas dostrajania lasera do zadanej częstości, jednocześnie kontrolować czy mod, w którym pracuje laser jest wymuszany przez zewnętrzny rezonator. Wykorzystuje się w tym celu analizator widma. Jeżeli laser pracuje w sprzężeniu zwrotnym, wówczas zmiana długości zewnętrznego rezonatora powoduje zmianę częstotliwości promieniowania. Długość zewnętrznego rezonatora można zmieniać poprzez przyłożenie napięcia na element piezoelektryczny, na którym jest umocowane lustro. Zakres częstości, o który można tym sposobem przestrajać laser jest rzędu 1 GHz (w praktyce zakres ten odpowiada szerokości dopplerowskiej rozważanego przejścia atomowego). Analizator widma umożliwia obserwację zmiany częstości generowanego światła w zależności od napięcia (np. o przebiegu piłokształtnym) przykładanego na element piezoelektryczny. Jeżeli nie obserwujemy zmiany częstości lub zmiana ta nie jest liniowa, oznacza to, że dioda pracuje w wolnej generacji lub że sprzężenie jest zbyt słabe. Ten ostatni czynnik bardzo silnie zależy od wyjustowania lustra w rezonatorze. Stopień sprzężenia można zmieniać poprzez: - zastosowanie siatek dyfrakcyjnych na różne zakresy spektralne - odpowiednie ustawienie siatki względem kierunku padającego promieniowania (tylko w przypadku siatek dyfrakcyjnych profilowanych) - odpowiednie ustawienie polaryzacji światła względem rys siatki; ponieważ dioda laserowa generuje światło spolaryzowane liniowo, warunek ten prosto jest zrealizować przez obrót diody wzdłuż osi wyznaczonej przez kierunek emisji światła. Końcowym testem prawidłowej pracy w reżimie sprzężenia zwrotnego na zadanej długości fali jest obserwacja widma przejścia atomowego z układu spektroskopii nasyceniowej Stabilizacja częstotliwości lasera na linii atomowej Zmiana prądu i temperatury diody laserowej pozwala na zgrubne dostrojenie do zadanej częstości. Pomimo stabilizacji tych wielkości, częstotliwość lasera nie jest dokładnie ustalona, podlega powolnemu płynięciu (dryft), a także szybkim fluktuacjom. Spowodowane jest to drganiami akustycznymi rezonatora lasera, fluktuacjami i powolnymi zmianami temperatury powietrza. W celu utrzymywania ściśle określonej częstotliwości promieniowania, lasery stabilizuje się do linii atomowej. Wzorcem atomowym wykorzystywanym do stabilizacji był wybrany rezonans z widma nasyconej absorpcji przejścia 5 2 S 1/2 (F = 3) 5 2 P 3/2 (F = 2,3,4). 7

10 a) układ spektroskopii nasyceniowej PD Rb R=4% λ/4 POL Rys.1.2. Schemat układu spektroskopii nasyceniowej Wiązka światła spolaryzowanego liniowo w płaszczyźnie rysunku przechodzi przez dzielnik polaryzujący, następnie przez ćwierćfalówkę i przez komórkę z parami rubidu. Wiązka ta pełni funkcję wiązki pompującej. Niewielka część światła (ok.4%) jest odbijana od klina szklanego i wracając po tej samej drodze pełni funkcję wiązki próbkującej. Zastosowanie klina szklanego zamiast płytki płaskorównoległej, zapobiega interferencji wiązek odbitych od dwóch powierzchni płytki. Światło po podwójnym przejściu przez ćwierćfalówkę zmienia polaryzację na ortogonalną, dzięki czemu na kostce polaryzującej jest odbijane w kierunku fotodiody. Sygnał z detektora jest obserwowany na oscyloskopie cyfrowym. Przestrajając laser w zakresie danego przejścia atomowego poprzez zmianę napięcia na elemencie piezoelektrycznym, obserwuje się bezdopplerowskie widmo nasyconej absorpcji. Ponieważ pracujemy z laserami wąskimi spektralnie (szerokość linii lasera jest kilkakrotnie mniejsza niż szerokość naturalna badanych przejść atomowych) widmo ma bardzo dobrą rozdzielczość i ukazuje rozdzieloną strukturę nadsubtelną rozpatrywanego przejścia. Poniżej przedstawiono zarejestrowane widma (rys.1.3 i rys.1.4). Zastosowane źródło rubidu dostarcza naturalnej mieszaniny dwu izotopów tego pierwiastka: 85 Rb oraz 87 Rb, w proporcjach ok. 5 : 1. Pomimo, że niniejsza praca koncentruje się na badaniu zimnych zderzeń atomów rubidu 85 Rb, nie ma przeszkód technicznych, aby pułapkować i badać drugi izotop. Jako dowód, poniżej (rys.1.6 i rys.1.7) przedstawiono zebrane widma spektroskopii nasyceniowej dla rubidu 87 Rb, którego struktura energetyczna została pokazana na rys

11 co34 co co λ Rys.1.3. Sygnał z układu spektroskopii nasyceniowej dla lasera dostrojonego do przejścia 5 2 S 1/2 (F = 3) 5 2 P 3/2 (F = 2,3,4) w rubidzie 85 Rb. Symbolem co F F oznaczono rezonanse krzyżowe ( crossover resonances ). co 13 co co λ Rys.1.4. Sygnał z układu spektroskopii nasyceniowej dla lasera dostrojonego do przejścia 5 2 S 1/2 (F = 2) 5 2 P 3/2 (F = 1,2,3) w rubidzie 85 Rb (oznaczenia analogiczne jak na rys.1.3) 9

12 5P 2 3/2 F=3 F=2 F=1 F=0 [Mhz] P 2 1/2 F=2 F= S 2 1/2 F=2 F= Rys.1.5. Schemat poziomów energetycznych rubidu 87 Rb 2 1 co12 co23 co λ Rys.1.6. Sygnał z układu spektroskopii nasyceniowej dla lasera dostrojonego do przejścia 5 2 S 1/2 (F = 2) 5 2 P 3/2 (F = 1,2,3) w rubidzie 87 Rb (oznaczenia analogiczne jak na rys.1.3) 10

13 1 2 co12 co co λ Rys.1.7. Sygnał z układu spektroskopii nasyceniowej dla lasera dostrojonego do przejścia 5 2 S 1/2 (F = 1) 5 2 P 3/2 (F = 0,1,2) w rubidzie 87 Rb (oznaczenia analogiczne jak na rys.1.3) b) stabilizacja lasera na linii atomowej przy użyciu wzmacniacza fazoczułego (LOCK-IN) Stabilizacja na linii atomowej przy użyciu wzmacniacza fazoczułego polega na zmodulowaniu częstotliwości lasera poprzez przyłożenie napięcia piłokształtnego o dużej częstotliwości (10 khz) na element piezoelektryczny, co powoduje zmianę długości rezonatora. Amplituda modulacji częstotliwości wynosi ok. 1/10 szerokości naturalnej linii rezonansowej. Tak zmodulowanym światłem przeprowadza się spektroskopię nasyceniową wg schematu opisanego w (p a), a sygnał z detektora podaje się na wejście LOCK-IN-a. Modulacja częstotliwości lasera jest niezbędna do poprawnej pracy wzmacniacza fazoczułego, którego działanie polega na zróżniczkowaniu sygnału wejściowego. Pochodna sygnału lorentzowskiego (kształt linii rezonansowej w bezdopplerowskim widmie spektroskopii nasyceniowej) ma kształt dyspersyjny i jest sygnałem błędu. W maksimum rezonansu wynosi on zero, w miarę oddalania się od rezonansu sygnał błędu zmienia się w przybliżeniu liniowo. Następnie jest on po wzmocnieniu podawany na element piezoelektryczny, zapewniając stabilizację lasera na maksimum rezonansu. 11

14 OFFSET sygnał błędu LOCK-IN sygnał nasyconej absorpcji napięcie na piezoelektryk sumator + wzmacniacz 10 khz 10 Hz Generator Rys.1.8. Schemat układu stabilizacji lasera Należy wyróżnić dwa etapy: a) przed zamknięciem pętli sprzężenia zwrotnego Na element piezoelektryczny jest przykładany sygnał będący sumą następujących sygnałów: - sygnału piłokształtnego o dużej amplitudzie o częstotliwości 10 Hz. Amplituda tego sygnału jest wystarczająca do przemiatania całego widma nasyconej absorpcji. - sygnału stałego napięcia o regulowanej płynnie wartości (OFFSET), umożliwiającego zmianę częstotliwości lasera. Napięcie to służy do ustalenia częstości centralnej lasera, wokół której jest przestrajany sygnałem piłokształtnym. Obydwa sygnały służą do obserwacji widma oraz do dostrojenia lasera do rezonansu, na którym ma być stabilizowany laser. - sygnału piłokształtnego o częstości 10 khz i małej amplitudzie. Jak wspomniano powyżej jest on niezbędny do właściwego działania wzmacniacza fazoczułego. b) po zamknięciu pętli sprzężenia zwrotnego Po dostrojeniu się do maksimum rezonansu, wyłączamy przemiatanie (sygnał o dużej amplitudzie) i zamykamy pętlę sprzężenia zwrotnego. W tym momencie do obecnego sygnału (offset + szybka modulacja) dodawany jest odpowiednio wzmocniony sygnał błędu. Zapewnia on stabilizację częstotliwości lasera maksimum rezonansu. W omawianej aparaturze tylko laser pułapkujący jest stabilizowany częstotliwościowo, zaś laser repompujący jest przemiatany w zakresie przejścia 5 2 S 1/2 (F = 2) 5 2 P 3/2 (F = 2,3). 12

15 Przesunięcie częstości światła modulatorem akusto - optycznym W (p.1.1.6) opisano metodę stabilizacji częstości lasera do przejścia atomowego. Jednakże do poprawnego działania pułapki magneto-optycznej laser pułapkujący musi być wystabilizowany na częstości odstrojonej o kilkanaście megaherców ku czerwieni od przejścia 5 2 S 1/2 (F = 3) 5 2 P 3/2 (F = 4). Aby to zrealizować, stosuje się modulator akusto - optyczny (AOM). Zasada działania modulatora polega na wytworzeniu w krysztale stojącej fali akustycznej. Stojąca fala akustyczna działa jak siatka dyfrakcyjna, powodując ugięcie światła i dodanie lub odjęcie częstości drgań kryształu w odpowiednio +1 i 1 rzędzie dyfrakcji do częstości padającego światła. Zastosowano modulator akusto - optyczny firmy Brimrose o zakresie modulacji MHz. Zmienny sygnał napięciowy, wzbudzający kryształ do drgań, jest wytwarzany przez generator (tej samej firmy) sterowany napięciem stałym. Dopuszczalny zakres napięcia sterującego wynosi: U AOM = 0 9 V. Zależność częstotliwości modulacji AOM od napięcia przedstawia rys.1.9. ν AOM [MHz] Y = 61,7 + 2,3 X + 0,29 X U AOM [V] U AOM [V] ν AOM [MHz] Rys.1.9. Częstotliwość modulacji AOM w zależności od napięcia sterującego. Do punktów doświadczalnych dopasowano wielomian drugiego stopnia. Zależność wydajności AOM w -1 rząd dyfrakcji od częstotliwości przedstawia rys Jako wydajność dyfrakcji należy rozumieć stosunek mocy światła w danym rzędzie dyfrakcyjnym do całkowitej mocy na wyjściu modulatora. 13

16 Wydajność [%] ν AOM [MHz] Wydajność ν AOM [MHz] Rys Wydajność w 1 rząd dyfrakcji w funkcji częstotliwości modulacji POL λ/4 ν 2νΑΟΜ do spektrometru saturacyjnego P AOM P S L wiązka wejściowa ν λ/2 POL Rys Schemat biegu promieni lasera przez AOM Schemat układu służącego do przesunięcia częstości światła lasera przedstawia rys Światło lasera jest kierowane na modulator akusto - optyczny, który powoduje jego ugięcie. Wykorzystuje się 1 rząd dyfrakcji, pozostałe rzędy dyfrakcyjne padają na przesłonę. Ponieważ kąt ugięcia zależy od częstotliwości modulacji, stosuje się soczewkę, której ognisko znajduje się w centrum 14

17 kryształu modulatora. Ugięta wiązka światła, załamując się na umieszczonej w ten sposób soczewce, propaguje się równolegle do kierunku zerowego rzędu dyfrakcji, niezależnie od kąta ugięcia. Następnie wiązka, po odbiciu od lustra, wraca po tej samej drodze i zostaje powtórnie ugięta przez modulator AOM. Ponownie wykorzystuje się 1 rząd dyfrakcji, zatem częstotliwość światła zostaje dwukrotnie pomniejszona o częstość modulacji ν AOM. Zastosowanie płytki ćwierćfalowej zmienia polaryzację światła po podwójnym przejściu na ortogonalną, dzięki czemu światło jest przepuszczane przez dzielnik polaryzujący na układ spektrometru saturacyjnego. Zastosowanie podwójnego przejścia światła przez modulator akusto optyczny pozwala uniknąć komplikacji związanych ze zmianą kąta ugięcia w zależności od częstotliwości modulacji AOM-a. Sygnał spektroskopii nasyceniowej służy do stabilizacji lasera. Ponieważ światło lasera ma częstotliwość większą niż światło kierowane do układu spektrometrii nasyceniowej o 2ν AOM, wystarczy dobrać wzajemnie rezonans, na którym będzie się odbywać stabilizacja, oraz częstotliwość modulacji ν AOM (rys.1.12). W omawianym układzie pułapki magneto-optycznej stabilizacja odbywa się na rezonansie krzyżowym co23, a częstotliwość modulacji wynosi 71 MHz, co daje odstrojenie lasera pułapkującego δ = 10 MHz od przejścia 5 2 S 1/2 (F = 3) 5 2 P 3/2 (F = 4). Zaletą powyższego rozwiązania jest to, że moc światła kierowanego do eksperymentu pozostaje stała, niezależnie od częstotliwości modulacji. Cały układ służący do przesuwania częstotliwości światła i spektroskopii nasyceniowej może być traktowany jako odizolowany od reszty układu pułapki magneto optycznej. 5P 2 3/2 F =4 F =3 F =2 F = MHz CO 34 CO 24 CO 23 ν L ν L - 2 ν AOM 5S 2 1/2 F=3 F=2 Rys Schemat dostrojenia lasera do zadanej częstości przy użyciu modulatora akusto optycznego. Stabilizacja częstości odbywa się na rezonansie krzyżowym co23. 15

18 Wzmocnienie światła pułapkującego technika injection locking Jak już zostało wspomniane w (p.1.1) niezbędne jest wzmocnienie światła generowanego przez laser pułapkujący. Wykorzystuje się w tym celu technikę injection-locking. Laser diodowy generuje promieniowanie o częstotliwości zadanej przez temperaturę i prąd diody. Jeżeli do tak pracującego lasera wstrzykniemy światło z lasera wymuszającego (popularnie zwanego master ), zacznie on wzmacniać to promieniowanie, przy czym charakterystyka spektralna wzmocnionego światła jest identyczna jak światła wymuszającego. W ogólnym przypadku wzmacniacz (popularnie zwany slave ) pracuje wielomodowo, tzn. moc lasera jest dzielona pomiędzy mody o częstotliwościach: a) wolnej generacji; b) światła wzmacnianego. Można jednak tak dobrać parametry pracy wzmacniacza (temperaturę oraz prąd), dla których cała jego moc jest skoncentrowana we wzmocnionym modzie. z master B laser slave B pole magnetyczne pryzmat rotator Faradaya Glana IZOLATOR OPTYCZNY wzmocnione światło Rys Schemat układu służącego do wzmocnienia światła Wiązka światła z lasera pułapkującego o odpowiedniej polaryzacji (rys.1.13) jest kierowana na dzielnik polaryzujący izolatora optycznego, gdzie zostaje odbita w kierunku wzmacniacza. Przy dokładnym wyjustowaniu, potrzeba zaledwie kilkuset mikrowatów mocy, aby laser wzmacniający zaczął działać w reżimie zewnętrznego wymuszenia. Jednakże konstrukcja zastosowanego w laserze slave obiektywu kolimującego uniemożliwiała precyzyjne wstrzyknięcie światła w strukturę półprzewodnika diody laserowej, dlatego wymuszające promieniowanie musiało mieć stosunkowo dużą moc (P = 1.0 mw), aby doprowadziło do całkowitego sprzęgnięcia wzmacniacza Parametry pracy laserów Master Slave Repumper Typ diody HITACHI 7852G HITACHI 7852G HITACHI 7852G Prąd pracy ma ma 63.7 ma Temperatura 42.3mV * (13.1 C) 55.4mV * (18 C) 54.8mV * (17.4 C) Moc wyjściowa 6,25 mw 42,5 mw 7,25mW * spadek napięcia na czujniku NTC odpowiadający podanej temperaturze 16

19 Podane wartości parametrów pracy poszczególnych laserów należy traktować jako przybliżone. Lasery diodowe w trakcie długiej eksploatacji mogą nieznacznie zmieniać swoje własności, zatem wartości te mogą ulec z czasem zmianie. Lasery pułapkujący i repompujący pracowały w reżimie sprzężenia zwrotnego od zewnętrznego rezonatora. Zastosowano następujące siatki dyfrakcyjne: Siatka dyfrakcyjna Laser pułapkujący Zakres VIS, 1800rys/mm Laser repompujący Zakres UV, 1800rys/mm Kształtowanie wiązki światła Wiązka światła emitowanego przez diodę laserową jest rozbieżna, a jej przekrój ma kształt eliptyczny. W celu uproszczenia opisu wprowadźmy układ współrzędnych, którego oś z wyznacza kierunek propagacji światła, a osie x, y są związane odpowiednio z krótką i wielką osią elipsy (rys.1.14). y x LD z Rys Kształt wiązki światła emitowanego przez diodę laserową a) kolimacja wiązki laserowej Zadaniem obiektywu jest skolimowanie rozbieżnej wiązki laserowej. Jednak ze względu na astygmatyzm diody nie jest możliwe (bez użycia specjalnej optyki korygującej) uzyskanie wiązki równoległej, czyli wiązki o stałej szerokości w kierunkach x oraz y dla różnych odległości z. Wyjustowanie obiektywu było optymalizowane tak, aby średnica wiązki wzdłuż kierunku y miała stałą wartość na odległościach z w zakresie od zera do kilku metrów. Astygmatyzm diod laserowych nie stanowił problemu, gdyż dawał znaczący efekt dopiero na bardzo dużych odległościach (kilkanaście metrów). b) uzyskanie kołowego przekroju wiązki laserowej Jak wspomniano wyżej, przekrój wiązki światła emitowanego przez diodę laserową ma kształt eliptyczny. W celu uzyskania kształtu wiązki zbliżonego do kołowego, stosuje się układ dwóch pryzmatów, które poszerzają wiązkę wzdłuż kierunku wyznaczonego przez krótszą oś elipsy. 17

20 Są one ustawione tak, aby kąt padania wiązki laserowej był bliski kątowi Brewstera, co pozwala zminimalizować odbicie światła od powierzchni pryzmatów. Właściwą polaryzację padającego światła zapewnia płytka półfalowa Izolatory optyczne Cechą charakterystyczną laserów diodowych jest ich podatność na wzmacnianie powracającego światła. Powracające wskutek odbić na elementach optycznych światło, zaburza pracę diody, zmieniając własności spektralne generowanego promieniowania. Aby uniknąć tego niepożądanego efektu, stosuje się izolatory optyczne. Izolator optyczny jest zbudowany z dwóch kostek polaryzujących o osiach polaryzacji ustawionych wzajemnie pod kątem 45 stopni, oraz rotatora Faraday a (rys.1.13). Układ w tej konfiguracji jest w pełni asymetryczny, tzn. przepuszcza światło tylko w jednym kierunku, a całkowicie blokuje (w idealnym przypadku) promieniowanie propagujące się w kierunku przeciwnym. Przy laserach pułapkującym i wzmacniającym zastosowano izolatory optyczne firmy ISOWAVE o współczynniku osłabienia ( I 0 / I ) > 40dB, a przy laserze repompującym dwa izolatory firmy EOT o współczynniku osłabienia > 20dB ustawione w kaskadzie. Powodem zastosowania dwóch izolatorów przy laserze repompującym był niewystarczający stopień tłumienia I 0 / I. Gdy użyto tylko jeden izolator, część powracającego światła docierała do lasera (pojedyncze nanowaty) i zaburzała jego pracę. Na rysunkach (rys.1.15 i rys.1.16) przedstawiono widmo spektroskopii nasyceniowej dla przypadków, gdy zastosowano jeden lub dwa izolatory. Rys Widmo spektroskopii nasyceniowej. Zastosowano tylko jeden izolator optyczny. 18

21 Rys Widmo spektroskopii nasyceniowej. Zastosowano dwa izolatory optyczne w kaskadzie. Z widma (rys.1.15) wyraźnie widać, że powracające światło bardzo silnie wpływa na własności spektralne lasera. W szczególności, praca pułapki magneto optycznej nie byłaby możliwa bez zastosowania izolatorów optycznych. 19

22 Laser pułapkujący IO Wzmacniacz laserowy 4% Rb IO 4% Rb f=100 f=50 f=150 f=500 IO IO KOMORA PRÓŻNIOWA Laser repompujący Schemat układu pułapki magneto optycznej Rys Schemat układu pułapki magneto - optycznej analizator widma 20

23 Na rys.1.17 przedstawiono schemat układu optycznego pułapki magneto optycznej. Światło lasera pułapkującego jest dzielone na kostce polaryzującej. Część światła jest kierowana na układ modulatora akusto - optycznego i spektrometru saturacyjnego, a część na układ wzmacniacza. Wzmocnione światło, po przejściu przez izolator optyczny i układ pryzmatów, jest łączone ze światłem repompującym. W analogiczny sposób część światła lasera repompującego jest kierowana na układ spektroskopii nasyceniowej, a pozostała część łączy się ze wzmocnionym światłem pułapkującym, po uprzednim przejściu przez teleskop, zmniejszający średnicę wiązki do rozmiarów wiązki pułapkującej. Wiązki światła pułapkującego i repompującego są poszerzane przy użyciu teleskopu do rozmiaru w = 1 cm, gdzie w średnica wiązki, a następnie następuje ich podział na trzy części i skierowanie poszczególnych wiązek w ramiona x, y, z komory próżniowej. Lustra powodują wsteczne odbicie, a płytki ćwierćfalowe zapewniają odpowiednią polaryzację wiązek (rys.1.18). Dobranie rozmiaru wiązki (w = 1 cm) jest kompromisem pomiędzy natężeniem światła w pułapce (ważne z punktu widzenia planowanych eksperymentów), a wydajnością pułapkowania (większa średnica wiązek zapewnia efektywniejsze pułapkowanie atomów). Maksymalny rozmiar wiązek jest także ograniczony przez rozmiary geometryczne zastosowanej optyki (średnica luster, soczewek oraz innych elementów optycznych wynosi s = 2.5 cm) Układ próżniowy Rys.1.18 przedstawia schemat układu próżniowego. λ/4 dodatkowe okienko λ/4 detektor jonów - opcja źródło rubidu czujnik próżni zawór λ/4 λ/4 Pompa jonowa kołnierz ochronny Pompa turbomelekularna Pompa rotacyjna Rys Schemat układu próżniowego 21

24 Atomy rubidu są pułapkowane w komorze próżniowej wykonanej ze stali nierdzewnej. Komora jest wyposażona w okienka służące do wprowadzenia światła. W komorze musi być utrzymywana ultrawysoka próżnia, aby proces pułapkowania był wydajny. W przeciwnym wypadku duża liczba zderzeń zimnych atomów z gorącymi atomami tła zakłócałaby pracę pułapki, a także znacząco wpływała na otrzymywane wyniki doświadczalne dotyczące zimnych zderzeń. Wymagane jest ciśnienie w komorze próżniowej rzędu Tor. Uzyskanie takiego ciśnienia odbywało się w dwóch etapach. W pierwszym etapie do wstępnego odpompowania zastosowano pompę rotacyjną oraz turbomolekularną. Pozwoliło to na uzyskanie ciśnienia rzędu 10-6 Tor. Następnie uruchomiono pompę jonową i odcięto (poprzez zamknięcie zaworu) pompy wstępne. Wcześniejsze użycie pompy jonowej było niemożliwe ze względu na jej zasadę działania - praca przy zbyt wysokim ciśnieniu groziłaby uszkodzeniem. W celu usunięcia zanieczyszczeń osadzonych na ściankach komory, całość była wygrzewana do temperatury ok. 180 C. W komorze próżniowej jest zamontowany czujnik ciśnienia oraz źródło atomów rubidu. Układ posiada także możliwość zamontowania detektora jonów. Widoczny na schemacie kołnierz ochronny zapobiega przedostawaniu się jonów pochodzących od pompy jonowej do miejsca pułapkowania. Jony takie mogłyby zafałszować pomiar opierający się na ich detekcji Detekcja ciśnienia Do kontroli ciśnienia używano dwóch czujników. Jeden z czujników był umiejscowiony w pobliżu źródła rubidu i umożliwiał pomiar ciśnienia o wartości p > Tor. Drugi pomiar ciśnienia odbywał się poprzez odczyt natężenia prądu pompy jonowej. Poniżej ciśnienia 10-9 Tor natężenie prądu pompy jonowej spadało do zera i jedynym wiarygodnym pomiarem były wskazania pierwszego sensora. W dalszej części pracy wszystkie podawane wartości próżni będą się opierały na tych wskazaniach. Jednak ze względu na to, że źródło atomów rubidu znajduje się w przeciwległej do pompy jonowej części układu próżniowego, w komorze istnieje gradient ciśnienia. Ponieważ czujnik próżni znajduje się blisko źródła atomów rubidu, jego wskazania są nieco zawyżone w stosunku do miejsca właściwego pułapkowania atomów Źródło atomów rubidu Źródłem rubidu jest związek chemiczny zawierający ten pierwiastek, zamknięty w metalowej foremce. Foremka ta ma cienką rysę, przez którą po podgrzaniu wydostają się pary czystego chemicznie rubidu. Podgrzanie następuje poprzez przepuszczenie prądu elektrycznego (rys.1.19). Uwalniane są dwa naturalne izotopy rubidu: 85 Rb i 87 Rb. Pomimo, że niniejsza praca koncentruje się na badaniu zimnych zderzeń atomów rubidu 85 Rb, nie ma przeszkód technicznych, aby pułapkować i badać drugi izotop (rys.1.6 i rys.1.7). Źródło rubidu jest zamontowane wewnątrz komory próżniowej. Zastosowanie tego typu źródła pozwala na prostą regulację ciśnienia par rubidu poprzez zmianę natężenia przepuszczanego prądu. Zależność tą przedstawiono na rys Należy pamiętać, aby po zmianie prądu odczekać co najmniej ½ h na ustalenie się ciśnienia. 22

25 a) Rb ~ 2 mm b) I[A] Rys Źródło rubidu: a) przekrój poprzeczny b) widok z góry Podczas przepływu prądu I uwalniają się pary rubidu. 1,3x10-9 P [Tor] 1,2x10-9 1,1x10-9 1,0x10-9 9,0x ,0x10-10 I Rb [A] P [Tor] E E E E E E E-09 7,0x ,0x ,0x ,0 2,2 2,4 2,6 2,8 3,0 3,2 I Rb [A] Rys Zależność ciśnienia par rubidu w zależności od natężenia prądu przepuszczanego przez źródło rubidu 1.3. Pole magnetyczne 23

26 Pole magnetyczne jest wytwarzane przez układ dwu cewek oddalonych wzajemnie na odległość 2a = (5/4) r, gdzie r = 6.6 cm oznacza promień cewek. Na każdej z nich jest nawinięte 280 zwojów drutu miedzianego o średnicy 1.5 mm, co umożliwia przepływ prądu o natężeniu kilku amperów bez konieczności chłodzenia wodą, aczkolwiek konstrukcja cewek to umożliwia. Wytwarzane pole magnetyczne ma symetrię kwadrupolową. Gradient pola wzdłuż osi z, wyznaczonej przez oś symetrii układu cewek jest dwukrotnie większy niż w pozostałych dwóch kierunkach. Zależność gradientu pola magnetycznego od prądu przepuszczanego przez cewki oraz od ich geometrii opisuje wzór: B z 2 ar Gs / cm] = 3µ Z I[ A] (1.1) [ 5 / 2 z = 0 + gdzie: µ = 1,2566 Gs cm/a r promień cewek 2 a = (5/4) r odległość między cewkami Z liczba zwoi I prąd 2 2 ( r a ) Podstawiając znane wartości do powyższego wzoru, otrzymujemy następującą zależność: B z z= 0 [ Gs / cm] = 6.6 I[ A] (1.2) Omawiana pułapka magneto-optyczna nie posiada kompensacji zewnętrznych pól magnetycznych. Nie miało to jednak wpływu na przeprowadzone eksperymenty. 24

27 2. DIAGNOSTYKA PUŁAPKI MAGNETO OPTYCZNEJ Podstawowymi wielkościami charakteryzującymi chmurę zimnych atomów są: - rozmiar - liczba atomów - gęstość (liczba atomów w jednostce objętości). Poniżej zostaną omówione metody pomiarów tych wielkości oraz zaprezentowane uzyskane rezultaty. σ σ + PMT σ σ + I B I B σ σ + kamera Rys Schemat układu detekcyjnego 2.1. Pomiar rozmiaru chmury zimnych atomów Sposób wykonania pomiaru Kształt chmury atomów jest odwzorowywany poprzez zogniskowanie światła fluorescencji za pomocą obiektywu na kamerze CCD (rozmiar matrycy 1024 µ 1024 pikseli, rozmiar piksela µm, 16 bitowy zakres dynamiczny, chłodzona). Ze względu na swoją konstrukcję, kamera umożliwiała wykonywanie cyfrowych zdjęć, nie była natomiast możliwa obserwacja obrazu w czasie rzeczywistym. Dlatego używano dodatkowej standardowej, 8 bitowej kamery CCD umożliwiającej stałe, jakościowe monitorowanie chmury zimnych atomów. Układ obiektyw + + kamera (16 bitowa) stanowił jedną integralną całość i po wcześniejszym wykalibrowaniu został umiejscowiony w odległości zapewniającej ostry obraz chmury (rys.2.1). W konfiguracji tej odcinek L = 1 mm fotografowanego przedmiotu był odwzorowywany na 63 pikselach matrycy CCD. Zdjęcia uzyskane kamerą przedstawiają mapę natężenia światła fluorescencji I F = I F ( x, y ) w pułapce. Układ współrzędnych ( x, y ) jest związany z płaszczyzną rejestracji kamery, jednak współrzędne te można także odnosić do opisu chmury ze względu na jej symetryczny (teoretycznie) 25

28 kształt. Poniżej (rys.2.2) przedstawiono kilka przykładowych map rozkładu natężenia światła fluorescencji w chmurze zarejestrowanych przez kamerę. Rys.2.2. Przykładowe mapy rozkładu natężenia światła fluorescencji w chmurze zimnych atomów 26

29 W celu wyznaczenia rozmiaru pułapki σ wykonano przekroje mapy natężeń wzdłuż obu osi: I Fx = I F ( x, y max ) oraz I Fy = I F ( y, x max ), gdzie ( x max, y max ) : I (x max, y max ) = I max, a następnie dopasowano do nich funkcję Gaussa. Jako rozmiar pułapki wzdłuż danej osi σ i, i = (x, y) przyjmuje się pełną szerokość w połowie wysokości (FWHM) dopasowanej funkcji gaussowskiej. Poniżej przedstawiono kilka przykładowych przekrojów z dopasowanymi funkcjami Gaussa a.u ,0 0,5 1,0 1,5 2,0 d [mm] a.u ,5 1,0 1,5 2,0 d [mm] Rys.2.3. Przykładowe przekroje mapy natężenia światła w chmurze atomów. Do danych pomiarowych ( ) dopasowano funkcję Gaussa (linia ciągła). 27

30 Z rys.2.3 widać, że założenie rozkładu gaussowskiego atomów chmury jest dobrze spełnione. Należy jednak zaznaczyć, że kształt chmury bardzo silnie zależy od wyjustowania toru wiązek laserowych w pułapce. Testem poprawnego justowania była obserwacja kształtu chmury oraz jej położenia w zależności od natężenia światła pułapkującego i od gradientu pola magnetycznego. W idealnym przypadku kształt chmury powinien być w przybliżeniu sferyczny, chmura nie powinna zmieniać swojego położenia przy zmianie natężenia światła i gradientu pola magnetycznego a rozkład natężenia światła fluorescencji powinien być gaussowski. Aby pokazać, jak kluczowe jest właściwe justowanie, poniżej przedstawiono przykładową mapę natężenia światła w niewłaściwie wyregulowanej pułapce (rys.2.4). Rys.2.4. Mapa natężenia światła fluorescencji w niewłaściwie wyjustowanej pułapce Na przedstawionych wyżej rysunkach (rys.2.2 i rys.2.3) można zauważyć, że rozkład atomów w chmurze nie jest dokładnie symetryczny, występuje charakterystyczny ogon, którego nie udało się wyeliminować pomimo dokładnego justowania. Może być to spowodowane np. niską jakością pokrycia antyrefleksyjnego jednego z okienek komory, co powoduje, że nie ma równowagi natężeń światła pomiędzy dwiema przeciwległymi wiązkami laserowymi, a co za tym idzie, nie ma także równowagi między siłami optycznymi działającymi na atomy. Ponieważ rozmiary chmury wzdłuż poszczególnych osi σ x, σ y nie są dokładnie równe, jako rozmiar pułapki σ podaje się ich średnią arytmetyczną. 28

31 Rozmiar chmury zimnych atomów - wyniki Pomiar rozmiaru pułapki σ w funkcji natężenia światła pułapkującego I L był przeprowadzany wielokrotnie (w odstępach kilkudniowych). Poniżej przedstawiono wyniki uzyskane dla poszczególnych serii pomiarów (rys.2.5). 0,26 0,24 σ [mm] 0,22 0,20 0, I L [mw/cm 2 ] Rys.2.5. Rozmiar pułapki w funkcji natężenia światła pułapkującego I L. Parametry pracy pułapki: ciśnienie par rubidu p = Tor, gradient pola magnetycznego ( B / z) z= 0 = 12.5 Gs/cm, odstrojenie lasera pułapkującego δ = 1.7 Γ. Poszczególne serie pomiarowe oznaczono różnymi symbolami ( ). Każdy punkt jest średnią z kilku pomiarów (zwykle 5 7). Dla kilku punktów zaznaczono odchylenie standardowe, błędy pomiarowe dla pozostałych punktów są tego samego rzędu. Można zauważyć, że wyniki uzyskiwane w poszczególnych seriach są powtarzalne. Niewielkie różnice mogą wynikać z następujących przyczyn. W omawianej pułapce laser repompujący nie był stabilizowany, wskutek czego następował dryft częstotliwości światła, co wpływało na liczbę atomów w chmurze oraz na jej rozmiar. Aby temu zapobiec, obserwowano widmo spektroskopii nasyceniowej na oscyloskopie i zmieniając napięcie na elemencie piezoelektrycznym w rezonatorze lasera starano się utrzymywać stałą częstość światła, jednak oczywiste jest, że metoda ta nie mogła być bardzo dokładna. Drugim sposobem kontroli właściwej częstości lasera repompującego była obserwacja sygnału z fotopowielacza pod wpływem światła fluorescencji spułapkowanych atomów (p.2.2). Spadek poziomu sygnału oznaczał płynięcie częstości lasera 29

32 repompującego. Strojenie odbywało się analogicznie jak w pierwszym przypadku poprzez zmianę napięcia na elemencie piezoelektrycznym rezonatora lasera. Innym czynnikiem mogącym tłumaczyć dyskutowane niewielkie różnice pomiędzy poszczególnymi seriami jest justowanie toru wiązek laserowych w pułapce (konieczne do przeprowadzenia każdorazowo przed każdą z serii w celu uzyskaniu rozkładu gaussowskiego atomów w chmurze). Pomimo omówionych powyżej trudności wyniki uzyskane w poszczególnych seriach są prawie identyczne, co zapewnia dużą powtarzalność otrzymywanych rezultatów. Zwróćmy jeszcze uwagę na pierwszy punkt pomiarowy (dla najmniejszego natężenia światła) serii oznaczonej symbolem. Wzrost rozmiaru pułapki dla bardzo małych natężeń światła pułapkującego jest zgodny z przewidywaniami teoretycznymi [2.1a], wg których rozmiar pułapki σ można wyrazić wzorem: σ = h Γ / 2κ (2.1) gdzie: Γ = 5.9 MHz - czas życia poziomu wzbudzonego κ - stała sprężystości w równaniu na siłę działającą na atom w pułapce w przybliżeniu oscylatora harmonicznego tłumionego [2.2]: F MOT = - χ v - κ z (2.2) gdzie: χ - stała tłumienia, v prędkość atomu, κ - stała sprężystości, z położenie atomu Stałe tłumienia χ oraz sprężystości κ wyrażają się wzorami: χ = I I L s δ 0.5 Γ 6I 1 + I s L 4hk 2 2 δ Γ 2 (2.3) κ = I I L s δ 0.5 Γ 6I 1 + I s L 4hkξ 2 δ Γ 2 (2.4) gdzie: I L natężenie światła w jednej wiązce pułapkującej I s = mw/cm 2 natężenie nasycające rozważane przejście atomowe δ - odstrojenie lasera od rezonansu Γ = 5.9 MHz szerokość naturalna poziomu k długość wektora falowego gdzie: µ B magneton Bohra, B ξ = µ B g F ' h (2.5) z B - gradient pola, gf czynnik Landego poziomu wzbudzonego. z 30

33 Poniżej (rys.2.6) przedstawiono porównanie danych doświadczalnych z wartościami wyliczonymi ze wzorów (2.1) i (2.4) σ [ mm ] I L [ mw/cm 2 ] Rys.2.6. Porównanie wartości teoretycznych (linia ciągła) z wynikami doświadczalnymi ( ). Parametry pracy pułapki identyczne jak podane w opisie rys.2.5. Ze wzoru (2.4) wynika, że dla bardzo małych natężeń światła I L współczynnik κ = κ( I L ) staje się również bardzo mały. Ponieważ rozmiar pułapki σ ~ 1/ κ, dla małych natężeń światła obserwujemy wzrost rozmiaru chmury. Natomiast ponowne rozszerzanie się chmury dla dużych natężeń światła jest spowodowane nasycaniem przejścia atomowego i ponownym zmniejszeniem współczynnika sprężystości κ. Dla porównania na rys.2.7 i rys.2.8 pokazano wyniki uzyskane dla cezu i sodu przez autora [2.1a] przy współudziale dr W. Chałupczaka, promotora niniejszej pracy. 31

34 Rys.2.7. Rozmiar chmury atomów sodu. Wyniki pochodzą z pracy [2.1a]. Rys.2.8. Rozmiar chmury atomów cezu. Wyniki pochodzą z pracy [2.1a]. 32

35 2.2. Liczba atomów w chmurze Sposób wykonania pomiaru Światło fluorescencji spułapkowanych atomów było skupiane przy użyciu soczewki i kierowane na fotopowielacz Hamamatsu R928 dający sygnał prądowy proporcjonalny do liczby padających na niego fotonów (rys.2.1). Podczas pomiarów zwracano szczególną uwagę na zapewnienie pracy detektora w zakresie liniowym, co sprawdzano za pomocą filtru neutralnego o gęstości optycznej OD = 0.3 (współczynnik transmisji 0.5). Dlatego, gdy było to konieczne, przed fotopowielaczem umieszczano wykalibrowane filtry neutralne. Prąd fotopowielacza wyznaczano poprzez pomiar spadku napięcia na rezystorze o znanym oporze. Pomiary były zautomatyzowane, odbywały się poprzez komputerową kartę laboratoryjną oprogramowaną w pakiecie LabView. Rozwiązanie to było szczególnie przydatne podczas badania dynamiki ładowania pułapki, umożliwiało bowiem łatwą rejestrację danych Kalibracja filtrów neutralnych W eksperymentach stosowano standardowe filtry neutralne firmy MG, których transmisję sprawdzono przy użyciu lasera dostrojonego do przejścia rezonansowego w rubidzie (λ = 780 nm) Nominalna gęstość optyczna OD filtru Zmierzona transmisja (i odpowiadająca jej nominalna transmisja) 0.03 ( 0.93 ) ( 0.80 ) ( 0.63 ) ( 0.50 ) ( 0.40 ) ( 0.10 ) ( ) ( ) Gęstość optyczna OD wyznacza nominalne osłabienie I T / I 0 = 10 -OD Kalibracja fotopowielacza i jego charakterystyka a) kalibracja fotopowielacza Energia jednego fotonu o długości fali λ = 780 nm wynosi: 19 E = h ν J (2.6) gdzie h - stała Plancka, ν = c λ - częstotliwość fali, c prędkość światła 33

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Układ stabilizacji laserów diodowych

Układ stabilizacji laserów diodowych Układ stabilizacji laserów diodowych Lasery diodowe stabilizowane są do wzorca atomowego z wykorzystaniem metody magnetycznie indukowanego dichroizmu (patrz artykuł Laser frequency stabilization by Dopplerfree

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω.

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω. Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n

Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n -z z w płaszczyzna przewężenia Propaguję się jednocześnie dwie fale w przeciwbieżnych kierunkach Dla kierunku 2 kr 2R ( r,z) exp i kz s Φ exp(

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Kalibracja częstości w spektroskopii laserowej

Kalibracja częstości w spektroskopii laserowej Uniwersytet Jagielloński Instytut Fizyki Kalibracja częstości w spektroskopii laserowej Teresa Trepka Kraków 2004 Kalibracja częstości w spektroskopii laserowej Praca wykonana pod kierunkiem Prof. dr hab.

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH

TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH TECHNIKI OBSERWACYJNE ORAZ METODY REDUKCJI DANYCH Arkadiusz Olech, Wojciech Pych wykład dla doktorantów Centrum Astronomicznego PAN luty maj 2006 r. Wstęp do spektroskopii Wykład 7 2006.04.26 Spektroskopia

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło

Bardziej szczegółowo

Pułapkowanie i pomiar temperatury zimnych atomów

Pułapkowanie i pomiar temperatury zimnych atomów Uniwersytet Jagielloński Maria Mączyńska Pułapkowanie i pomiar temperatury zimnych atomów Praca magisterska wykonana pod kierunkiem prof. dr hab. Wojciecha Gawlika Zakład Optyki Atomowej Instytut Fizyki

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie

Bardziej szczegółowo

PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych

PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229959 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 421970 (22) Data zgłoszenia: 21.06.2017 (51) Int.Cl. G01C 3/00 (2006.01)

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

E107. Bezpromieniste sprzężenie obwodów RLC

E107. Bezpromieniste sprzężenie obwodów RLC E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Metody badania kosmosu

Metody badania kosmosu Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna)

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) 1 Schemat żyroskopu Wiązki biegnące w przeciwną stronę Nawinięty światłowód optyczny Źródło światła Fotodioda Polaryzator

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Laboratorium Optyki Falowej

Laboratorium Optyki Falowej Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Pułapka magneto optyczna. i nieliniowa spektroskopia zimnych atomów rubidu.

Pułapka magneto optyczna. i nieliniowa spektroskopia zimnych atomów rubidu. Tadeusz Pałasz Pułapka magneto optyczna i nieliniowa spektroskopia zimnych atomów rubidu. Praca doktorska wykonana pod kierunkiem prof. dr hab. Wojciecha Gawlika w Instytucie Fizyki im. Mariana Smoluchowskiego,

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM)

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM) Podsumowanie W Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. ymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. En. I det ħ m=+/ m=-/ B B A B h 8 3 Nierównowagowe

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 5 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Krótki kurs efektywnego justowania układu optycznego

Krótki kurs efektywnego justowania układu optycznego Maria Mączyńska Tomasz M. Brzozowski Krótki kurs efektywnego justowania układu optycznego Wersja 1.25 (lipiec 2003) Efektywnego justowania można nauczyć się jedynie justując, ale kilka dobrych rad może

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

1. Nadajnik światłowodowy

1. Nadajnik światłowodowy 1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od

Bardziej szczegółowo

Liniowe układy scalone

Liniowe układy scalone Liniowe układy scalone Wykład 3 Układy pracy wzmacniaczy operacyjnych - całkujące i różniczkujące Cechy układu całkującego Zamienia napięcie prostokątne na trójkątne lub piłokształtne (stała czasowa układu)

Bardziej szczegółowo

Spektroskopia nieliniowa atomów rubidu

Spektroskopia nieliniowa atomów rubidu Uniwersytet Jagielloński Leszek Krzemień Spektroskopia nieliniowa atomów rubidu Praca magisterska wykonana pod kierunkiem prof. dr hab. Wojciecha Gawlika Zakład Fotoniki Instytut Fizyki im. M. Smoluchowskiego

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 4 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia Zadanie 1. Jednym z najnowszych rozwiązań czujników

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12 PL 218560 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218560 (13) B1 (21) Numer zgłoszenia: 393408 (51) Int.Cl. H03F 3/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Demodulator FM. o~ ~ I I I I I~ V

Demodulator FM. o~ ~ I I I I I~ V Zadaniem demodulatora FM jest wytworzenie sygnału wyjściowego, który będzie proporcjonalny do chwilowej wartości częstotliwości sygnału zmodulowanego częstotliwościowo. Na rysunku 12.13b przedstawiono

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową

Bardziej szczegółowo

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe

Bardziej szczegółowo

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej

Bardziej szczegółowo

Spektrometr ICP-AES 2000

Spektrometr ICP-AES 2000 Spektrometr ICP-AES 2000 ICP-2000 to spektrometr optyczny (ICP-OES) ze wzbudzeniem w indukcyjnie sprzężonej plazmie (ICP). Wykorztystuje zjawisko emisji atomowej (ICP-AES). Umożliwia wykrywanie ok. 70

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.

Bardziej szczegółowo