OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

Wielkość: px
Rozpocząć pokaz od strony:

Download "OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy"

Transkrypt

1 OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy Autor: Bartosz Gajda ISBN: Format: B6, stron: 272 Wydawnictwo Helion ul. Koœciuszki 1c Gliwice tel Arkusz kalkulacyjny Calc to jeden ze sk³adników dostêpnego nieodp³atnie pakietu biurowego OpenOffice 2.0. Podobnie jak jego komercyjne odpowiedniki, Calc posiada ogromne mo liwoœci w zakresie przeprowadzania nawet najbardziej z³o onych obliczeñ. Jego u ytkownicy mog¹ tu wykorzystaæ nie tylko tworzone przez siebie formu³y, ale tak e rozbudowany zbiór predefiniowanych funkcji. Funkcje te, podzielone na kategorie, wymagaj¹ jedynie odpowiedniego zdefiniowania argumentów i to w³aœnie stanowi czêsto przeszkodê w ich wykorzystaniu. W wielu przypadkach trudno zorientowaæ siê, czy argumentem jest pojedyncza komórka, czy te zakres komórek. Lakoniczny opis wyœwietlany po wybraniu funkcji w programie rzadko okazuje siê pomocny. OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy zawiera zestawienie opisów wszystkich opcji, jakie oferuje swoim u ytkownikom aplikacja OpenOffice Calc. W ka dym rozdziale znajdziesz omówienie innej kategorii funkcji. Dowiesz siê, jakie jest zastosowanie ka dej z nich, poznasz liczbê i znaczenie argumentów funkcji oraz typ i interpretacjê zwracanej wartoœci. Ka dy opis zawiera tak e przyk³ad zastosowania funkcji, co znacz¹co u³atwia zrozumienie zadania przez ni¹ realizowanego. Funkcje bazodanowe Funkcje operuj¹ce na datach i godzinach Funkcje finansowe Funkcje informacyjne Funkcje logiczne Funkcje matematyczne Funkcje macierzowe Funkcje statystyczne Funkcje arkusza kalkulacyjnego Funkcje tekstowe Inne funkcje Usprawnij i przyspiesz swoj¹ pracê z arkuszem kalkulacyjnym!

2 Spis treści Wstęp Funkcje kategorii Baza danych Funkcje kategorii Data i godzina Funkcje kategorii Finanse Funkcje kategorii Informacja Funkcje kategorii Logiczne Funkcje kategorii Matematyka Funkcje kategorii Macierz Funkcje kategorii Statystyka Funkcje kategorii Arkusz kalkulacyjny Funkcje kategorii Tekst Funkcje kategorii Dodatek...FTP 3

3 Rozdział 11. Funkcje kategorii Dodatek BESSELI Funkcja służy do obliczania wartości zmodyfikowanej funkcji Bessela dla czysto urojonych argumentów. Zmodyfikowana funkcja Bessela n-tego rzędu obliczana przez opisywaną funkcję ma postać: n In( x) = ( i) Jn( ix) gdzie Jn jest funkcją Bessela J. BESSELI(;rząd), dla której chcemy wyznaczyć wartość funkcji. rząd rząd funkcji Bessela. BESSELJ Funkcja służy do obliczania wartości funkcji Bessela. BESSELJ(;rząd) I

4 , dla której chcemy wyznaczyć wartość funkcji. rząd rząd funkcji Bessela. BESSELK Funkcja służy do obliczania wartości zmodyfikowanej funkcji Bessela dla czysto urojonych argumentów. Zmodyfikowana funkcja Bessela n-tego rzędu obliczana przez opisywaną funkcję ma postać: p n+ 1 Kn ( x) = i [ Jn( ix) + iyn ( ix)] 2 gdzie J n oraz Y n są odpowiednio funkcjami Bessela J i Y. BESSELK(;rząd), dla której chcemy wyznaczyć wartość funkcji. rząd rząd funkcji Bessela. BESSELY Funkcja służy do obliczania wartości zmodyfikowanej funkcji Bessela zwanej także funkcją Webera lub funkcją Neumanna. Zmodyfikowana funkcja Bessela n-tego rzędu obliczana przez opisywaną funkcję ma postać: II OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

5 Jν ( x) cos( νπ ) J ν ( x) Yn ( x) = lim ν n sin( νπ ) gdzie Jν jest funkcją Bessela J. BESSELY(;rząd), dla której chcemy wyznaczyć wartość funkcji. rząd rząd funkcji Bessela. BIN2DEC Funkcja służy do konwersji liczby zapisanej w postaci binarnej do zapisu dziesiętnego. BIN2DEC() binarna, którą chcemy konwertować. Liczba może mieć maksymalnie 10 bitów. Bit najbardziej znaczący jest bitem znaku. Liczby ujemne są wprowadzane w zapisie dopełnienia do dwóch. Rozdział 11. Funkcje kategorii Dodatek III

6 BIN2HEX Funkcja służy do konwersji liczby zapisanej w postaci binarnej do zapisu szesnastkowego. BIN2HEX(;miejsca) binarna, którą chcemy konwertować. Liczba może mieć maksymalnie 10 bitów. Bit najbardziej znaczący jest bitem znaku. Liczby ujemne są wprowadzane w zapisie dopełnienia do dwóch. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami (wstawianymi na jej początku). Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-bitową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. BIN2OCT Funkcja służy do konwersji liczby zapisanej w postaci binarnej do zapisu ósemkowego. IV OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

7 BIN2OCT(;miejsca) binarna, którą chcemy konwertować. Liczba może mieć maksymalnie 10 bitów. Bit najbardziej znaczący jest bitem znaku. Liczby ujemne są wprowadzane w zapisie dopełnienia do dwóch. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami (wstawianymi na jej początku). Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-bitową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. COMPLEX Funkcja służy do zapisu liczby zespolonej w postaci x+yi lub x+yj na podstawie podanej jako argumenty części rzeczywistej i urojonej. COMPLEX(część_rzeczywista;część_urojona;jednostka_urojona) część_rzeczywista argument określa część rzeczywistą liczby zespolonej. Rozdział 11. Funkcje kategorii Dodatek V

8 część_urojona argument określa część urojoną liczby zespolonej. jednostka_urojona argument określa jednostkę urojoną, może przyjmować wartości i lub j. Jeżeli argument jednostka_urojona zostanie pominięty, przyjmie wartość domyślną i. DEC2BIN Funkcja służy do konwersji liczby zapisanej w postaci dziesiętnej do zapisu binarnego. DEC2BIN(;miejsca) dziesiętna, którą chcemy konwertować. Argument musi być liczbą większą od 512 i mniejszą od 511. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami (wstawianymi na początku). Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-bitową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. VI OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

9 DEC2HEX Funkcja służy do konwersji liczby zapisanej w postaci dziesiętnej do zapisu szesnastkowego. DEC2HEX(;miejsca) dziesiętna, którą chcemy konwertować. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami (wstawianymi na początku). Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-znakową liczbę gdzie najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. DEC2OCT Funkcja służy do konwersji liczby zapisanej w postaci dziesiętnej do zapisu ósemkowego. DEC2OCT(;miejsca) Rozdział 11. Funkcje kategorii Dodatek VII

10 dziesiętna, którą chcemy konwertować. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami (wstawianymi na początku). Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-znakową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. DELTA Funkcja służy do sprawdzania, czy dwie liczby podane jako argumenty są sobie równe. DELTA(1;2) 1 pierwsza z porównywanych liczb. 2 druga z porównywanych liczb. Jeżeli pominiemy argument 2, przyjmie on wartość domyślną 0. VIII OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

11 ERF Funkcja służy do wyznaczania wartości całki błędu Gaussa w zadanych argumentami granicach. ERF(granica1;granica2) granica1 argument określa dolną granicę całkowania. granica2 argument określa górną granicę całkowania. Całka błędu Gaussa ma postać: b 2 = t 2 ERF( a, b) e dt a π ERFC Funkcja służy do wyznaczania wartości całki błędu Gaussa w granicach od podanej argumentem granicy do nieskończoności. ERFC(granica) granica argument określa dolną granicę całkowania. Rozdział 11. Funkcje kategorii Dodatek IX

12 Funkcja oblicza następującą całkę: ERFC( x) = + x 2 e t 2 dt π FACTDOUBLE Funkcja służy do obliczania silni liczby z przyrostami o 2. FACTDOUBLE(), której silnię chcemy policzyć. Dla parzystej liczby n jest obliczana następująca silnia: n*(n-2)* (n- 4)* *4*2, a dla nieparzystej n jest obliczana silnia: n*(n-2)*(n-4)* *3*1. GESTEP Funkcja służy do testowania wartości liczbowej w taki sposób, że kiedy wartość testowana jest większa lub równa zadanej wartości progowej, funkcja zwraca wartość 1, a kiedy wartość testowana jest mniejsza, funkcja zwraca wartość 0. X OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

13 GESTEP(;próg) wartość, którą testujemy. Argument powinien być liczbą. próg wartość progowa. Argument powinien być liczbą. Jeżeli argument próg zostanie pominięty, przyjmie wartość domyślną 0. HEX2BIN Funkcja służy do konwersji liczby zapisanej w postaci szesnastkowej do zapisu binarnego. HEX2BIN(;miejsca) szesnastkowa, którą chcemy konwertować. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami wiodącymi na początku. Liczby ujemne są reprezentowane Rozdział 11. Funkcje kategorii Dodatek XI

14 w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-bitową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe znaki reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. HEX2DEC Funkcja służy do konwersji liczby zapisanej w postaci szesnastkowej do zapisu dziesiętnego. HEX2DEC() szesnastkowa, którą chcemy konwertować. Liczby ujemne są wprowadzane w zapisie dopełnienia do dwóch. HEX2OCT Funkcja służy do konwersji liczby zapisanej w postaci szesnastkowej do zapisu ósemkowego. HEX2BIN(;miejsca) szesnastkowa, którą chcemy konwertować. XII OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

15 miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami wiodącymi na początku. Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie ujemną, funkcja zwróci 10-znakową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. IMABS Funkcja służy do wyznaczania modułu (wartości bezwzględnej) liczby zespolonej. IMABS() zespolona, której moduł chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMABS("4+3i") zwróci wartość 5. Rozdział 11. Funkcje kategorii Dodatek XIII

16 IMAGINARY Funkcja służy do wyodrębniania części urojonej liczby zespolonej. IMAGINARY() zespolona, której część urojoną chcemy wyodrębnić. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMAGINARY("4+3i") zwróci wartość 3. IMARGUMENT Funkcja służy do wyznaczania argumentu (kąta) liczby zespolonej. Wynik jest zwracany w radianach. IMARGUMENT() zespolona, której argument chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. XIV OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

17 =IMARGUMENT("2+2i") zwróci wartość 0,79, co odpowiada π/4 (45º). IMCONJUGATE Funkcja służy do określania liczby sprzężonej dla zadanej liczby zespolonej. IMCONJUGATE() zespolona, dla której chcemy wyznaczyć liczbę sprzężoną. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMCONJUGATE("1+2i") zwróci wartość 1-2i. IMCOS Funkcja służy do wyznaczania cosinusa liczby zespolonej. Rozdział 11. Funkcje kategorii Dodatek XV

18 IMCOS() zespolona, której cosinus chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMCOS("5+5i") zwróci wartość i. IMDIV Funkcja służy do wyznaczania ilorazu dwóch liczb zespolonych. IMDIV(dzielna;dzielnik) dzielna zespolona stanowiąca dzielną ilorazu. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. dzielnik zespolona stanowiąca dzielnik ilorazu. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. XVI OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

19 IMDIV("2+3i";"1+2i") zwróci wartość i. IMEXP Funkcja służy do wyznaczania postaci wykładniczej liczby zespolonej. IMEXP() zespolona, której postać wykładniczą chcemy otrzymać. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. IMEXP("2+3i") zwróci wartość i. IMLN Funkcja służy do wyznaczania logarytmu naturalnego liczby zespolonej. IMLN() Rozdział 11. Funkcje kategorii Dodatek XVII

20 zespolona, której logarytm naturalny chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMLN("1+1i") zwróci wartość i. IMLOG10 Funkcja służy do wyznaczania logarytmu dziesiętnego liczby zespolonej. IMLOG10() zespolona, której logarytm dziesiętny chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMLOG10("3+5i") zwróci wartość i. IMLOG2 Funkcja służy do wyznaczania logarytmu o podstawie równej 2 liczby zespolonej. XVIII OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

21 IMLOG2() zespolona, której logarytm o podstawie 2 chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMLOG2("1+4j") zwróci wartość j. IMPOWER Funkcja służy do wyznaczania potęgi liczby zespolonej. IMLOG2(;wykładnik) zespolona, której potęgę chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. wykładnik wykładnik potęgi; może być dowolną liczbą rzeczywistą. =IMPOWER("1+2i";3) zwróci wartość -11-2i. Rozdział 11. Funkcje kategorii Dodatek XIX

22 IMPRODUCT Funkcja służy do wyznaczania iloczynu liczb zespolonych. IMPRODUCT(1;2;...;30) 1;2;...;30 liczby zespolone (maksymalnie 30), których iloczyn chcemy wyznaczyć. Liczby powinny być podane w postaci x+yi lub x+yj i ujęte w cudzysłów. Argumenty mogą być odwołaniami do komórek lub zakresów komórek zawierających liczby zespolone. IMPRODUCT("1+2i";"2+3i" ) zwróci wartość -4+7i. IMREAL Funkcja służy do wyodrębniania części rzeczywistej liczby zespolonej. IMREAL() zespolona, której część rzeczywistą chcemy wyodrębnić. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. XX OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

23 =IMREAL("4+3i") zwróci wartość 4. IMSIN Funkcja służy do wyznaczania sinusa liczby zespolonej. IMSIN() zespolona, której sinus chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMSIN("5+5i") zwróci wartość i. IMSQRT Funkcja służy do wyznaczania pierwiastka kwadratowego liczby zespolonej. IMSQRT() Rozdział 11. Funkcje kategorii Dodatek XXI

24 zespolona, której pierwiastek kwadratowy chcemy wyznaczyć. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMSQRT("4+6i") zwróci wartość i. IMSUB Funkcja służy do wyznaczania różnicy dwóch liczb zespolonych. IMSUB(1;2) 1 zespolona, od której ma zostać odjęta 2. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. 2 zespolona, która ma zostać odjęta od liczby 1. Liczba powinna być podana w postaci x+yi lub x+yj i ujęta w cudzysłów. =IMSUB("5-2i";"2+3i") zwróci wartość 3-5i. XXII OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

25 IMSUM Funkcja służy do wyznaczania sumy liczb zespolonych. IMSUM(1;2;...;30) 1;2;...;30 liczby zespolone (maksymalnie 30), których sumę chcemy wyznaczyć. Liczby powinny być podane w postaci x+yi lub x+yj i ujęte w cudzysłów. Argumenty mogą być odwołaniami do komórek lub zakresów komórek zawierających liczby zespolone. =IMSUM("-1-2i";"-3-4i") zwróci wartość -4-6i. KONWERTUJ_ADD Funkcja służy do konwersji wartości wyrażonej w jednym systemie miar do innego systemu miar. KONWERTUJ_ADD(wartość;jednostka_wejściowa; jednostka_docelowa) wartość wartość, którą chcemy konwertować, wyrażona w jednostkach określonych argumentem jednostka_wejściowa. Rozdział 11. Funkcje kategorii Dodatek XXIII

26 jednostka_wejściowa argument określający jednostkę wartości wartość. Może przyjmować wartości symboli jednostek wymienionych w tabeli Symbole jednostek należy ująć w cudzysłów. Dodatkowo przed symbolami jednostek z tabeli 11.1 można umieszczać wymienione w tabeli 11.2 przedrostki odpowiadające poszczególnym mnożnikom. jednostka_docelowa jednostka, w jakiej ma być podany wynik funkcji. Argument może przyjmować wartości symboli jednostek wymienione w tabeli Symbole jednostek należy ująć w cudzysłów. Dodatkowo przed symbolami jednostek z tabeli 11.1 można umieszczać wymienione w tabeli 11.2 przedrostki odpowiadające poszczególnym mnożnikom. Tabela Dopuszczalne symbole jednostek wielkości fizycznych Wielkość Masa Długość Czas Ciśnienie Siła Energia Moc Siła pola Temperatura Objętość Powierzchnia Prędkość Jednostka g, sg, lbm, u, ozm, stone, ton, grain, pweight, hweight, shweight m, mi, Nmi, in, ft, yd, ang, Pica, ell, parsec yr, day, hr, mn, sec Pa, atm, mmhg, Torr, psi N, dyn, pond J, e, c, cal, ev, HPh, Wh, BTU W, HP, PS T, ga C, F, K, Reau, Rank l, tsp, tbs, oz, cup, pt, qt, gal, m3, mi3, Nmi3, in3, ft3, yd3, ang3, Pica3, barrel, bushel, regton, Schooner, Middy, Glass m2, mi2, Nmi2, in2, ft2, yd2, ang2, Pica2, Morgen, ar, acre, ha m/s, m/h, mph, kn, admkn =KONWERTUJ_ADD(1;"atm";"hPa"), zwróci wynik 1013,25, co oznacza że jedna atmosfera odpowiada 1013,25 hektopaskalom. XXIV OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

27 Tabela Przedrostki i odpowiadające im mnożniki Przedrostek Mnożnik Y Z E P T G 10 9 M 10 6 k 10 3 h 10 2 e 10 1 d 10 1 c 10 2 m 10 3 u 10 6 n 10 9 p f a z y OCT2BIN Funkcja służy do konwersji liczby zapisanej w postaci ósemkowej do zapisu binarnego. OCT2BIN(;miejsca) Rozdział 11. Funkcje kategorii Dodatek XXV

28 ósemkowa, którą chcemy konwertować. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami wiodącymi na początku. Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-bitową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. OCT2DEC Funkcja służy do konwersji liczby zapisanej w postaci ósemkowej do zapisu dziesiętnego. OCT2DEC() ósemkowa, którą chcemy konwertować. Liczby ujemne są wprowadzane w zapisie dopełnienia do dwóch. XXVI OpenOffice 2.0 PL. Funkcje arkusza kalkulacyjnego. Leksykon kieszonkowy

29 OCT2HEX Funkcja służy do konwersji liczby zapisanej w postaci ósemkowej do zapisu szesnastkowego. DEC2HEX(;miejsca) ósemkowa, którą chcemy konwertować. miejsca znaków, którą ma zwrócić funkcja. Jeżeli pominiemy argument miejsca, zostanie przedstawiona za pomocą najmniejszej liczby znaków. Jeżeli argument miejsca określa liczbę znaków jako większą od najmniejszej koniecznej, zostanie uzupełniona zerami (wstawianymi na początku). Liczby ujemne są reprezentowane w zapisie dopełnienia do dwóch. Jeśli argument będzie liczbą ujemną, funkcja zwróci 10-znakową liczbę, w której najbardziej znaczący bit jest bitem znaku, a pozostałe bity reprezentują wartość. W takim przypadku argument miejsca jest ignorowany. Rozdział 11. Funkcje kategorii Dodatek XXVII

Techniki informacyjne

Techniki informacyjne Techniki informacyjne Część 4 dr inż. Michał Łanczont Wydział Elektrotechniki i Informatyki p. E419 tel. 81-538-42-93 m.lanczont@pollub.pl http://lanczont.pollub.pl Arkusz kalkulacyjny Arkusz kalkulacyjny

Bardziej szczegółowo

Adres komórki-nazwa kolumny i nazwa wiersza, na przecięciu których znajduje się komórka. B3- adres aktywnej komórki

Adres komórki-nazwa kolumny i nazwa wiersza, na przecięciu których znajduje się komórka. B3- adres aktywnej komórki Rok akademicki 2014/2015, Pracownia nr 7 2/19 Adresowanie komórek Technologie informacyjne Adres komórki-nazwa kolumny i nazwa wiersza, na przecięciu których znajduje się komórka Politechnika Białostocka

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

FUNKCJE W EXCELU. Funkcje dodatków i automatyzacji: Funkcje modułów: Funkcje baz danych: Funkcja Opis funkcji WYWOŁAJ WEŹDANETABELI EUROCONVERT

FUNKCJE W EXCELU. Funkcje dodatków i automatyzacji: Funkcje modułów: Funkcje baz danych: Funkcja Opis funkcji WYWOŁAJ WEŹDANETABELI EUROCONVERT Funkcje dodatków i automatyzacji: FUNKCJE W EXCELU WYWOŁAJ WEŹDANETABELI EUROCONVERT REJESTR.KOD SQL.REQUEST Służy do wywołania procedury w bibliotece dołączonej dynamicznie lub w zasobie kodu Służy do

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

ARYTMETYKA KOMPUTERA

ARYTMETYKA KOMPUTERA 006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

1. JEŻELI - funkcja służąca do testowania warunków logicznych. JEŻELI(warunek_logiczny; wartośd_dla_prawdy; wartośd_dla_fałszu)

1. JEŻELI - funkcja służąca do testowania warunków logicznych. JEŻELI(warunek_logiczny; wartośd_dla_prawdy; wartośd_dla_fałszu) MS Excel 1. JEŻELI - funkcja służąca do testowania warunków logicznych Składnia: JEŻELI(warunek_logiczny; wartośd_dla_prawdy; wartośd_dla_fałszu) W warunku logicznym wykorzystywane są logiczne operatory

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Edycja wyrażeń, definiowanie zmiennych i funkcji

Edycja wyrażeń, definiowanie zmiennych i funkcji Strona z Edycja wyrażeń, definiowanie zmiennych i funkcji Kursory Krzyżyk - - pozwala umiejscowić równanie, wykres lub pole tekstowe na stronie. Punkt wstawienia - - "pionowa kreska" - używany do edycji

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

I. Podstawy języka C powtórka

I. Podstawy języka C powtórka I. Podstawy języka C powtórka Zadanie 1. Utwórz zmienne a = 730 (typu int), b = 106 (typu long long), c = 123.45 (typu double) Wypisz następujące komunikaty: Dane sa liczby: a = 730, b = 106 i c = 123.45.

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Slajd 1 Excel Slajd 2 Adresy względne i bezwzględne Jedną z najważniejszych spraw jest tzw. adresacja. Mówiliśmy

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Wydawnictwo Helion ul. Koœciuszki 1c 44-100 Gliwice tel. 032 230 98 63 e-mail: helion@helion.pl

Wydawnictwo Helion ul. Koœciuszki 1c 44-100 Gliwice tel. 032 230 98 63 e-mail: helion@helion.pl OpenOffice.ux.pl Calc 2.0. Funkcje arkusza kalkulacyjnego Autor: Maciej Groszek ISBN: 978-83-246-0913-0 Format: B5, stron: oko³o 280 Przyk³ady na ftp: 1577 kb Wydawnictwo Helion ul. Koœciuszki 1c 44-100

Bardziej szczegółowo

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka

Bardziej szczegółowo

Matematyka z komputerem dla gimnazjum

Matematyka z komputerem dla gimnazjum IDZ DO PRZYK ADOWY ROZDZIA KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE O NOWO CIACH ZAMÓW CENNIK CZYTELNIA SPIS TRE CI KATALOG ONLINE DODAJ DO KOSZYKA FRAGMENTY

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

lim = lim lim Pochodne i róŝniczki funkcji jednej zmiennej.

lim = lim lim Pochodne i róŝniczki funkcji jednej zmiennej. Niniejsze opracowanie ma na celu przybliŝyć matematykę (analizę matematyczną) i stworzyć z niej narzędzie do rozwiązywania zagadnień z fizyki. Definicje typowo matematyczne będą stosowane tylko wtedy gdy

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

JE ELI - funkcja słu ca do testowania warunków logicznych

JE ELI - funkcja słu ca do testowania warunków logicznych JE ELI - funkcja słu ca do testowania warunków logicznych Składnia: JE ELI(warunek_logiczny; warto _dla_prawdy; warto _dla_fałszu) W warunku logicznym wykorzystywane s logiczne operatory porównania =,

Bardziej szczegółowo

FUNKCJE TEKSTOWE W MS EXCEL

FUNKCJE TEKSTOWE W MS EXCEL FUNKCJE TEKSTOWE W MS EXCEL ASC W językach korzystających z dwubajtowego zestawu znaków (DBCS) zmienia znaki o pełnej szerokości (dwubajtowe) na znaki o połówkowej szerokości (jednobajtowe). : ASC(tekst)

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

MICROSOFT EXCEL 2007

MICROSOFT EXCEL 2007 MICROSOFT EXCEL 2007 POZIOM PODSTAWOWY Cykl szkoleniowy realizowany jest w ramach projektu pn. Wdrożenie strategii szkoleniowej, Programu Operacyjnego Kapitał Ludzki współfinansowanego ze środków Unii

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

Microsoft Small Basic

Microsoft Small Basic Microsoft Small Basic Obiekt Math Szacowany czas trwania lekcji: 1 godzina Obiekt Math Podczas tej lekcji dowiesz się, jak: Używać różnych właściwości obiektu Math. Używać różnych operacji obiektu Math.

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego

Bardziej szczegółowo

Systemy liczbowe. 1. System liczbowy dziesiętny

Systemy liczbowe. 1. System liczbowy dziesiętny Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

mm słupa rtęci "mmhg" (avoirdupois) Siła Odległość "dyn" (lub "dy") Mila lądowa Energia

mm słupa rtęci mmhg (avoirdupois) Siła Odległość dyn (lub dy) Mila lądowa Energia Lekcja 2. Strona 1 z 13 Używanie jednostek W arkuszu kalkulacyjnym Excel prowadzić można obliczenia, w których uwzględnia się jednostki. Istnieje również możliwość dokonywania konwersji jednostek z jednego

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny

Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny Obliczenia inżynierskie Liczby Programy CAS Arkusz kalkulacyjny 2 3 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10 do zapisu potrzebnych 10 cyfr: 1,2,3,4,5,6,7,8,9,0

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo