Algorytmy funkcjonalne i struktury danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy funkcjonalne i struktury danych"

Transkrypt

1 Algorytmy funkcjonalne i struktury danych Lista zadań nr 4 5 listopada 2009 Zadanie 1. Zaprogramuj strukturę Deque o sygnaturze signature DEQUE = sig type a Queue val empty : a Queue val isempty : a Queue -> bool val cons : a * a Queue -> a Queue val head : a Queue -> a val tail : a Queue -> a Queue val snoc : a Queue * a -> a Queue val daeh : a Queue -> a val liat : a Queue -> a Queue end Wybierz podobną reprezentację, co w przypadku zwykłych kolejek. Użyj (a) metody bankierów i (b) metody potencjałowej do wykazania, że zamortyzowany koszt wszystkich operacji wynosi O(1). Zadanie 2. Korzystając z (a) metody bankierów i (b) metody potencjałowej pokaż, że zamortyzowany koszt wykonania na kopcu dwumianowym operacji insert wynosi O(1), zaś merge i deletemin O(log n). Zadanie 3. Zaimplementuj bigger i smaller rozdzielające drzewo samoorganizujące się na części. (Zauważ, że smaller powinna wstawiać do drzewa nie tylko elementy mniejsze, lecz także równe podanemu. Powinna to robić bez osobnego sprawdzania równości.) Porównaj tę implementację z funkcją partition. Dla jakich drzew obie wersje będą dawać różne wyniki? Zadanie 4. Dla dowolnego drzewa samoorganizującego się (splay tree) zachodzi Φ(t) = O(n log n). Znajdź dolne oszacowanie potencjału dla tych drzew. Zadanie 5. Dokończ dowód twierdzenia (5.2) mówiącego, że A(t) 1 + 2φ(t), tj. rozważ wariant zig-zag kroku indukcyjnego. Z twierdzenia tego wyprowadź wniosek, że zamortyzowany koszt operacji insert dla drzew samoorganizujących się jest logarytmiczny. Zadanie 6. Udowodnij, że zamortyzowany koszt operacji deletemin dla drzew samoorganizujących się wynosi O(log n). Jak zapewnić niski koszt operacji findmin? 1

2 Zadanie 7. Napisz algorytm treesort wykorzystujący drzewa samoorganizujące się. Wykaż, że w przypadku, gdy dane wejściowe są prawie posortowane (np. posortowane malejąco, rosnąco itp), to algorytm sortujący wykonuje jedynie O(n) kroków (kopce lewicowe również mają tę własność, jednak jedynie w odniesieniu do danych posortowanych malejąco). Zadanie 8. Drzewa o zmiennej liczbie potomków można zastąpić drzewami binarnymi zgodnie ze schematem przedstawionym na rysunku: x x1 x x 1 x n x n Napisz funkcję tobinary, która przekształca kopiec parujący w drzewo binarne tego typu. Zauważ, że takie przekształcenie tworzy drzewo binarne częściowo uporządkowane: etykieta żadnego wierzchołka jest niewiększa niż każda etykieta wierzchołka jego lewego potomka. Napisz implementację kopców parujących używającą tej reprezentacji. Wykonaj analizę kosztu zamortyzowanego tej nowej implementacji i pokaż, że operacje merge oraz deletemin działają w zamortyzowanym czasie O(log n). Zadanie 9 (5.9, wersja 1). Podaj przykłady takich kopców dwumianowych, drzew samoorganizujących się oraz kopców parujących, dla których wykonanie operacji uwzględnionych w ich schematach amortyzacji wymaga czasu pesymistycznego (chodzi o operacje wykonywane zgodnie ze schematem gorliwej amortyzacji, tj. bez wykorzystywania trwałości struktur). Zadanie 10 (5.9, wersja 2). Podaj przykłady takich ciągów operacji uwzględnionych w schemacie gorliwej amortyzacji kopców dwumianowych, drzew samoorganizujących się oraz kopców parujących, które poprzez wykorzystanie trwałości struktur danych osiągają czas działania znacznie przekraczający granice zamortyzowane. Innymi słowy pokaż, że gorliwy schemat amortyzacji jest słuszny tylko w przypadku ulotnego wykorzystywania tych struktur. Zadanie 11 (6.1). Narysuj ślad wykonania następującego ciągu operacji: val a = snoc (empty, 0) val b = snoc (a, 1) val c = tail b val d = snoc (b, 2) val e = c ++ d val f = tail c val g = snoc (d, 3) Podaj dla każdego wierzchołka liczbę jego logicznych przyszłości. Zadanie 12 (6.2). Rozważmy implementację leniwych kolejek wykorzystującą strumienie. Przyjmijmy, że niezmiennikiem kolejki jest 2 f = r. Napisz implementację takich kolejek. Udowodnij metodą bankierów, że wszystkie operacje na tych kolejkach nadal maja zamortyzowany koszt stały przy korzystaniu z nich w sposób trwały. Która implementacja oryginalna, czy nowa jest bardziej efektywna w praktyce? Zadanie 13 (6.3). Udowodnij, że operacje findmin, deletemin i merge na leniwych kopcach dwumianowych (algorytm z rysunku 6.2) działają w zamortyzowanym czasie O(log n). 2

3 Zadanie 14 (6.4). Udowodnij, że jeżeli usuniemy słowo kluczowe lazy z implementacji funkcji merge i deletemin z poprzedniego zadania, to operacje te nadal będą działać w zamortyzowanym czasie O(log n). Zadanie 15 (6.5). Niedobrą konsekwencją odroczenia listy drzew w leniwej implementacji kopców dwumianowych jest spowolnienie funkcji isempty zamiast pesymistycznego czasu O(1) otrzymujemy zamortyzowany czas O(log n). Przywróć stały pesymistyczny czas działania tej operacji modyfikując implementację kopców dwumianowych w taki sposób, by rozmiar kopca był przetwarzany jawnie. Zamiast modyfikować istniejącą implementację, napisz funktor SizedHeap, podobny do ExplicitMin, który przekształca dowolną implementację kopców w implementację kopców, która jawnie przetwarza ich rozmiar. Zadanie 16 (6.6). Pokaż, że każda z poniższych optymalizacji leniwych monolitycznych kolejek w rzeczywistości psuje stałe zamortyzowane ograniczenie czasowe operacji wykonywanych na tych kolejkach. Przykłady te są ilustracją typowych błędów popełnianych podczas projektowania trwałych struktur zamortyzowanych. a) Zauważ, że check wymusza f podczas rotacji i wstawia wynik do w. Czy nie było by bardziej leniwie, a zatem lepiej, nigdy nie wymuszać f zanim w się nie opróżni? b) Zauważ, że podczas obliczania funkcji tail zastępujemy f przez $tl(force f). Tworzenie i wymuszanie odroczeń powoduje nietrywialny narzut czasowy, który, mimo iż stały, może znacząco zwiększać czas obliczeń. Czy nie było by bardziej leniwie, a zatem lepiej, nie zmieniać f, lecz tylko zmniejszać lenf, aby zaznaczyć, że element został usunięty? Zadanie 17 (6.7). Zmień reprezentację wewnętrzną kolekcji sortowalnej z odroczonej listy list na listę strumieni. (a) Zamortyzuj tę implementację przy pomocy metody bankiera. (b) Zaprogramuj funkcję wybierającą k najmniejszych elementów z kolekcji. Udowodnij, że działa ona w zamortyzowanym czasie O(k log n). Zadanie 18 (7.1). Udowodnij, że zastąpienie operacji l ++ reverse r przez rotate(f, r, $Nil) w implementacji kolejek bankiera zmniejsza pesymistyczny czas działania operacji snoc, head i tail z O(n) do O(log n). Zadanie 19 (7.2). Zaprogramuj funkcję obliczającą długość kolejki real-time na podstawie s i r. O ile szybciej będzie działać ta funkcja w porównaniu z implementacją wyznaczającą długości list (strumieni) f i r? Zadanie 20 (7.3). Pokaż, że jeżeli z definicji operacji insert w kopcu dwumianowym realtime usuniemy słowo kluczowe lazy, to pesymistyczny czas dziania wszystkich operacji się nie pogorszy. Zadanie 21 (7.4). Napisz efektywną, wyspecjalizowaną wersję funkcji mrg o nazwie mrgwith- List którą można wykorzystać bezpośrednio w implementacji operacji deletemin w kopcach dwumianowych bez konieczności wykonywania operacji map i listtostream (unikając dwukrotnego kopiowania listy). Zadanie 22 (8.1). Rozszerz implementację drzew czerwono-czarnych o operację delete implementującą batched rebuilding. Do konstruktora T dodaj pole boolowskie przechowujące informację o tym, czy dany wierzchołek jest jeszcze żywy. Przechowuj gdzieś (w korzeniu drzewa?) oszacowanie liczby żywych i martwych wierzchołków. 3

4 Zadanie 23 (8.2). Udowodnij, że dwukrotne wywołanie funkcji exec na początku rotacji i pojedyncze podczas każdej operacji wstawiania i usuwania elementów z kolejki Hooda- Melville a wytarcza, by zakończyć rotację na czas. Zadanie 24 (8.3). Zastąp pola lenf i lenr w kolejce Hooda-Melville a pojedynczym polem diff przechowującym różnicę długości f i r. Zawartość tego pola może być nieprawidłowa podczas przebudowy, lecz musi być poprawna w chwili, w której przebudowa się kończy. Zadanie 25 (8.4). Trudno wprost dołożyć operację cons do kolejek Hooda-Melville a, gdyż musielibyśmy wstawiać element do stanu odwracania. Możemy jednak zaprogramować funktor, który doda operację cons do dowolnej implementacji Q kolejek wystarczy połączyć tę kolejkę ze stosem przechowującym elementy wstawione przez cons: type a Queue = a list * a Q.Queue Zaprogramuj ten funktor. Zadanie 26 (8.5). Opisz implementację leniwych kolejek dwustronnych i ich amortyzację metodą bankiera a następnie udowodnij twierdzenie: cons i tail (i symetrycznie snoc i init) zachowują niezmienniki debetowe na obu strumieniach (przednim i tylnym) spłacając co najwyżej po 1 i c+1 debetów na strumień, gdzie c jest stałą z niezmiennika kolejki ( f c r +1 i r c f + 1). Zadanie 27 (8.6). Jak zmiana c wpływa na efektywność kolejek z poprzedniego zadania? Wskaż ciąg operacji, który zostanie wykonany znacząco szybciej dla c = 2 niż dla c = 4. Wskaż następnie ciąg operacji, które zostaną znacząco szybciej wykonane dla c = 4 niż dla c = 2. Zadanie 28 (8.6). Zdeamortyzuj kolejki dwustronne z poprzednich zadań wprowadzając harmonogram wymuszeń obu strumieni. Udowodnij, że uda się zdążyć na czas wymuszając po jednym odroczeniu w każdym ze strumieni przy każdej operacji. Zadanie 29 (9.1). Zaprogramuj funkcję drop : int * a RList -> a RList usuwającą k pierwszych elementów listy o dostępie swobodnym. Funkcja powinna działać w czasie O(log n), gdzie n jest rozwmiarem listy. Zadanie 30 (9.2). Zaprogramuj funkcję create : int * a -> a RList tworzącą listę o bezpośrednim dostępie zawierającą n kopii podanego elementu. Funkcja powinna działać w czasie O(log n). Zadanie 31 (9.3). Zaprogramuj listę o dostępie swobodnym wykorzystując reprezentację rzadką: datatype a Tree = Leaf of a Node of int * a Tree * a Tree type a RList = a Tree list Zadanie 32 (9.3). Niech 4

5 datatype Digit = One Two type Nat = Digit list Zaprogramuj funkcje inc, dec i add dla liczb w tej reprezentacji (b i = 2 i ). Zadanie 33 ( ). Zaprogramuj listy o dostępie swobodnym bazujące na powyższej reprezentacji kładąc datatype a Digit = One of a Tree Two of a Tree * a Tree Pokaż, że lookup i update działają w tej reprezentacji w czasie O(i), gdzie i jest indeksem przetwarzanego elementu. Zadanie 34 (9.7). Drzewa czerwono-czarne również można rozważać jako reprezentacje numeryczne. Odkryj ich analogię do pewnego systemu liczenia. Znajdź podobieństwa i różnice między listami o dostępie swobodnym w reprezentacji z poprzedniego zadania i drzewami czerwono-czarnymi w których wstawianie jest ograniczone jedynie do skrajnie lewej pozycji. Skup się na operacjach cons i insert i na postaci niezmienników spełnionych przez struktury tworzone przez te operacje. 5

Koszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych

Koszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych Koszt zamortyzowany Jeśli mamy ciąg operacji, to koszt zamortyzowany jednej z nich jest sumarycznym kosztem wykonania wszystkich operacji podzielonym przez liczbę operacji. Inaczej mówiąc jest to, dla

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Programowanie. Lista zadań nr 15. Na ćwiczenia 11, 19 i 23 czerwca 2008

Programowanie. Lista zadań nr 15. Na ćwiczenia 11, 19 i 23 czerwca 2008 Programowanie Lista zadań nr 15 Na ćwiczenia 11, 19 i 23 czerwca 2008 Zadanie 1. Pokaż, że w systemie z polimorfizmem parametrycznym można napisać program P n rozmiaru O(n), którego typ ma rozmiar 2 2Ω(n).

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 2 Podstawy programowania 2 Temat: Zmienne dynamiczne tablica wskaźników i stos dynamiczny Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Tablice wskaźników Tablice

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

structure foo :>PART TWO = struct exception NotImplemented datatype a tree = Leaf of a Node of a tree * a * a tree 1

structure foo :>PART TWO = struct exception NotImplemented datatype a tree = Leaf of a Node of a tree * a * a tree 1 Zadanie domowe 1 Podczas dzisiejszych zajęć zaczniemy się zaznajamiać z programowaniem funkcyjnym w Standard ML poprzez implementowanie funkcji o rozmaitych typach. Każda z funkcji, jaką musicie się zająć,

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Dynamiczne drzewa. Piotr Sankowski. - p. 1/27

Dynamiczne drzewa. Piotr Sankowski. - p. 1/27 Piotr Sankowski - p. 1/27 przypomnienie czas O(log 2 n), jak to zrobić w czasie O(log n), jak to zrobić w pesymistycznym czasie O(log n) (szkic). - p. 2/27 Operacje na dynamicznych drzewach: parent(v)

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Slajd 1 Excel Slajd 2 Adresy względne i bezwzględne Jedną z najważniejszych spraw jest tzw. adresacja. Mówiliśmy

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004 4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Windows Commander (WinCmd)

Windows Commander (WinCmd) Windows Commander (WinCmd) Windows Commander jest wygodnym i funkcjonalne narzędziem do zarządzania plikami. Stanowi on pewną konkurencję do Eksploratora Windows. Okno główne programu WinCmd składa się

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Podstawy języka SQL. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Podstawy języka SQL. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl Bazy danych Podstawy języka SQL Dr inż. Paweł Kasprowski pawel@kasprowski.pl Plan wykładu Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność danych Współbieżność

Bardziej szczegółowo

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych

Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych 1 Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Alexander Denisjuk Prywatna Wyższa Szkoła Zawodowa w Giżycku

Bardziej szczegółowo

Programowanie w SQL procedury i funkcje. UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika

Programowanie w SQL procedury i funkcje. UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika Programowanie w SQL procedury i funkcje UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika 1. Funkcje o wartościach skalarnych ang. scalar valued

Bardziej szczegółowo

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer

Wstęp do informatyki. Maszyna RAM. Schemat logiczny komputera. Maszyna RAM. RAM: szczegóły. Realizacja algorytmu przez komputer Realizacja algorytmu przez komputer Wstęp do informatyki Wykład UniwersytetWrocławski 0 Tydzień temu: opis algorytmu w języku zrozumiałym dla człowieka: schemat blokowy, pseudokod. Dziś: schemat logiczny

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Wykład 2: Arkusz danych w programie STATISTICA

Wykład 2: Arkusz danych w programie STATISTICA Wykład 2: Arkusz danych w programie STATISTICA Nazwy przypadków Numer i nazwa zmiennej Elementy arkusza danych Cechy statystyczne Zmienne (kolumny) Jednostki statystyczne Przypadki (wiersze) Tworzenie

Bardziej szczegółowo

Instrukcja podwaja zarobki osób, których imiona zaczynają się P i dalsze litery alfabetu zakładamy, że takich osbób jest kilkanaście.

Instrukcja podwaja zarobki osób, których imiona zaczynają się P i dalsze litery alfabetu zakładamy, że takich osbób jest kilkanaście. Rodzaje triggerów Triggery DML na tabelach INSERT, UPDATE, DELETE Triggery na widokach INSTEAD OF Triggery DDL CREATE, ALTER, DROP Triggery na bazie danych SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Wykład 4. Klasa List Kolejki Stosy Słowniki

Wykład 4. Klasa List Kolejki Stosy Słowniki Wykład 4 Klasa List Kolejki Stosy Słowniki Klasa List Poważną niedogodnością tablic jako kolekcji danych jest fakt, że muszą one mieć stały rozmiar. Programista musi wiedzieć z góry ile miejsca powinien

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Cele. Definiowanie wyzwalaczy

Cele. Definiowanie wyzwalaczy WYZWALACZE Definiowanie wyzwalaczy Cele Wyjaśnić cel istnienia wyzwalaczy Przedyskutować zalety wyzwalaczy Wymienić i opisać cztery typy wyzwalaczy wspieranych przez Adaptive Server Anywhere Opisać dwa

Bardziej szczegółowo

Ogólne zasady projektowania algorytmów i programowania

Ogólne zasady projektowania algorytmów i programowania Ogólne zasady projektowania algorytmów i programowania Pracuj nad właściwie sformułowanym problemem dokładna analiza nawet małego zadania może prowadzić do ogromnych korzyści praktycznych: skrócenia długości

Bardziej szczegółowo

W przeciwnym wypadku wykonaj instrukcję z bloku drugiego. Ćwiczenie 1 utworzyć program dzielący przez siebie dwie liczby

W przeciwnym wypadku wykonaj instrukcję z bloku drugiego. Ćwiczenie 1 utworzyć program dzielący przez siebie dwie liczby Część XI C++ W folderze nazwisko36 program za każdym razem sprawdza oba warunki co niepotrzebnie obciąża procesor. Ten problem można rozwiązać stosując instrukcje if...else Instrukcja if wykonuje polecenie

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Bazy danych wykład ósmy Indeksy

Bazy danych wykład ósmy Indeksy Bazy danych wykład ósmy Indeksy Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa Konrad Zdanowski ( Uniwersytet Kardynała Stefana Bazy Wyszyńskiego, danych wykład Warszawa) ósmy Indeksy

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Lista 5 Typy dynamiczne kolejka

Lista 5 Typy dynamiczne kolejka Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Metody i języki programowania 1 Wprowadzenie Lista 5 Typy dynamiczne kolejka Kolejka jest jedną z podstawowych struktur umożliwiających

Bardziej szczegółowo

Rozdział 4 KLASY, OBIEKTY, METODY

Rozdział 4 KLASY, OBIEKTY, METODY Rozdział 4 KLASY, OBIEKTY, METODY Java jest językiem w pełni zorientowanym obiektowo. Wszystkie elementy opisujące dane, za wyjątkiem zmiennych prostych są obiektami. Sam program też jest obiektem pewnej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ Wykład 4 Katedra Inżynierii Komputerowej Jakub Romanowski jakub.romanowski@kik.pcz.pl Operacje na tabelach C/AL Poniższe funkcje odpowiadają za operacje modyfikacji

Bardziej szczegółowo

Podstawy programowania w języku C++

Podstawy programowania w języku C++ Podstawy programowania w języku C++ Część dziesiąta Rekordy w C/C++ struktury Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.programowanie.siminskionline.pl Niniejsze opracowanie zawiera skrót

Bardziej szczegółowo

Wykład 11. Konstrukcja drzew składniowych

Wykład 11. Konstrukcja drzew składniowych Wykład 11 Konstrukcja drzew składniowych Drzewa składniowe Wykorzystanie drzew składniowych jako reprezentacji pośredniej umożliwia oddzielenie translacji od analizy składniowej; Procedury translacji wywołane

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU

1 Moduł Modbus ASCII/RTU 1 Moduł Modbus ASCII/RTU Moduł Modbus ASCII/RTU daje użytkownikowi Systemu Vision możliwość komunikacji z urządzeniami za pomocą protokołu Modbus. Moduł jest konfigurowalny w taki sposób, aby umożliwiał

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Wykład 5 Listy leniwe

Wykład 5 Listy leniwe Wykład 5 Listy leniwe Listy leniwe Funkcjonały dla list leniwych Przykład: generowanie liczb pierwszych metodą sita Eratostenesa Algorytmy przeszukiwania przestrzeni stanów Przykład: problem ośmiu hetmanów

Bardziej szczegółowo

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016 Wykład 9 28 kwiecień 2016 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Stosy, kolejki i drzewa 1.1 Listy Lista to uporządkowany ciąg elementów. Przykładami list są tablice jednowymiarowe. W tablicach

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Konspekt zajęć dotyczących kwerend

Konspekt zajęć dotyczących kwerend Konspekt zajęć dotyczących kwerend Kwerendy służą wyszukiwaniu danych w sposób wiele elastyczniejszy niż przy użyciu samych tylko tabel. Można powiedzieć, że są one specjalną nakładką na tabele pozwalającą

Bardziej szczegółowo

Programowanie obiektowe i C++ dla matematyków

Programowanie obiektowe i C++ dla matematyków Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... 8 XI 2 1 Sposoby przekazywania argumentów Powiedzmy, że chcemy napisać funkcję, która zamieni miejscami wartość dwóch

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 3

Semantyka i Weryfikacja Programów - Laboratorium 3 Semantyka i Weryfikacja Programów - Laboratorium 3 Modelowanie układów mikroprocesorowych - część II Wykonywanie całego programu Cały program wykonywany jest przez funkcję intpprog. Jedynym argumentem

Bardziej szczegółowo

Klawisze funkcyjne w OpenOffice.org Writer

Klawisze funkcyjne w OpenOffice.org Writer Klawisze funkcyjne w OpenOffice.org Writer F2 Ctrl + F2 F3 Ctrl + F3 F4 Shift + F4 F5 Ctrl + Shift + F5 F7 Ctrl + F7 F8 Ctrl + F8 Shift + F8 Ctrl+Shift+F8 F9 Ctrl + F9 Shift + F9 Ctrl + Shift + F9 Ctrl

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

PROBLEMY NIEROZSTRZYGALNE

PROBLEMY NIEROZSTRZYGALNE PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną

Bardziej szczegółowo

Gra logiczna dla 2 5 osób Czas rozgrywki około 45 minut Wiek od 7 lat

Gra logiczna dla 2 5 osób Czas rozgrywki około 45 minut Wiek od 7 lat Qubix Gra logiczna dla 2 5 osób Czas rozgrywki około 45 minut Wiek od 7 lat Zawartość pudełka: 5 dwustronnych plansz graczy 75 klocków w pięciu kolorach 5 znaczników punktacji plansza punktacji instrukcja

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 02 Cel zajęć. Celem zajęć jest zapoznanie z praktycznymi aspektami projektowania oraz implementacji klas i obiektów z wykorzystaniem dziedziczenia.

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Wprowadzenie do projektowania i wykorzystania baz danych Relacje

Wprowadzenie do projektowania i wykorzystania baz danych Relacje Wprowadzenie do projektowania i wykorzystania baz danych Relacje Katarzyna Klessa Dygresja nt. operatorów SELECT 2^2 SELECT 2^30 SELECT 50^50 2 Dygresja nt. operatorów SELECT 2^30 --Bitwise exclusive OR

Bardziej szczegółowo

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Podstawowe definicje Baza danych to uporządkowany zbiór danych umożliwiający łatwe przeszukiwanie i aktualizację. System zarządzania bazą danych (DBMS) to oprogramowanie

Bardziej szczegółowo

Zad. 1. Systemy Baz Danych przykładowe zadania egzaminacyjne

Zad. 1. Systemy Baz Danych przykładowe zadania egzaminacyjne Zad. 1 Narysuj schemat związków encji dla przedstawionej poniżej rzeczywistości. Oznacz unikalne identyfikatory encji. Dla każdego związku zaznacz jego opcjonalność/obowiązkowość oraz stopień i nazwę związku.

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Kolejne osoby możemy wyświetlać naciskając przyciski do przesuwania rekordów.

Kolejne osoby możemy wyświetlać naciskając przyciski do przesuwania rekordów. Wskazówki do wykonania Ćwiczenia 7, Korespondencja seryjna (Word 2007) ze strony http://logika.uwb.edu.pl/mg/ Autor: dr Mariusz Giero Narzędzie korespondencji seryjnej warto użyć, gdy naszym zadaniem jest

Bardziej szczegółowo

6. Organizacja dostępu do danych przestrzennych

6. Organizacja dostępu do danych przestrzennych 6. Organizacja dostępu do danych przestrzennych Duża liczba danych przestrzennych oraz ich specyficzny charakter sprawiają, że do sprawnego funkcjonowania systemu, przetwarzania zgromadzonych w nim danych,

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Projektowanie systemów baz danych

Projektowanie systemów baz danych Projektowanie systemów baz danych Seweryn Dobrzelewski 4. Projektowanie DBMS 1 SQL SQL (ang. Structured Query Language) Język SQL jest strukturalnym językiem zapewniającym możliwość wydawania poleceń do

Bardziej szczegółowo

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT Temat: Zaimplementować system kryptografii wizualnej http://www.cacr.math.uwaterloo.ca/~dstinson/visual.html Autor: Tomasz Mitręga NSMW Grupa 1 Sekcja 2 1. Temat projektu

Bardziej szczegółowo

Kurs języka Python. Lista 1.

Kurs języka Python. Lista 1. 2 października 2015 Lista 1. Zadanie 1. Zaprogramuj funkcję rzut_kostka(), która symuluje rzut sześcienną kością do gry, tzn. funkcja ma zwracać losową liczbę naturalną z przedziału [1... 6]. Korzystając

Bardziej szczegółowo

Formatowanie tekstu za pomocą zdefiniowanych stylów. Włączanie okna stylów. 1. zaznaczyć tekst, który chcemy formatować

Formatowanie tekstu za pomocą zdefiniowanych stylów. Włączanie okna stylów. 1. zaznaczyć tekst, który chcemy formatować Style Bardzo często w edytorze podczas pisania tekstu zachodzi potrzeba wielokrotnego powtórzenia czynności związanych z formatowaniem. Aby zapobiec stałemu otwieraniu okien dialogowych i wybierania stale

Bardziej szczegółowo

ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0

ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0 ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu ECDL/ICDL Użytkowanie baz danych. Sylabus opisuje zakres wiedzy

Bardziej szczegółowo

Fizyczna struktura bazy danych w SQL Serwerze

Fizyczna struktura bazy danych w SQL Serwerze Sposób przechowywania danych na dysku twardym komputera ma zasadnicze znaczenie dla wydajności całej bazy i jest powodem tworzenia między innymi indeksów. Fizyczna struktura bazy danych w SQL Serwerze

Bardziej szczegółowo

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki.

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki. Literatura 1. D. Gajski, Principles of Digital Design, Prentice- Hall, 1997 2. C. Zieliński, Podstawy projektowania układów cyfrowych, PWN, Warszawa 2003 3. G. de Micheli, Synteza i optymalizacja układów

Bardziej szczegółowo

Bazy danych - wykład wstępny

Bazy danych - wykład wstępny Bazy danych - wykład wstępny Wykład: baza danych, modele, hierarchiczny, sieciowy, relacyjny, obiektowy, schemat logiczny, tabela, kwerenda, SQL, rekord, krotka, pole, atrybut, klucz podstawowy, relacja,

Bardziej szczegółowo

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2 Klasyfikacja Indeks Gini Zysk informacyjny Klasyfikacja wykład 2 Kontynuujemy prezentacje metod klasyfikacji. Na wykładzie zostaną przedstawione dwa podstawowe algorytmy klasyfikacji oparte o indukcję

Bardziej szczegółowo

Kwerendy, czyli zapytania. Opracowała: I. Długoń

Kwerendy, czyli zapytania. Opracowała: I. Długoń Kwerendy, czyli zapytania Opracowała: I. Długoń Sposoby wyszukiwania informacji Narzędzie Znajdź Filtrowanie Kwerendy Nasza baza Podstawowe sposoby wyszukiwania informacji Znajdź (Edycja -> Znajdź lub

Bardziej szczegółowo

Nawigacja po długim dokumencie może być męcząca, dlatego warto poznać następujące skróty klawiszowe

Nawigacja po długim dokumencie może być męcząca, dlatego warto poznać następujące skróty klawiszowe Zestawienie wydatków rok 2015 1 Wstaw numerację stron. Aby to zrobić przejdź na zakładkę Wstawianie i w grupie Nagłówek i stopka wybierz Numer strony. Następnie określ pozycję numeru na stronie (na przykład

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MIN-R1A1P-052 EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY Czas pracy 90 minut ARKUSZ I MAJ ROK 2005 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

D D L S Q L. Co to jest DDL SQL i jakie s jego ą podstawowe polecenia?

D D L S Q L. Co to jest DDL SQL i jakie s jego ą podstawowe polecenia? D D L S Q L Co to jest DDL SQL i jakie s jego ą podstawowe polecenia? D D L S Q L - p o d s t a w y DDL SQL (Data Definition Language) Jest to zbiór instrukcji i definicji danych, którym posługujemy się

Bardziej szczegółowo

15. Funkcje i procedury składowane PL/SQL

15. Funkcje i procedury składowane PL/SQL 15. Funkcje i procedury składowane PLSQL 15.1. SQL i PLSQL (Structured Query Language - SQL) Język zapytań strukturalnych SQL jest zbiorem poleceń, za pomocą których programy i uŝytkownicy uzyskują dostęp

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Tworzenie i zapis plików w VI

Tworzenie i zapis plików w VI Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Front Panel Tworzenie aplikacji rozpoczyna się poprzez umieszczenie i organizacje kontrolek i wyświetlaczy na panelu czołowym korzystając

Bardziej szczegółowo