PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
|
|
- Milena Kujawa
- 1 lat temu
- Przeglądów:
Transkrypt
1 Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Przed matur¹ MAJ 2011 r. Czas pracy 170 minut Instrukcja dla pisz¹cego 1. SprawdŸ, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 24. s¹ podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedn¹ odpowiedÿ i zaznacz j¹ na karcie odpowiedzi. 3. Zaznaczaj¹c odpowiedzi w czêœci karty przeznaczonej dla zdaj¹cego, zamaluj pola do tego przeznaczone. B³êdne zaznaczenie otocz kó³kiem i zaznacz w³aœciwe. 4. Rozwi¹zania zadañ od 25. do 32. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadz¹cy do ostatecznego wyniku. 5. Pisz czytelnie. U ywaj d³ugopisu/pióra tylko z czarnym tuszem/atramentem. 6. Nie u ywaj korektora. B³êdne zapisy przekreœl. 7. Pamiêtaj, e zapisy w brudnopisie nie podlegaj¹ ocenie. 8. Obok numeru ka dego zadania podana jest maksymalna liczba punktów mo liwych do uzyskania. 9. Mo esz korzystaæ z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. 10. Wype³nij tê czêœæ karty odpowiedzi, któr¹ koduje zdaj¹cy. Nie wpisuj adnych znaków w czêœci przeznaczonej dla egzaminatora. yczymy powodzenia! Za rozwi¹zanie wszystkich zadañ mo na otrzymaæ ³¹cznie 50 punktów Wype³nia zdaj¹cy przed rozpoczêciem pracy PESEL ZDAJ CEGO KOD ZDAJ CEGO
2 2 Próbny egzamin maturalny z matematyki ZADANIA ZAMKNIÊTE W zadaniach od 1. do 24. wybierz i zaznacz na karcie odpowiedzi jedn¹ poprawn¹ odpowiedÿ. Zadanie 1. (1 pkt) Liczba 3 jest równa: A. 0 B. 0,14 C. 3 D. 3. Zadanie 2. (1 pkt) Wartoœæ wyra enia wynosi: A. 1 B. 1 C. 1 D Zadanie 3. (1 pkt) Jeœli a = 2log 9 3 i b = log 8 log 4, to: 2 2 A. a = b B. a < b C. a > b D. a 2 = b. Zadanie 4. (1 pkt) Jeœli d³ugoœæ jednego boku prostok¹ta zwiêkszymy o 20%, a d³ugoœæ drugiego boku prostok¹ta zmniejszymy o 5%, to pole prostok¹ta zwiêkszy siê o: A. 12% B. 14% C. 15% D. 16%. W zadaniach 5., 6. i 7. wykorzystaj poni szy wykres funkcji f. Y y = f( x) X Zadanie 5. (1 pkt) Funkcja f jest rosn¹ca w przedziale: A. ( 2, 4 B. ( 5, 4 C. ( 5, 2 D. 2, 2.
3 Próbny egzamin maturalny z matematyki 3 BRUDNOPIS
4 4 Próbny egzamin maturalny z matematyki Zadanie 6. (1 pkt) Dziedzin¹ funkcji g, gdzie g(x)=f (x + 2), jest zbiór: A. ( 7, 4 B. ( 3, 8 C. (0, 6 D. ( 7, 2. Zadanie 7. (1 pkt) f(x) 2 wtedy i tylko wtedy, gdy: A. x 3, 2 B. x 3, 6 C. x ( 3, 6) D. x 2, 4. Zadanie 8. (1 pkt) Wska m, dla którego miejsce zerowe funkcji liniowej f(x)=3x m + 5 jest liczb¹ z przedzia³u (0, 1). A. m =1 B.m =3 C.m =5 D.m =6 Zadanie 9. (1 pkt) Liczby 4 i 6 s¹ miejscami zerowymi funkcji kwadratowej f. Zatem osi¹ symetrii wykresu funkcji f jest prosta o równaniu: A. x =10 B.x =2 C.y =5 D.x =5. Zadanie 10. (1 pkt) Zbiorem rozwi¹zañ nierównoœci 2 x > 0 jest: x 1 A. (2, + ) B. (, 2) C. ( 1, 2) D. (, 1) (2, + ). Zadanie 11. (1 pkt) Ci¹g (a n ) okreœlony jest wzorem a n = 1. Czwarty wyraz tego ci¹gu to: n 3 A. 81 B. 1 C. 81 D Zadanie 12. (1 pkt) Równania równowa ne to: A. x =2ix 2 =4 B.x 2 =2i x = 2 C. (x 3)(x +3)=0ix 2 +9=0 D.(x 1) 2 =(1 x) 2 i x 2 =0. Zadanie 13. (1 pkt) ( )( )( ) Iloczyn pierwiastków równania x 3 x 5 x 2 = 0 jest równy: 2 x A. 15 B. 15 C. 30 D. 30.
5 Próbny egzamin maturalny z matematyki 5 BRUDNOPIS
6 6 Próbny egzamin maturalny z matematyki Zadanie 14. (1 pkt) Prost¹ równoleg³¹ do prostej k:3x 2y = 0 opisuje równanie: A. 2x 3y =0 B.y = 1,5x +5 C.y = 2 x +2 D.y =3x Zadanie 15. (1 pkt) Dany jest okr¹g o 1 :(x 1) 2 + y 2 = 2 i prosta l: y = x 3. Wska zdanie prawdziwe. A. Prosta l przechodzi przez œrodek okrêgu. B. Prosta l jest roz³¹czna z okrêgiem. C. Prosta l jest styczna do okrêgu. D. Prosta l ma z okrêgiem dwa punkty wspólne. Zadanie 16. (1 pkt) Jeœli tg = 2,8, to wartoœæ wyra enia sin 2 cos jest równa: cos A. 0,8 B. 1,8 C. 2,6 D. 3,2. Zadanie 17. (1 pkt) Wartoœæ wyra enia (sin15 cos75 ) 2 jest liczb¹: A. pierwsz¹ B. parzyst¹ C. niewymiern¹ D. wymiern¹ z przedzia³u (0, 1). Zadanie 18. (1 pkt) Okr¹g o œrodku O jest styczny do prostej k w punkcie A. Miara k¹ta zaznaczonego na rysunku wynosi: A. 30 B. 40 C. 50 D. 60. k A O Zadanie 19. (1 pkt) Ci¹g (2, x, 18) jest ci¹giem geometrycznym tylko wtedy, gdy: A. x { 6, 6} B. x = 6 C.x =6 D.x = 10. Zadanie 20. (1 pkt) Punkty A( 2, 4) oraz B(5, 3) s¹ wierzcho³kami trójk¹ta równobocznego. Wobec tego wysokoœæ tego trójk¹ta ma d³ugoœæ: A B C D
7 Próbny egzamin maturalny z matematyki 7 BRUDNOPIS
8 8 Próbny egzamin maturalny z matematyki Zadanie 21. (1 pkt) Mediana liczb 1, 2, 1, 1, 2, 3, 1, 2, 2 jest równa: A. 1 B. 1,5 C. 2 D. 2,5. Zadanie 22. (1 pkt) Stosunek objêtoœci dwóch szeœcianów jest równy 1 : 27. Zatem stosunek d³ugoœci krawêdzi tych szeœcianów wynosi: A.1: 27 B.1:3 C.1:9 D.1:27. Zadanie 23. (1 pkt) Narysunkuprzedstawiony jest czworoœcian foremnyabcs. K¹t nachylenia krawêdzi bocznej do p³aszczyzny podstawy czworoœcianu oznaczono liter¹: A. B. C. D.. Zadanie 24. (1 pkt) Oœmiu znajomych, wœród których jest jedno ma³ eñstwo, kupi³o bilety do kina na kolejne miejsca w jednym rzêdzie. Wszystkich mo liwych sposobów zajêcia miejsc tak, aby ma³ onkowie siedzieli obok siebie, jest: A B C D A S H C B
9 Próbny egzamin maturalny z matematyki 9 BRUDNOPIS
10 10 Próbny egzamin maturalny z matematyki ZADANIA OTWARTE Rozwi¹zania zadañ o numerach od 25. do 32. nale y zapisaæ w wyznaczonych miejscach pod treœci¹ zadania. Zadanie 25. (2 pkt) Funkcja kwadratowa f ma tylko jedno miejsce zerowe, przyjmuje najwiêksz¹ wartoœæ dla argumentu 4, a do jej wykresu nale y punkt A(1, 50). Napisz wzór funkcji f w postaci ogólnej. Zadanie 26. (2 pkt) Wyka, e jeœli x, y s¹ liczbami ró nymi od zera i 1 x 1 y = x y, tox = y lub xy = 1.
11 Próbny egzamin maturalny z matematyki 11 Zadanie 27. (2 pkt) W garderobie pani Joanny wisz¹ 3 akiety: bia³y, zielony i granatowy oraz 4 spódnice: czarna, bia³a, granatowa i szara. Oblicz prawdopodobieñstwo zdarzenia, e wybieraj¹c losowo jeden akiet i jedn¹ spódnicê, pani Joanna skompletuje strój w jednym kolorze. Zadanie 28. (2 pkt) Prosta k równoleg³a do boku AB trójk¹ta ABC przecina boki AC oraz BC odpowiednio w punktach D i E (zobacz rysunek). Wiadomo, e pole trójk¹ta DEC wynosi 4cm 2, zaœ pole trapezu ABED jest równe 8 cm 2. Wyka, e AD DC = 3 1. A C D E k B
12 12 Próbny egzamin maturalny z matematyki Zadanie 29. (5 pkt) Dane s¹ punkty A(6, 3), B(1, 2) oraz C(2m 3 18m, m 2 ). Wyznacz wszystkie wartoœci m, dla których proste AB i AC s¹ prostopad³e.
13 Próbny egzamin maturalny z matematyki 13 Zadanie 30. (5 pkt) Ze Szczecina do Czêstochowy wybra³y siê dwie pielgrzymki: piesza i rowerowa. Pielgrzymka piesza wyruszy³a pierwsza, pokonuj¹c ka dego dnia 26 km. Po 8 dniach wyruszy³a (z tego samego miejsca, t¹ sam¹ tras¹) pielgrzymka rowerowa, pokonuj¹c pierwszego dnia 54 km, a ka dego nastêpnego dnia o 2 kilometry mniej ni dnia poprzedniego. Pielgrzymki spotka³y siê dopiero u stóp Jasnej Góry. W którym dniu podró y i w jakiej odleg³oœci od miejsca wyjazdu pielgrzymka rowerowa dogoni³a pielgrzymkê piesz¹?
14 14 Próbny egzamin maturalny z matematyki Zadanie 31. (4 pkt) WtrapezierównoramiennymABCD przek¹tna BD jest prostopad³a do ramienia AD (zobacz rysunek). Podstawy trapezu maj¹ d³ugoœæ: AB = 8 cmi CD = 4 cm. Oblicz pole oraz miary k¹tów trapezu. A D C B
15 Próbny egzamin maturalny z matematyki 15 Zadanie 32. (4 pkt) Powierzchnia boczna sto ka jest po rozwiniêciu æwiartk¹ ko³a o promieniu 16 cm. Oblicz pole powierzchni ca³kowitej i objêtoœæ tego sto ka.
16 16 Próbny egzamin maturalny z matematyki Karta odpowiedzi Wype³nia pisz¹cy Nr zadania A B C D Wype³nia sprawdzaj¹cy Nr zadania X Nr zadania X Suma punktów D J Cyfra dziesi¹tek Cyfra jednostek
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2011 r. Czas pracy 180 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJ CY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATUR MAJ 2012 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy 1 MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3.
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 011 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy
Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MMA-P1A1P-021 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY ARKUSZ I MAJ ROK 2002 Instrukcja dla zdaj¹cego Czas pracy
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy CZERWIEC 2014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A-1 ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
LUBELSKA PRÓBA PRZED MATURĄ 2015
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zgłoś przewodniczącemu
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
ARKUSZ EGZAMINACYJNY Z MATEMATYKI
dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY GRUDZIE ROK 2007 Instrukcja dla zdajàcego Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
Czas pracy 170 minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZJ Y KO PESEL PRÓNY EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY PRZE MTUR MJ 01 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 3). Ewentualny brak zg³oœ przewodnicz¹cemu zespo³u
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM ROZSZERZONY Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny zawiera 13
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14
1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron
PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie
Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM PODSTAWOWY DATA: 25 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy
Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY Czas pracy 180 minut LISTOPAD ROK 008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-052 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 03 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron (zadania 30).. Arkusz zawiera 0 zadań zamkniętych i 0 zadań
MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
LUBELSKA PRÓBA PRZED MATURĄ
POZIOM PODSTAWOWY Czas pracy 170 minut Klasa 3 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do. są podane 4 odpowiedzi: A, B, C, D, z których
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI CZERWIEC 20 POZIOM PODSTAWOWY Czas pracy 00 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 6 stron (zadania 9). 2. Arkusz zawiera 3 zadań zamkniętych i
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2007 Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
Miejsce na identyfikację szkoły PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ZGODNY Z WYMOGAMI NA 015 ROK POZIOM PODSTAWOWY CZERWIEC 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 14 stron. W zadaniach 1. do 5. są podane 4 odpowiedzi: A, B, C, D, z
LUBELSKA PRÓBA PRZED MATURĄ 2013
LUBELSKA PRÓBA PRZED MATURĄ 013 MATEMATYKA - poziom podstawowy MAJ 013 KLASA I Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron.. Rozwiązania zadań i odpowiedzi zamieść
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2011 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2014 Czas pracy: 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron
LUBELSKA PRÓBA PRZED MATURĄ
Klasa POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa.
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 3 CZERWCA 2016 R. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50
EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY