E2. BADANIE OBWODÓW PRĄDU PRZEMIENNEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "E2. BADANIE OBWODÓW PRĄDU PRZEMIENNEGO"

Transkrypt

1 E. BADANE OBWODÓW PĄDU PZEMENNEGO ks opracowały: Jadwga Szydłowska Bożna Janowska-Dmoch Badać będzmy charakrysyk obwodów zawrających różn układy lmnów akch jak: opornk, cwka kondnsaor, połączonych z sobą szrgowo a zaslanych napęcm zmnnym snusodaln. W obwodach zaslanych zmnną snusodaln słą lkromooryczną zawrających ylko opornk omow naężn prądu js, zgodn z prawm Ohma, wpros proporcjonaln do przyłożongo napęca. Obcność w obwodz dodakowo oporu pojmnoścowgo, lub ndukcyjngo, lub obu na raz powoduj, ż prąd js przsunęy w faz względm przyłożongo napęca, a jgo ampluda zmna sę wraz z zmaną częsolwośc. l lm ćwczna js: wyznaczn przsunęć fazowych mędzy prądm napęcm w obwodach, zaslanych napęcm zmnnym snusodaln w funkcj częsośc; zbadan własnośc flrujących obwodów zaslanych napęcm zmnnym snusodaln. Wymagana Prąd lkryczny zmnny snusodaln: sła lkromooryczna, poncjał, napęc, naężn, opór omowy, ndukcyjny pojmnoścowy, zawada. Prawo Ohma prawa Krchhoffa. Prawo ndukcj Faradaya, SEM ndukcj. Szrgow obwody, zaslan napęcm zmnnym snusodaln. Przsunęca fazow w obwodach,. Zjawsko rzonansu. Flry. raura D. Hallday,. snck, Fzyka, om, PWN E.M. Purcll, Elkryczność magnyzm, Kurs brkljowsk om,pwn. D. Hallday,. snck, J. Walkr, Podsawy fzyk, om, PWN K. Zbońsk, aboraorum z fzyk, br. Ops układu część oryczna Obwód zaslany napęcm zmnnym snusodaln. Na ysunku przdsawono schma obwodu, gdz oznaczna: opornk (opornk dkadowy), ndukcyjność cwk, pojmność kondnsaora, zmnn snusodaln napęc zaslana, U wyj napęc podawan na oscyloskop. Zgodn z prawm Krchhoffa napęc podan na cały układ rozkłada sę na poszczgóln lmny ak, ż: U wyj ysunk

2 U U U, U U d, U d Q () gdz: U, U U są napęcam na opornku, cwc kondnsaorz, naężnm prądu w obwodz, Q ładunkm zgromadzonym na kondnsaorz. Podsawając odpowdn spadk napęć orzymuj sę: d Q () d Napęc zaslana ma posać snusodalną wyraża sę wzorm = cos, (ysunk ),co można (dla uławna oblczń) zapsać jako lczbę zspoloną (ysunk 3): (cos sn ) m ysunk. Przdsawn zalżnośc napęca oraz prądu jako funkcj snusodalnj. Jśl >, prąd wyprzdza napęc cos(+) ysunk 3. Przdsawn zalżnośc napęca oraz prądu jako funkcj zspolonj. cos() Przdsawa sę ją jako punk na płaszczyźn zspolonj, -m jj część rzczywsa js waroścą (w ym przypadku) napęca (ysunk 3) W równanu () poszukujmy warośc prądu. Zakładamy, ż prąd zmna sę z a samą częsoścą co napęc zaslana, al js przsunęy w faz o ką, a wc = cos(+można go równż zapsać jako lczbę zspoloną: gdz ( ) (cos( ) sn( )) Dla założonj warośc prądu orzymuj sę: Q d d d oraz. Podsawn powyższgo do wzoru () daj:

3 Dzląc sronam przz orzymujmy: (3) Wyrażn o ma srukurę podobną do prawa Ohma, gdy zapszmy: Z Z g Z Z Z Z m oraz gdy (4) Ẑ nazywa sę zawadą zspoloną js ona sumą częśc rzczywsj j. oporu omowgo częśc urojonj będącj oporm urojonym cwk X = kondnsaora X = - /. ównan (3) można przpsać jako: Z Ponważ po prawj sron mamy ylko lczbę rzczywsą, lwa srona mus z być rzczywsa, wc = czyl: g, a ampluda prądu (bz częśc fazowj) wynos: ) cos( lub oraz Z (5) Prąd w obwodz js proporcjonalny do napęca U wyj na oporz, kór js podan na jdn z kanałów oscyloskopu. ) cos( ) cos( U U wyj wyj (6) Przbg go napęca (a węc prądu ) js wykrślony na kran oscyloskopu w posac snusody podobnj do j z ysunku z jdnoczsnym wykrślnm snusodalngo napęca zaslającgo. Oba wykrsy są przsunę względm sb o ką (ysunk )

4 możmy zmrzyć jgo wlkość. Jżl / >, prąd wyprzdza napęc. Sosunk ampludy napęca mrzongo do ampludy napęca zaslającgo wynos U wyj (7) Maksmum zalżnośc (7) osąga sę, gdy manownk saj sę mnmalny, a węc gdy częsość = /. Js o punk rzonansowy. Wówczas zawada js mnmalna, Z, brak js przsunęca mędzy prądm napęcm, =, oraz ampluda prądu js maksymalna, Obwód zaslany napęcm zmnnym snusodaln. Na rysunku obok przdsawono schma obwodu sosowango do pomarów przsunęć fazowych. Oznaczna na schmac: opór (opornk dkadowy), ndukcyjność cwk, zmnn snusodaln napęc zaslana, U wyj napęc podawan na oscyloskop. W ym przypadku prąd ką przsunęca (g) oblcza sę z wzoru (5) podsawając, czyl U wyj cos( ), g (8) Sosunk ampludy napęca mrzongo do ampludy napęca zaslającgo oblcza sę z zalżnośc (6): U wyj (9) U wyj Dla maljących częsośc,. Przy dużych częsoścach, U wyj Możmy bzpośrdno na kran oscyloskopu mrzyć warośc napęć przsunęć fazowych mędzy sygnałam wjścowym wyjścowym. Obwód zaslany napęcm zmnnym snusodaln. Na rysunku przdsawono obok schma obwodu sosowango do pomarów przsunęć fazowych. Oznaczna na schmac: opór (opornk dkadowy), pojmność (kondnsaor dkadowy), zmnn snusodaln napęc zaslana, U wyj napęc podawan na oscyloskop. W ym U wyj

5 przypadku prąd ką przsunęca (g) oblcza sę z wzoru (5) podsawając, czyl cos( ), g () Sosunk ampludy napęca mrzongo do ampludy napęca zaslającgo oblcza sę z zalżnośc (6): U wyj () U wyj Dla maljących częsośc,. Przy dużych częsoścach, U wyj Możmy bzpośrdno na kran oscyloskopu mrzyć warośc napęć przsunęć fazowych mędzy sygnałam wjścowym wyjścowym. Obwód zaslany napęcm zmnnym snusodaln. Na rysunku obok przdsawono schma obwodu sosowango do pomarów przsunęć fazowych. Oznaczna na schmac: opór (opornk dkadowy), - ndukcyjność cwk, pojmność (kondnsaor dkadowy), zmnn snusodaln napęc zaslana, U wyj napęc podawan na oscyloskop. Prąd ką przsunęca (g) opsany js wzorm (5): U cos (5) gdz przsunęr fazow js : g U wyj Możmy bzpośrdno na kran oscyloskopu mrzyć warośc przsunęca fazowgo mędzy sygnałam wjścowym (żóły) wyjścowym (zlony). Wykonan ćwczna Wynk wszyskch pomarów muszą być zapsan w sprawozdanu, oparzon odpowdnm jdnoskam podpsan przz asysna. Układ pomarowy.

6 Układ pomarowy składa sę z nasępujących przyrządów: gnraora sygnału snusodalngo z rgulacją częsolwośc, kondnsaora dkadowgo, opornka dkadowgo, cwk ndukcyjnych, płyk monażowj oraz oscyloskopu cyfrowgo DSO36A. Napęc z gnraora js podan na kanał oscyloskopu jdnoczśn js podan na płykę monażową. Sygnał wyjścowy z płyk monażowj js podany na kanał oscyloskopu. Obwód zaslany napęcm zmnnym snusodaln. Wyznaczan przsunęć fazowych: a) Wybramy jdną z dosępnych cwk. Na płyc monażowj łączymy obwód. Na opornku dkadowym usawamy opór = 5 k. b) Po sprawdznu obwodu przz asysna włącznu zaslana na kran oscyloskopu pownny być wdoczn sygnały z gnraora opornka w posac płnych przbgów snusodalnych (co najmnj jdna snusoda). Zmnjszn lub powększn sygnału rgulujmy pokręłam wzmocnna obu kanałów, a szrokość wykrsów pokręłm podsawy czasu. Z Mnu oscyloskopu wybramy funkcj porzbn przy wykonywanu pomarów.. Pomar częsolwośc : Nacskamy przycsk Masur, z mnu wybramy sourc H, a nasępn Tm/3 klawsz Frq. zęsolwość sygnału wyśwla sę na dol kranu.. Przsunęc fazow pomar przsunęca czasowgo sygnałów X: Opóźnn mędzy sygnałam mrzyć będzmy auomayczn ręczn. Pomar auomayczny: nacskamy klawsz Masur, na kran pojawa sę mnu, nacskamy klawsz Tm w pozycj Tm/3, mnu zmna sę w Tm/3, po ponownym nacśnęcu mnu zmna sę w Tm3/3 wybramy Dlay. Na dol kranu wyśwla sę na różowo rzula pomaru opóźnna X jdngo sygnału względm druggo. Pomar ręczny: nacskamy klawsz ursors, z nowgo mnu, wybramy mod Manual, sourc H, yp Tm. Na kran pojawają sę dw nbsk, ponow ln. Są o zw. kursory. Wcśnęc klawsza ura pozwala zmnać położn jdnj z ln przz obró pokręła. Usawamy kursor A w maksmum sygnału np. żółgo. Po wcśnęcu klawsza urb obró pokręła zmna położn drugj ln, co pozwala usawć kursor B w maksmum druggo sygnału. W prawym górnym rogu kranu oscyloskopu wyśwla sę nformacja o położnu obu kursorów w skal czasu o różncy ch położń X. Przy pomarz ręcznym musmy zwrócć uwagę czy sygnał wyjścowy (zlony) opóźna sę, a wdy X<, czy wyprzdza sygnał wjścowy, a wdy X>. 3. Mrzymy opóźnna mdzy sygnałam dla częsolwośc 5 Hz, Hz, dalj co Hz do 7 Hz, Hz 5 Hz. Propozycja zapsu wynków: Typ obwodu:... =..., =... wka: np. lwa zęsolwość Auom. X ęczn X [jdnoska] [jdnoska] [jdnoska] =... (X) =... (X) =...

7 gdz (X) są npwnoścam pomarowym wynkającym z rozrzuu wyśwlanych wynków. Własnośc flrując obwodu a) Warość oporu na opornku dkadowym zmnamy na 5. b) Z mnu Masur wybramy lar ponown sourc H w pozycj Tm przycskamy klawsz Frq, a w pozycj Volag wybramy Vrms. Na dol kranu wyśwl sę częsolwość warość skuczna napęca sygnału wjścowgo U wj. Analogczn wybramy dla sygnału wyjścowgo U wyj na kanal Masur sourc H Volag Vrms. c) Mrzymy napęca obu sygnałów dla częsolwośc 5 Hz, Hz, dalj co Hz do 7 Hz, Hz 5 Hz. Propozycja zapsu wynków: Typ obwodu:... =..., =... wka: np. lwa zęsolwość Napęc U wj Napęc U wyj [jdnoska] [jdnoska] [jdnoska] =... U =... U =... gdz U są npwnoścam pomarowym wynkającym z rozrzuu wyśwlanych wynków. Obwód zaslany napęcm zmnnym snusodaln. Wyznaczan przsunęć fazowych: a) Na płyc monażowj łączymy obwód. Na opornku dkadowym usawamy opór np. = 5, a na kondnsaorz dkadowym pojmność np. = F. b) Po sprawdznu obwodu przz asysna włącznu zaslana usawamy pomar częsolwośc sygnału auomayczngo opóźnna czasowgo sygnałów X. c) Mrzymy przsunęca fazow obu sygnałów dla częsolwośc 5,,, 3, 5, 7,, 5 Hz. Propozycja zapsu wynków: Typ obwodu:... =..., =... =..., =... zęsolwość Auom. X ęczn X [jdnoska] [jdnoska] [jdnoska] =... (X) =... (X) =...

8 gdz (X) są npwnoścam pomarowym wynkającym z rozrzuu wyśwlanych wynków. Własnośc flrując obwodu a) Podobn jak wczśnj dla flru usawamy na oscyloskop funkcję pomaru napęca na obu kanałach. b) Na opornku dkadowym usawamy opór np. = 3, a na kondnsaorz dkadowym pojmność np. = F. c) Mrzymy napęca skuczn obu sygnałów dla częsolwośc 5 Hz, Hz, Hz, 3 Hz, 5 Hz, 7 Hz, Hz, Hz, 5 Hz. Propozycja zapsu wynków: Typ obwodu:... =..., =... =..., =... zęsolwość Napęc U wj Napęc U wyj [jdnoska] [jdnoska] [jdnoska] =... U =... U =... gdz U są npwnoścam pomarowym wynkającym z rozrzuu wyśwlanych wynków. Obwód zaslany napęcm zmnnym snusodaln. a) Łączymy obwód. Wybramy ę samą cwkę, kórą badalśmy w obwodz. Gdy wybramy cwkę po lwj sron, o na opornku dkadowym usawamy opór np. = 4 k, a na kondnsaorz dkadowym pojmność = 4 F. Dla prawj cwk na opornku dkadowym usawamy np. opór = 5 k, a na kondnsaorz dkadowym pojmność =,7 F. b) Mrzymy opóźnn czasow sygnałów X dla lwj cwk co Hz aż do Hz, a dalj co 5 Hz do 5 Hz, albo dla prawj cwk od Hz co 5 Hz do 3 Hz co Hz do Hz. c) Wyznaczan częsolwośc rzonansowj obwodu : wcskamy przycsk Man/Dlayd pojawa sę mnu. Klawszm TmBas zmnamy ryb Y-T na XY, czyl ak, w kórym sygnał wjścowy js podany na okładk odchylana pozomgo oscyloskopu, a sygnał wyjścowy na okładk odchylana ponowgo. Zmnamy częsolwość sygnału wjścowgo obsrwujmy zmany krzywj na kran. Gdy częsolwość js równa częsolwośc rzonansowj obwodu na kran obsrwujmy odcnk ln prosj. Propozycja zapsu wynków: Typ obwodu:... wka:... rz =... =..., =... =..., =...

9 zęsolwość Auom. X ęczn X [jdnoska] [jdnoska] [jdnoska] =... (X) =... (X) =... gdz (X) są npwnoścam pomarowym wynkającym z rozrzuu wyśwlanych wynków. Opracowan wynków Obwód zaslany napęcm zmnnym snusodaln. Wyznaczan przsunęć fazowych: a) Dla każdj różncy położń kursorów X oblczamy przsunęc fazow prądu względm przyłożongo napęca wdług wzoru: = X oraz g. b) Błąd wyznaczamy modą propagacj npwnośc pomarowych. c) Wyznaczamy błąd (g) modą propagacj npwnośc pomarowych. d) Na paprz mlmrowym sporządzamy wykrs g w funkcj częsośc =, zaznaczając błędy pomarow. Wykrs można sporządzć wykorzysując programy kompurow. Zgodn z wzorm (8) będz o lna prosa z współczynnkam A = / B = ) Modą najmnjszych kwadraów (rgrsj lnowj) wyznaczamy współczynnk A prosj najlpj dopasowanj do punków pomarowych. Nanosmy ę prosą na wykrs. Wyznaczamy równż błąd A. f) Z nachylna prosj wyznaczamy ndukcyjność cwk błąd. Własnośc flrując obwodu a) Na paprz mlmrowym sporządzamy wykrs lorazu zmrzonych napęć U wyj / w funkcj częsośc =, zaznaczając błędy pomarow. Wykrs można sporządzć wykorzysując programy kompurow. b) Korzysając z wyznaczonj ndukcyjnośc cwk oblczamy warośc U wyj / z wzoru U wyj (9):, dla mrzonych częsośc nanosmy na n sam wykrs. Obwód zaslany napęcm zmnnym snusodaln. Wyznaczan przsunęć fazowych: a) Dla każdj różncy położń kursorów X oblczamy przsunęc fazow prądu względm przyłożongo napęca wdług wzoru: = X oraz g. b) Błąd wyznaczamy modą propagacj npwnośc pomarowych. c) Wyznaczamy błąd (g) modą propagacj npwnośc pomarowych.

10 g) Na paprz mlmrowym sporządzamy wykrs g w funkcj odwronośc częsośc / = /, zaznaczając błędy pomarow. Wykrs można sporządzć wykorzysując programy kompurow. Zgodn z wzorm () będz o lna prosa z współczynnkam A = / B = d) Modą najmnjszych kwadraów (rgrsj lnowj) wyznaczamy współczynnk A (B = ) prosj najlpj dopasowanj do punków pomarowych. Nanosmy ę prosą na wykrs. Wyznaczamy równż błąd A. ) Z nachylna prosj wyznaczamy pojmność kondnsaora porównujmy ją z nasawoną waroścą. Wyznaczamy błąd zmrzonj pojmnośc. Własnośc flrując obwodu a) Na paprz mlmrowym sporządzamy wykrs lorazu zmrzonych napęć U wyj / w funkcj częsośc =, zaznaczając błędy pomarow. Wykrs można sporządzć wykorzysując programy kompurow. U b) Oblczamy warośc U wyj / wyj z wzoru (): dla mrzonych częsośc nanosmy na n sam wykrs. Obwód zaslany napęcm zmnnym snusodaln. Wyznaczan przsunęć fazowych: a) Dla każdj różncy położń kursorów X oblczamy przsunęc fazow prądu względm przyłożongo napęca wdług wzoru: = X oraz g. b) Błąd wyznaczamy modą propagacj npwnośc pomarowych. c) Wyznaczamy błąd (g) modą propagacj npwnośc pomarowych. d) Na paprz mlmrowym sporządzamy wykrs g w funkcj częsośc =, zaznaczając błędy pomarow. Wykrs można sporządzć wykorzysując programy kompurow. ) Oblczamy warośc g z wzoru (5) g dla zasosowanych, nanosmy j na wykrs. Wnosk. Próbujmy ocnć: czy w grancach błędów dośwadczalnych zmrzon przbg funkcj g () są zgodn z przbgam orycznym. kóry z flrów js flrm górnoprzpusowym wskazać charakrysyczn zakrsy częsośc (a akż częsolwośc). kóry z flrów js flrm dolnoprzpusowym wskazać charakrysyczn zakrsy częsośc (a akż częsolwośc).

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja

Bardziej szczegółowo

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1 1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Algorytmy numeryczne w Delphi. Ksiêga eksperta

Algorytmy numeryczne w Delphi. Ksiêga eksperta IDZ DO PRZYK ADOWY ROZDZIA SPIS TREŒCI KALOG KSI EK KALOG ONLINE ZAMÓW DRUKOWANY KALOG Algorymy numryczn w Dlph Ksêga kspra Auorzy: Brnard Baron, Arur Pasrbk, Marcn Mac¹ k ISBN: 83-736-95-8 Forma: B5,

Bardziej szczegółowo

Stanowisko laboratoryjne do badań przesuwników fazowych

Stanowisko laboratoryjne do badań przesuwników fazowych Polichnika Śląska Wydział Elkryczny Insyu Mrologii i Auomayki Elkrochniczn Tma pracy: Sanowisko laboraoryn do badań przsuwników fazowych Promoor: Dr inż. Adam Cichy Dyploman: Adam Duna Srukura rfrau. Wsęp.

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, INSYU FIZYKI UMK, ORUŃ Instrukca do ćwczena nr WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO 1. Cel ćwczena Celem ćwczena est poznane ruchu harmonczneo eo praw,

Bardziej szczegółowo

Pomiar mocy i energii

Pomiar mocy i energii Zakład Napędów Weloźródłowych Instytut Maszyn Roboczych CęŜkch PW Laboratorum Elektrotechnk Elektronk Ćwczene P3 - protokół Pomar mocy energ Data wykonana ćwczena... Zespół wykonujący ćwczene: Nazwsko

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników

Bardziej szczegółowo

E3. ZJAWISKO REZONANSU W SZEREGOWYM OBWODZIE PRĄDU PRZEMIENNEGO Jadwiga Szydłowska i Marek Pękała

E3. ZJAWISKO REZONANSU W SZEREGOWYM OBWODZIE PRĄDU PRZEMIENNEGO Jadwiga Szydłowska i Marek Pękała E3. ZJAWSKO EZONANS W SZEEGOWYM OBWODZE PĄD PZEMENNEGO Jadwga Szydłowska Mark Pękała Jdnym z przykładów układów drgających jst układ lmntów składający sę z cwk, kondnsatora opornka połączonych szrgowo.

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Ćwczene 18 Anna Jakubowska, Edward Dutkewcz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Zagadnena: Zjawsko adsorpcj, pojęce zotermy adsorpcj. Równane zotermy adsorpcj Gbbsa. Defncja nadmaru

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ĆWICZEIE 5 BADAIE WYBAYCH STUKTU IEZAWODOŚCIOWYCH Cl ćwczna: lustracja praktyczngo sposobu wyznaczana wybranych wskaźnków opsujących nzawodność typowych struktur nzawodnoścowych. Przdmot ćwczna: wrtualn

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary

Bardziej szczegółowo

Wpływ stóp procentowych na wartoêç indeksu giełdowego WIG * Influence of Interest Rates on the WIG Stock Index

Wpływ stóp procentowych na wartoêç indeksu giełdowego WIG * Influence of Interest Rates on the WIG Stock Index 62 Rynk Insyucj Fnansow Bank Krdy srpń 28 Wpływ sóp procnowych na waroêç ndksu głdowgo WIG * Influnc of Inrs Ras on h WIG Sock Indx Jrzy Rmbza **, Grzgorz Przkoa *** prwsza wrsja: 26 lsopada 27 r., osaczna

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1)

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1) LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-) wwwmuepolslpl/~wwwzmape Opracował: Dr n Jan Około-Kułak Sprawdzł: Dr hab n Janusz Kotowcz Zatwerdzł: Dr hab n Janusz Kotowcz Cel wczena Celem wczena jest

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania

Bardziej szczegółowo

I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E

I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę Klasa III 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne 10.. Źródła prądu. Obwód elekryczny Wymagania na poszczególne oceny przy realizacji i podręcznika Zrozumieć

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Regulamin. udzielania pomocy materialnej o charakterze socjalnym dla uczniów zamieszkaùych na terenie Gminy Wolbórz

Regulamin. udzielania pomocy materialnej o charakterze socjalnym dla uczniów zamieszkaùych na terenie Gminy Wolbórz Zaù¹cznk Nr 1 uchwaùy Nr XXVIII/167/2005 Rady Gmny Wolbórz z dna 30 marca 2005 r. Regulamn udzelana pomocy maeralnej o charakerze socjalnym dla ucznów zameszkaùych na erene Gmny Wolbórz I. Sposób usalana

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter Scntfc ournal Martm Unvrt of Szczcn Zzt Naukow Akadma Morka w Szczcn 8, 13(85) pp. 5 9 8, 13(85). 5 9 ozcjonowan bazując na wlonorowm fltrz Kalmana otonng bad on th mult-nor Kalman fltr otr Borkowk, anuz

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Podstawowe algorytmy indeksów giełdowych

Podstawowe algorytmy indeksów giełdowych Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca

Bardziej szczegółowo

PODSTAWY EKSPLOATACJI

PODSTAWY EKSPLOATACJI WOJSKOWA AKADEMIA TECHNICZNA m. Jarosława Dąbrowskgo LESŁAW BĘDKOWSKI, TADEUSZ DĄBROWSKI PODSTAWY EKSPLOATACJI CZĘŚĆ PODSTAWY DIAGNOSTYKI TECHNICZNEJ WARSZAWA Skrypt przznaczony jst dla studntów Wydzału

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

WYNIKI EGZAMINU MATURALNEGO 2010 r.

WYNIKI EGZAMINU MATURALNEGO 2010 r. OKE Łomż 00 stron z 5 powt M. Olsztyn WYNIKI EGZAMINU MATURALNEGO 00 r. Powt M. Olsztyn CZĘŚĆ I Dn zmszczon w częśc I sprwozdn dotyczą mturlngo po rz prwszy. bsolwntów, którzy przystąpl do gzmnu. Ops populcj

Bardziej szczegółowo

Twierdzenia o przyrostach

Twierdzenia o przyrostach Twirdznia o przyrosach Jżli w sici liniow zwrzy dwa węzły, iędzy kóryi panu napięci, o przyrosy (dodani lub un prądów w gałęziach sici oży obliczyć włączaąc iędzy węzły idaln źródło napięciow o sil lkroooryczn

Bardziej szczegółowo

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił. 1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało

Bardziej szczegółowo

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie Jak zwększyć fktywność radość z wykonywanj pracy? Motywacja do pracy - badan, szkoln czym sę zajmujmy? szkolna, symulacj Komunkacja, współpraca Cągł doskonaln Zarządzan zspołm Rozwój talntów motywacja

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

SZKOLENIE Świadectwo charakterystyki energetycznej budynku

SZKOLENIE Świadectwo charakterystyki energetycznej budynku SZKOLENIE Śwadctwo charatrysty nrgtycznj SZKOLENIE ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ BUDYNKU PN-B-02403:982 Oblczan szonowgo zapotrzbowana na cpło do ogrzwana wg Polsch Norm Strfa lmatyczna I II

Bardziej szczegółowo

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych PL 216925 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216925 (13) B1 (21) Numer zgłoszenia: 389198 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Bryła fotometryczna i krzywa światłości.

Bryła fotometryczna i krzywa światłości. STUDIA NIESTACJONARNE ELEKTROTECHNIKA Laboratorum PODSTAW TECHNIKI ŚWIETLNEJ Temat: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ ŚWIATŁOŚCI Opracowane wykonano na podstawe: 1. Laboratorum z technk śwetlnej (praca

Bardziej szczegółowo

Rozładowanie kondensatora

Rozładowanie kondensatora Coach T-0 Rozładowanie kondensaora I. Cel ćwiczenia: wyznaczenie zależności napięcia na kondensaorze C podczas jego rozładowania w funkcji czasu : = (), wyznaczenie sałej czasowej τ =. II. Przyrządy: III.

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Kontroler ruchu i kierunku obrotów KFD2-SR2-2.W.SM. Charakterystyka. Konstrukcja. Funkcja. Przyłącze

Kontroler ruchu i kierunku obrotów KFD2-SR2-2.W.SM. Charakterystyka. Konstrukcja. Funkcja. Przyłącze Konroler ruchu i kierunku obroów Charakerysyka Konsrukcja -kanałowy separaor galwaniczny Zasilanie 4 V DC Wejścia ypu PNP/push-pull, syk lub Programowane częsoliwości graniczne wyjścia syku przekaźnika

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

ZROBY POEKSPLOATACYJNE JAKO ŹRÓDŁO ZAGROŻENIA GAZOWO-TERMICZNEGO W KOPALNIACH PODZIEMNYCH

ZROBY POEKSPLOATACYJNE JAKO ŹRÓDŁO ZAGROŻENIA GAZOWO-TERMICZNEGO W KOPALNIACH PODZIEMNYCH Nr 3 Prace Naukowe Insyuu Górncwa Polechnk Wrocławskej Nr 3 Suda Maerały Nr 3 2005 Andrzej STRUMIŃSKI, Barbara MADEJA-STRUMIŃSKA zagrożena aerologczne, szczelność am, zmany cśnena baromerycznego w zrobach

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chem Fzycznej Unwersytetu Łódzkego Wyznaczane współczynnka podzału Nernsta w układze: woda aceton chloroform metodą refraktometryczną opracowała dr hab. Małgorzata Jóźwak ćwczene nr 0 Zakres zagadneń

Bardziej szczegółowo

Wykład 2 Metoda Klasyczna część I

Wykład 2 Metoda Klasyczna część I Tora Obwodów 2 Wykład 2 Moda Klasyczna część I Prowadzący: dr nż. Toasz Skorsk Insyu Podsaw lkrochnk lkrochnolog Wydzał lkryczny Polchnka Wrocławska D-1, 205/8 l: (071) 320 21 60 fax: (071) 320 20 06 al:

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Elektrotechnika Skrypt Podstawy elektrotechniki

Elektrotechnika Skrypt Podstawy elektrotechniki UNIWERSYTET PEDAGOGICZNY Wydział Matematyczno-Fizyczno-Techniczny Instytut Techniki Edukacja Techniczno-Informatyczna Elektrotechnika Skrypt Podstawy elektrotechniki Kraków 2015 Marcin Kapłan 1 Spis treści:

Bardziej szczegółowo

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998)

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998) 3. Dwa modele pooku ruchu (eorokolejkowe) 3. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,998) 3.. Model Hagha Isneje wele prac z la powojennych, w kórych wysępują próby modelowana kolejek ruchowych

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klasy III

Wymagania edukacyjne z fizyki dla klasy III edukacyjne z fizyki dla klasy III edukacyjne z fizyki dla klasy III gimnazjum opare na programie nauczania Świa fizyki, auorswa B. Sagnowskiej (wersja 2), wydawnicwa Zamkor, 10. Prąd Tema według 10.1.

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-chniczn aspky wykorzysania gazu w nrgyc anusz oowicz Wydział Inżynirii i Ochrony Środowiska Polichnika Częsochowska zacowani nakładów inwsycyjnych na projky wykorzysania gazu w nrgyc anusz

Bardziej szczegółowo

MASZYNY PRĄDU STAŁEGO

MASZYNY PRĄDU STAŁEGO Zagadninia: Tma: MASZYNY PRĄDU STAŁEGO budowa i zasada działania maszyn prądu sałgo, napięci indukowan i momn obroowy, prądnica obcowzbudna i bocznikowa, silniki charakrysyki mchaniczn, rozruch i rgulacja

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III 9. O elekryczności saycznej Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki Klasa III Tema według 9.1. Elekryzowanie przez arcie i zeknięcie z ciałem naelekryzowanym opisuje budowę

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo