dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę."

Transkrypt

1 dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu Wydział Farmaceutyczny Katedra i Zakład Technologii Postaci Leku

2 Najczęściej wykonywane analizy statystyczne w naukach medycznych Jednowymiarowe analizy klasyczne: Wyznaczanie statystyk opisowych (średnia, odchylenie standardowe, wariancja, mediana, moda, współczynnik zmienności, błąd standardowy, skośność, kurtoza, przedziały ufności, kwartyle, percentyle, itp.), określanie niepewności pomiarowych. Porównywanie dwóch średnich testy t Porównywanie wielu średnich analiza wariancji ANOVA Testy Chi-kwadrat Regresja linowa i korelacja Testy nieparametryczne

3 Ogólne modele liniowe i nieliniowe: Regresja liniowa i wieloraka Regresja nieliniowa Regresja logistyczna Wieloczynnikowa i wielowymiarowa analiza wariancji MANOVA. Analiza kowariancji Analiza reszt

4 Analizy wielowymiarowe i przemysłowe: Analiza kanoniczna Analiza dyskryminacyjna i analiza głównych składowych Analiza czynnikowa Analiza skupień Analiza log-linowa Analiza korespondencji Analiza przeżycia Estymacja nieliniowa

5 Obecnie wszyscy jesteśmy statystykami dzięki rozbudowanym programom komputerowym, które sprowadzają przeprowadzenie analizy statystycznej do jednego kliknięcia myszką.

6 Podstawowe pojęcia statystyczne Niepewności pomiarowe, cyfry znaczące: Każdy, nawet najprostszy wynik pomiaru powinien być przedstawiany w następującej formie: x = x np + / - δx. wartość zmierzona = najlepsze przybliżenie + / - niepewność (błąd pomiaru) Najczęściej popełniane błędy dotyczą zapisów: Wartość zmierzona = 9,82 + / - 0, niepoprawnie Niepewności eksperymentalne powinny być prawie zawsze zaokrąglane do jednej cyfry znaczącej. Jeżeli pierwszą cyfrą znaczącą niepewności δx jest 1 lub 2 to możemy podać dwie cyfry znaczące. Wartość zmierzona = 9,82 + / - 0,03 poprawnie Wartość zmierzona = 6051,78 + / - 30 niepoprawnie Ostatnia cyfra znacząca w każdym wyniku powinna zwykle być tego samego rzędu co niepewność. Wartość zmierzona = / - 30 poprawnie Wynik 92,8 z niepewnością 0,3 to 92,8 + / - 0,3 Wynik 92,8 z niepewnością 3 to 93 + / - 3 Wynik 92,8 z niepewnością 30 to 90 + / - 30 Liczby używane w obliczeniach powinny mieć zwykle jedną cyfrę znaczącą więcej niż te podawane ostatecznie.

7 Brak należytego zrozumienia istoty problemu badawczego, przed przystąpieniem do analizy statystycznej: Na każde zjawisko działają dwa rodzaje przyczyn: Przyczyny główne wynikają z istoty problemu, działają w sposób trwały i dobrze ukierunkowany, jednakowo na wszystkie elementy badanej zbiorowości, to one powodują powstanie prawidłowości (są składnikiem systematycznym). Przyczyny uboczne czyli losowe, oddziałują różnie na poszczególne elementy zbiorowości, działają różnokierunkowo i w sposób nietrwały. One powodują odchylenia od prawidłowości i są źródłem tzw. składnika losowego. Dobre zrozumienie problemu to przede wszystkim poprawna identyfikacja przyczyn głównych i ubocznych. Statystyka to nauka służebna wobec innych nauk. Ma służyć potwierdzaniu hipotez badawczych, a nie ich kreowaniu.

8 Brak jednorodności i reprezentowalności badanej próby: Statystyka wykazuje dwupoziomowe działanie w oparciu o wyliczone konkretne statystyki na podstawie wyników zebranych z części populacji zwanej próbą, wnioskujemy o całej populacji. Zarówno próba jak populacja powinny być jednorodne. Zbiorowość jest jednorodna wtedy, gdy wszystkie jej elementy pozostają pod wpływem działania tych samych przyczyn głównych. Próba jest reprezentatywna, jeżeli jej struktura jest identyczna lub bardzo zbliżona do zbiorowości ogólnej. Brak losowego doboru próby: Próba jest dobrze wylosowana, jeżeli każdy element zbiorowości ogólnej ma takie samo prawdopodobieństwo wejścia do próby. Najczęściej w badaniach ankietowych dochodzi do nielosowego doboru próby. Przekład błędu: wyników ankiet przeprowadzanych na studentach lub ankiet internetowych nie można uogólniać na całe społeczeństwo.

9 Cechy statystyczne Mylne określanie i wykorzystywanie skal pomiarowych: Zasadniczo rozróżniamy cztery rodzaje skal pomiarowych: nominalna, porządkowa, przedziałowa i ilorazowa. Od przyjętej skali zależy wybór odpowiedniej analizy statystycznej. Najczęściej mylone są skale przedziałowa bądź ilorazowa (wykorzystywane w większości testów parametrycznych) ze skalą porządkową (na której oparte są z reguły testy nieparametryczne). Rangi, które są efektem pomiaru skali porządkowej, nie pozwalają na liczenie odległości (a więc również różnic) i średnich. Przykład: Wykorzystując nieparametryczne odpowiedniki testu t takie jak: test U Manna-Whitneya, czy test serii Walda- Wolfowitza nie należy przedstawiać wykresów średniabłąd_standardowy-1,96*błędu_standardowego tylko mediana- 25%/75%-minimum/maksimum.:

10 Szeregi statystyczne Błędy w budowie szeregów rozdzielczych: Szeregi z dziurami: Wiek: 0-4, 5-9, 10-14, itd. Szeregi otwarte: Wiek: (0,5), (5,10), (10,15), (15,20) itd. Zgodnie z definicją dystrybuanty poprawnie zdefiniowany szereg rozdzielczy powinien być lewostronnie domknięty, a prawostronnie otwarty: Wiek: <0,5), <5,10), <10,15), <15,20) itd.

11 Prawdopodobieństwo Definicja prawdopodobieństwa wprowadzona mówi, że jest to funkcja o wartościach z przedziału <0,1>. Częsty błąd to traktowanie prawdopodobieństwa jako liczby z przedziału od 0 do 100.

12 Liczebność próby Nie ma prostej i uniwersalnej odpowiedzi na pytanie jaka powinna być minimalna liczebność próby. Liczebność próby zależy od wielu czynników i często trudno ją określić na początku badań (konieczne jest często przeprowadzanie wstępnych badań pilotażowych na małej grupie). Liczebność próby zależy między innymi od: Rodzaju analizy statystycznej Rodzaju analizowanego parametru Jaka jest zmienność analizowanego zjawiska Jak dużą różnicę chcemy wykazać Jaki przyjmiemy poziom ufności p

13 Niczym nieuzasadniony jest strach badaczy przed małą próbą. Większość klasycznych analiz statystycznych można wykonać w oparciu o próby trzyelementowe. Lepiej wykonać analizę statystyczną na małej próbie niż nie wykonywać jej wcale!!! Kluczem jest uświadomienie sobie jaki wpływ ma liczebność próby na wyniki wnioskowania statystycznego: Przy małej próbie trudno udowodnić hipotezy badawcze (szczególnie w przypadku dużej zmienności analizowanej zmiennej i skrajnie małej liczebności próby np. 3), natomiast przy bardzo dużej próbie można wykazać istotność statystyczną dowolnie małej różnicy.

14 Przykład 1 (porównanie dwóch średnich 1 2 testem t): Zmienna grupująca Zmienna zależna a 1 a 2 a 3 b 3 b 4 b Zmienna grupująca Zmienna zależna a 1 a 2 a 3 b 3 b 4 b 5 a 1 a 2 a 3 b 3 b 4 b 5 Testy t; Grupująca:Zmienna grupująca (Temp) Grupa 1: a Grupa 2 b Średnia Średnia t df p N ważnyc N ważnych Odch.std Odch.std Zmienna a b a b a b Zmienna zależna 2,00 4,00-2, , ,000 1,000 5,5 Testy t; Grupująca:Zmienna grupująca Grupa 1: a Grupa 2 b Średnia Średnia t df p N ważnyc N ważnych Odch.std Odch.std Zmienna a b a b a b Zmienna zależna 2,00 4,00-3, , ,894 0,894 5,5 5,0 5,0 4,5 4,5 4,0 4,0 Zmienna zależna 3,5 3,0 2,5 Zmienna zależna 3,5 3,0 2,5 2,0 2,0 1,5 1,5 1,0 1,0 0,5 a Zmienna grupująca b Srednia Srednia±Blad std Srednia±1,96*Blad std 0,5 a Zmienna grupująca b Srednia Srednia±Blad std Srednia±1,96*Blad std

15 Przykład 2 (korelacja linowa): Korelacje Oznaczone wsp. korelacji są istotne z p <,05000 Zmn. X & Zmn. Y Zmienna X Zmienna Y Średnia Odch.st. r(x,y) r2 t p Ważnych Stała zal: Y Nachyle zal: Y Stała zal: X Nachyle zal: X 12,30 3,46 7,23 2,76 0,089 0,0079 1,98 0, ,363 0,071 11,494 0, Y= 6,3631 +,07085 * X Korelacja: r =, Zmienna Y Zmienna X 0,95 Prz.Ufn.

16 Testowanie hipotez statystycznych Problemy dotyczące właściwego zrozumienia pojęcia hipoteza statystyczna. Problemy dotyczące właściwego zrozumienia pojęcia poziom istotności α. Problemy dotyczące właściwego doboru testów statystycznych. Problemy dotyczące weryfikacji założeń testów statystycznych. Problemy dotyczące porównań wielokrotnych każdy z każdym. Problem związany korelacji. z istotnością współczynnika

17 Hipoteza statystyczna i poziom istotności Hipoteza statystyczna to dowolny sąd o populacji sformułowany bez wykonywania pełnego badania całej populacji, tylko przeprowadzany na podstawie analizy danych z próby. W statystyce formułujemy dwie hipotezy: hipotezą zerową H 0 i hipotezę alternatywną H 1. Najczęściej hipoteza badawcza jest wyrażona jako hipoteza alternatywna H 1, a nie jako hipoteza zerowa H 0, która nie pozostawia wyboru. W toku testowania możemy podjąć dwie decyzje: Odrzucić hipotezę zerową H 0 i przyjąć hipotezę alternatywną H 1. Nie mamy podstaw do odrzucenia hipotezy zerowej H 0. W toku testowania możemy popełnić dwa błędy: Błąd pierwszego rodzaju: odrzucenie prawdziwej hipotezy zerowej H 0. Błąd drugiego rodzaju: przyjęcie fałszywej hipotezy zerowej H 0. Poziom istotności α jest to prawdopodobieństwo popełnienia błędu pierwszego rodzaju. Zakłada do sam badacz z góry. Zwykle jest to 0,05 lub 0,01. Hipoteza zerowa Hipoteza zerowa prawdziwa Hipoteza zerowa fałszywa Decyzje Nie ma podstaw do odrzucenia H 0 Decyzja prawidłowa Błąd II rodzaju Odrzucić H 0 Błąd I rodzaju Decyzja prawidłowa

18 Określanie hipotez statystycznych po przeprowadzeniu doświadczeń. Hipotezy statystyczne należy jasno określić przed badaniem, na etapie jego projektowania. Niedopuszczalne jest formułowanie ich w oparciu o otrzymane wyniki. Nieokreślenie czy hipoteza alternatywna H 1 ma być jednostronna (kierunkowa) czy dwustronna (bezkierunkowa). Dla przykładu porównując testem t dwie średnie hipoteza zerowa H 0 brzmi dwie średnie są sobie równe, hipoteza alternatywna H 1 może brzmieć jedna średnia jest większa od drugiej (kierunkowa), lub jedna średnia jest różna od drugiej (bezkierunkowa). Często wykonując tego typu testy nie zwraca się uwagi co tak naprawdę wykazano. Częsty błąd, który można znaleźć w publikacjach naukowych to stwierdzenie, że przyjmujemy hipotezę zerową H 0. Hipotezy zerowej nie można przyjąć H 0 (nie można udowodnić równości średnich czy braku korelacji między zmiennymi), można nie mieć podstaw do jej odrzucenia co w praktyce oznacza tyle że nie udało nam się wykazać słuszności naszych założeń sformułowanych w hipotezie alternatywnej H 1.

19 Właściwy dobór i weryfikacja założeń testów statystycznych Niewłaściwy dobór testu statystycznego to najczęściej popełniana grupa błędów przy przeprowadzaniu analiz statystycznych, a najważniejsze z nich to: Stosowanie testów parametrycznych bez sprawdzenia założeń dotyczących wymaganego rozkładu, jednorodności wariancji itp. Testy parametryczne zawsze oparte są na założeniach o typie rozkładu zmiennej losowej, którą badamy (często i innych założeniach). Ich stosowanie narzuca nam konieczność weryfikacji czy badana zmienna losowa spełnia wszystkie wymagane założenia co bardzo często nie jest robione lub ignorowane są wyniki testów sprawdzających założenia. Stosowanie testów dla prób zależnych w sytuacji gdy mamy do czynienia z próbami niezależnymi i na odwrót. Określenie czy mamy do czynienia z próbami zależnymi czy niezależnymi często jest dość trudne. W celu stwierdzenia z jakim powiązaniem zmiennych mamy do czynienia można się kierować jedną bardzo pomocną zasadą: Jeżeli przeprowadzając doświadczenie, porównywane zmienne można teoretycznie pozyskać w jednym i tym samym czasie to zwykle mamy do czynienia ze zmiennymi niezależnymi. Jeżeli natomiast niezbędny jest odstęp czasowy pomiędzy zbieranymi wynikami będącymi następnie analizowanymi zmiennymi losowymi, to z reguły istnieje czynnik uzależniający zmienne od siebie. Przykład: Leki A i B podajemy dwóm niezależnym grupą osób zmienne niezależne. Leki A i B podajemy tej samej grupie osób potrzebny jest czas wymycia jednego z leków zmienne zależne.

20 Nieprzestrzeganie minimalnej liczebności próby wymaganej dla danego testu. Wiele testów (test chi-kwadrat, niektóre rodzaje testów t, prawie wszystkie wyrafinowane analizy wielowymiarowe) wymaga minimalnej liczebności próby co, często jest ignorowane. Prawie wszystkie testy nie tolerują 0 i 1, a są bardzo mało precyzyjne dla prób o liczebnościach 2-5. Przy różnego typu estymacjach parametrów często stosuje się zasadę minimum: liczebność próby musi być większa od ilości estymowanych parametrów. Nieodpowiednie dobranie testów do skali pomiarowej, z którą mamy do czynienia. Częsty błąd dotyczący analizy regresji liniowej i korelacji to wyznaczanie współczynnik korelacji liniowej Pearsona dla zmiennych o charakterze porządkowym, lub odwrotnie, wyznaczanie korelacji Spearmana dla zmiennych w skali przedziałowej lub ilorazowej.

21 Porównania wielokrotne każdy z każdym Należy pamiętać, że zakładany poziom istotności α dotyczy pojedynczego testowania, i jeżeli daną procedurę statystyczną wykorzystamy wielokrotnie to zakładane prawdopodobieństwo popełnienia błędu pierwszego rodzaju na poziomie 0,05 dla całej analizy będzie znacznie wyższe, co zwykle jest niedopuszczalne. Tego typu błędy najczęściej są popełniane przy wykonywaniu dwóch typów analiz statystycznych: Porównywanie wielu średnich ze sobą i wykorzystywanie do tego testu t (porównując każdy z każdym ) zamiast analizy wariancji ANOVA wraz z testami post-hoc. Przykład: Przy poziomie istotności α = 0,05 prawdopodobieństwo, że się nie pomylimy dla jednego porównania wynosi 1-0,05 = 0,95. Dla dwóch porównań 0,95 2 = 0,9025. Dla czterech grup mamy sześć porównań, a wówczas wartość ta wynosi 0,95 6 = 0,7351. Prawdopodobieństwo, że pomylimy się co najmniej jeden raz wynosi 1-0,7351 = 0,265. Określanie istotności statystycznej współczynników korelacji liniowej r w macierzach korelacji.

22 Istotność współczynnika korelacji liniowej r Błąd szczególnie często występujący w pacach medycznych to sugerowanie się wysoką wartością współczynnika korelacji liniowej Pearsona r bez określenia jego istotności statystycznej. 3,2 3,0 2,8 X1a:Y1a: r = 0,9965; p = 0, X1b:Y1b: r = 0,8186; p = 0,0464 2,6 5 2,4 Zmienna Y 2,2 2,0 Zmienna Y 4 3 1,8 1,6 2 1,4 1,2 1 1,0 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3, Zmienna X Zmienna X

23 Wartość p Mylenie wartości p z poziomem istotności α. Wartość p to najwyższy możliwy poziom istotności, przy którym możemy odrzucić testowaną hipotezę w oparciu o uzyskane dane empiryczne. Jeżeli p < α to odrzucamy hipotezę zerową H 0. Mało eleganckie zapisy wartości p. W publikacjach naukowych można znaleźć zapisy wartości p typu: p = 0,0000 co jest wynikiem bezmyślnego kopiowania tabel z wynikami analiz statystycznych taki zapis jest nieelegancki i lepiej go zastąpić równoważnym zapisem p < 0,0001.

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu 1. Metody wnioskowania statystycznego vs. metody opisu 2. Testowanie hipotez statystycznych

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część I Program szkolenia część I Wprowadzenie Podstawowe pojęcia statystyczne

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

2008-03-18 wolne wolne 2008-03-25 wolne wolne

2008-03-18 wolne wolne 2008-03-25 wolne wolne PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu Statystyka w analizie i planowaniu eksperymentu Wprowadzenie Prowadzący zajęcia: dr Janusz Piechota Zakład Biofizyki Kierownik zajęć: dr Paweł Błażej Zakład Genomiki Na zajęciach przydają się: dobre chęci,

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

O NIEWŁAŚCIWYM STOSOWANIU METOD STATYSTYCZNYCH

O NIEWŁAŚCIWYM STOSOWANIU METOD STATYSTYCZNYCH O NIEWŁAŚCIWYM STOSOWANIU METOD STATYSTYCZNYCH Andrzej Sokołowski Akademia Ekonomiczna w Krakowie, Katedra Statystyki; StatSoft Polska Sp. z o.o. Inspiracją do przygotowania tego opracowania była książka

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Wydział Prawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo

CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH. 1.2.1. Faza identyfikacji problemów decyzyjnych lub okoliczności sprzyjających

CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH. 1.2.1. Faza identyfikacji problemów decyzyjnych lub okoliczności sprzyjających Badania marketingowe. Podstawy metodyczne Autor: Stanisław Kaczmarczyk Wstęp CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH Rozdział 1. Badania marketingowe a zarządzanie 1.1. Rozwój praktyki i teorii

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka TesttStudenta Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

ISSN 1425-7351 PL9701513 INSTYTUT CHEMII I TECHNIKI JĄDROWEJ INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY WARSZAWA 7BM 1

ISSN 1425-7351 PL9701513 INSTYTUT CHEMII I TECHNIKI JĄDROWEJ INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY WARSZAWA 7BM 1 ISSN 1425-7351 PL9701513 INSTYTUT CHEMII I TECHNIKI JĄDROWEJ INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY WARSZAWA 7BM 1 RAPORTY IChTJ. SERIA B nr 2/96 TEST KOMETKOWY. 2. ANALIZA STATYSTYCZNA WYNIKÓW

Bardziej szczegółowo

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1.

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1. Weryfikacja hipotez Każde badanie naukowe rozpoczyna się od sformułowania problemu badawczego oraz najbardziej prawdopodobnego (na gruncie wiedzy badającego) ogólnego rozwiązania, czyli hipotezy badawczej.

Bardziej szczegółowo

Ścieżki dostępu do STATISTICA

Ścieżki dostępu do STATISTICA Ścieżki dostępu do STATISTICA Spis treści Sprawdzanie zgodności z rozkładem normalnym test Shapiro-Wilka:... 2 Test t-studenta w modelu zmiennych niezależnych:... 3 Test t-studenta w modelu zmiennych powiązanych...

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona Nieparametryczne odpowiedniki testów T-Studenta stosujemy gdy zmienne mierzone są na skalach porządkowych (nie można liczyć średniej) lub kiedy mierzone są na skalach ilościowych, a nie są spełnione wymagania

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Badanie opinii Warsaw Watch. Oferta badawcza

Badanie opinii Warsaw Watch. Oferta badawcza Badanie opinii Warsaw Watch Oferta badawcza Kim jesteśmy? SW Research Agencja badań rynku i opinii Rok założenia 2011 Wizerunek Firma oferująca profesjonalne rozwiązania badawcze, usługi analityczne i

Bardziej szczegółowo

MATERIAŁY SZKOLENIOWE PSYCHOLOGIA ZARZĄDZANIA 2013 DR HAB. PROF UWR ANNA OLESZKOWICZ

MATERIAŁY SZKOLENIOWE PSYCHOLOGIA ZARZĄDZANIA 2013 DR HAB. PROF UWR ANNA OLESZKOWICZ MATERIAŁY SZKOLENIOWE PSYCHOLOGIA ZARZĄDZANIA 2013 DR HAB. PROF UWR ANNA OLESZKOWICZ TEMAT ZAJĘĆ ETAPY PROCESU BADAWCZEGO CELE ZEWNĘTRZNE NAUKI 1. OPIS FUNKCJA DESKRYPTYWNA 2. WYJASNIANIE FUNKCJA EKSPLANACYJNA

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

Testowanie hipotez. 1 Testowanie hipotez na temat średniej

Testowanie hipotez. 1 Testowanie hipotez na temat średniej Testowanie hipotez Poziom p Poziom p jest to najmniejszy poziom istotności α, przy którym możemy odrzucić hipotezę zerową dysponując otrzymaną wartością statystyki testowej. 1 Testowanie hipotez na temat

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Kierunek i poziom studiów: Biologia, poziom drugi Sylabus modułu: Metody statystyczne w naukach przyrodniczych

Kierunek i poziom studiów: Biologia, poziom drugi Sylabus modułu: Metody statystyczne w naukach przyrodniczych Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Biologia, poziom drugi Sylabus modułu: Metody statystyczne w naukach przyrodniczych kod modułu: 2BL_02 1. Informacje ogólne koordynator

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/ Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 SPIS TREŚCI WSTĘP..13 CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 1. TREŚĆ, PRZEZNACZENIE I PROCES BADAŃ MARKETINGOWYCH....19 1.1. Dlaczego badania marketingowe

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Badanie opinii Omniwatch. Oferta badawcza

Badanie opinii Omniwatch. Oferta badawcza Badanie opinii Omniwatch Oferta badawcza Kim jesteśmy? SW Research Agencja badań rynku i opinii Rok założenia 2011 Wizerunek Firma oferująca profesjonalne rozwiązania badawcze, usługi analityczne i doradcze.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

Uwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy

Uwaga! Test studenta dla pojedynczej próby, niekierunkowy. Wykład 9: Testy Studenta. Test Studenta dla jednej próby, kierunkowy Wykład 9: Testy Studenta Jest kilka typów testów Studenta. Mają podobną strukturę, ale służą do testowania różnych hipotez i różnią się nieco postacią statystyki testowej. Trzy podstawowe typy testów Studenta

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

I. Oprogramowanie sieciowe do prowadzenia analiz statystycznych wyników badań naukowych

I. Oprogramowanie sieciowe do prowadzenia analiz statystycznych wyników badań naukowych Załącznik nr 1 do siwz Znak sprawy: ZP-PNK/D/2013/9/87 (nazwa wykonawcy) SPECYFIKACJA PRZEDMIOTU ZAMÓWIENIA w postępowaniu powaniu o udzielenie zamówienia publicznego prowadzonym w trybie przetargu nieograniczonego

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia STATYSTYKA MATEMATYCZNA KARTA MODUŁU KSZTAŁCENIA Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

Michał Kusy, StatSoft Polska Sp. z o.o.

Michał Kusy, StatSoft Polska Sp. z o.o. CZY MÓJ PROCES JEST TRENDY, CZYLI ANALIZA TRENDÓW Michał Kusy, StatSoft Polska Sp. z o.o. Wprowadzenie Analiza danych w kontroli środowiska produkcji i magazynowania opiera się między innymi na szeregu

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo