Techniki świetlne. Wykład 1. Promieniowanie elektromagnetyczne; podstawowe pojęcia, wielkości i jednostki techniki świetlnej; oko i widzenie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Techniki świetlne. Wykład 1. Promieniowanie elektromagnetyczne; podstawowe pojęcia, wielkości i jednostki techniki świetlnej; oko i widzenie"

Transkrypt

1 Techniki świetlne Wykład 1 Promieniowanie elektromagnetyczne; podstawowe pojęcia, ; oko i widzenie Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej Miejsce konsultacji: pokój 18/11 bud. A-1

2 Podstawowe pojęcia Radiometria dział fizyki i metrologii zajmujący się ilościowymi pomiarami energii promieniowania i wielkości fizycznych z nią związanych. Zbliżoną dziedziną jest fotometria, która również zajmuje się pomiarami energii promieniowania, ale jedynie w aspekcie wpływu na wrażenia wzrokowe w oku ludzkim (z uwzględnieniem czułości spektralnej oka). Technika świetlna to dziedzina nauki i techniki zajmująca się zagadnieniami wytwarzania światła, formowania rozsyłu światła w przestrzeni, mierzenia światła i barwy oraz stosowania światła w celu oświetlania.

3 Podstawowe pojęcia Promieniowanie (radiacja) zjawisko wysyłania lub przenoszenia energii za pomocą fal elektromagnetycznych. Rodzaje promieniowania: - Cieplne (termiczne, temperaturowe, inkadescentne) źródłem są ciała rozgrzane do określonej temperatury; - Luminescencyjne (w tym: chemiluminescencja, elektroluminescencja, fotoluminescencja, sonoluminescencja, termoluminescencja, tryboluminescencja) następstwo przejścia atomu lub cząsteczki z wyższego do niższego stanu energetycznego.

4 Podstawowe pojęcia Prędkość rozchodzenia się fal elektromagnetycznych wynosi w próżni: c=2, m/s A w powietrzu praktycznie tyle samo Cechą charakterystyczną promieniowania jest długość fali lub jej częstotliwość f, związane ze sobą przed prędkość: =c/f I, choć wielkością niezmienniczą jest częstotliwość, częściej używa się długości, wyrażanej w nanometrach bądź mikrometrach!

5 Podstawowe pojęcia Źródła światła mogą promieniować jako: - monochromatyczne; - heterochromatyczne; - ciągłe. Rozkład widmowy danego źródła to zależność określonej cechy ilościowej (najczęściej mocy, ale też strumienia itp.) od długości fali.

6 Parametry energetyczne charakteryzujące promieniowanie elektromagnetyczne Każdy rodzaj promieniowania elektromagnetycznego niesie ze sobą pewną energię, związaną z mocą źródła tego promieniowania. PRZYPOMNIENIE?! Ilość energii promienistej Q ilość energii wysłanej przez źródło. [J] Gęstość widmowa energii Q ilość energii wypromieniowywanej przez źródło dla danej długości fali: Q dq d

7 Parametry energetyczne charakteryzujące promieniowanie elektromagnetyczne Moc promienista P moc przenoszona lub dostarczona przez promieniowanie. Tożsamym pojęciem jest strumień energetyczny e : P e dq dt Jednostką jest wat [W]. Moc promienista może być obliczona jako suma (całka) widmowych gęstości mocy tworzących rozkład widmowy promieniowania: e 0 e d

8 Parametry energetyczne charakteryzujące promieniowanie elektromagnetyczne Mocy promienistej nie należy utożsamiać z mocą źródła światła ta ostatnia to moc pobierana (dostarczana do źródła, np. w postaci energii elektrycznej), a zwykle część mocy jest przez źródło tracona! Sprawność źródła promieniowania to iloraz mocy wypromieniowanej przez to źródło do mocy przez nie pobranej: e P

9 Parametry energetyczne charakteryzujące promieniowanie elektromagnetyczne Energia promienista może być w tym samym czasie wysyłana w różnych kierunkach przestrzeni przez źródło. Natężenie promieniowania I e charakteryzuje gęstość kątową strumienia energetycznego w określonym kierunku przestrzeni: I e d e d Analogicznie jak poprzednio, można wprowadzić monochromatyczne natężenie promieniowania: I e, di e d [W/sr]

10 Parametry energetyczne charakteryzujące promieniowanie elektromagnetyczne Promieniujące źródło rozciągłe może mieć różną moc w różnych punktach swojej powierzchni. Egzytancja energetyczna M e charakteryzuje gęstość powierzchniową strumienia energetycznego: M e d ds I znowu, można wprowadzić monochromatyczną gęstość powierzchniową mocy (monochromatyczną egzytancję): M e e, dm e d [W/m 2 ]

11 Parametry energetyczne charakteryzujące promieniowanie elektromagnetyczne Najogólniej: promieniujące źródło rozciągłe może też promieniować różnie z różnych fragmentów powierzchni i w różnych kątach bryłowych. Luminancja energetyczna L e charakteryzuje stosunek natężenia promieniowania I e do (pozornej wielkości) powierzchni promieniującej: L e die ds' [W/(sr m 2 )] I znowu, można wprowadzić monochromatyczną luminancję energetyczną: L e, dle d

12 Parametry energetyczne charakteryzujące promieniowanie elektromagnetyczne Oprócz wielkości charakteryzujących źródło, często interesuje nas opis ilościowy promieniowania, padającego na oświetlaną powierzchnię (detektor). Natężenie napromienienia E e opisuje wielkość strumienia energetycznego padającego na napromieniowywaną powierzchnię: E Analogicznie, można wprowadzić monochromatyczne natężenie napromienienia: e E d da e, e dee d [W/m 2 ]

13 Promieniowanie elektromagnetyczne, obejmujące całe spektrum długości fal, w poszczególnych swych zakresach w różny sposób oddziałuje na człowieka. ciepło światło stymulacja różnych funkcji życiowych Opis ilościowych cech promieniowania nie może być w pełni podstawą rozróżniania i wartościowania efektów jego działania w poszczególnych zakresach promieniowania elektromagnetycznego!

14 Specyfika narządów ludzkich zmysłów powoduje, że informacja energetyczna o promieniowaniu niewiele powie o efekcie, jakie to promieniowanie wywoła u człowieka. PRZYKŁAD: Natężenie napromienienia danej powierzchni wynosi 100 W/m 2. Co wiadomo? NIC. Ani efektu, jakie to promieniowanie wywoła (światło? ciepło? ciężka choroba? wzruszenie ramion?) Ani informacji o intensywności tego efektu (oślepi? spali? nikt nic nie zauważy?)

15 Skuteczność wywoływania wrażeń świetlnych przez promieniowanie elektromagnetyczne?! FAKT 1: Oko człowieka jest wrażliwe na promieniowanie elektromagnetyczne z zakresu 380 do 780 nm. FAKT 2: Rozkład intensywności wrażeń wywoływanych w oku przez poszczególne długości fali jest różny. WNIOSEK: Skuteczność wywoływania wrażeń (świetlnych) przez promieniowanie w oku człowieka nie jest stała jest funkcją długości fali.

16 Względna skuteczność świetlna promieniowania monochromatycznego V Jest to stosunek mocy promienistej e ( max ) dla wybranej długości fali max do mocy promienistej e () dla danej długości fali, które w określonych warunkach fotometrycznych wywołują wrażenie świetlne o tej samej intensywności. Wartość długości fali max została dobrana tak, aby największa wartość V wyniosła 1. V e e max

17 Wartość względnej skuteczności świetlnej promieniowania monochromatycznego wyznaczono eksperymentalnie już w 1924 r. Okazało się, że czułość widmowa oka jest bardziej złożona względna skuteczność świetlna zależy od stanu adaptacji wzroku do panującego poziomu oświetlenia. Wiemy, że wynika to z innego poziomu czułości dwóch rodzajów receptorów w oku.

18 Krzywa czułości skotopowa została wyznaczona eksperymentalnie dopiero w roku Nie ma ona większego znaczenia praktycznego, gdyż warunki widzenia skotopowego odpowiadają minimalnemu poziomowi jasności występującemu przy pełnej ciemności, w warunkach laboratorium fotometrycznego. Krzywa czułości fotopowa jest charakterystyką naturalną podejmowane były próby jej opisu matematycznego: V ' 1,0185 exp 1 557,14 557,14 178

19 Kąt bryłowy DEFINICJA: Kątem bryłowym o biegunie w punkcie B nazywa się część przestrzeni ograniczonej powierzchnią stożkową o wierzchołku w punkcie B. Miarą kata bryłowego jest iloraz pola powierzchni płata, który jest wycinany ze sfery o środku w punkcie B przez boczna powierzchnie stożka oraz kwadratu promienia tej sfery: d da 2 R Maksymalny wymiar kąta bryłowego odpowiada stożkowi o połówkowym kącie przywierzchołkowym równym 180. Wówczas płat kulisty zmienia się w powierzchnię sfery i kąt bryłowy (pełny) wynosi 4 steradianów. UWAGA! da jest prostopadłe do R

20 Strumień świetlny To podstawowa wielkość fotometryczna, odpowiednik mocy w radiometrii. Strumień świetlny to wielkość fotometryczna wyprowadzona od strumienia energetycznego na podstawie oceny promieniowania za pomocą odbiornika, którego względna czułość widmowa odpowiada czułości widmowej oka przystosowanej do jasności: Jednostką strumienia jest lumen [lm] 1lm=1cd 1sr. K m e V K m jest tzw. fotometrycznym równoważnikiem promieniowania. Wynika on z definicji podstawowego wzorca fotometrycznego. Jest to stosunek strumienia świetlnego do odpowiedniego strumienia energetycznego dla długości fali odpowiadającej największej czułości oka: V(=555nm)=1. Jeśli strumień świetlny mierzy się w lumenach a strumień energetyczny w watach, to: K m =683 lm/w. d

21 Strumień świetlny Rodzaj źródła światła Strumień świetlny [lm] Żarówki Świetlówki Lampy wysokoprężne LED 0,1-100

22 Skuteczność świetlna Każde źródło termiczne ma pewną sprawność przetwarzania dostarczanej mocy (zwykle elektrycznej) na moc promieniowania a także sprawność przetwarzania mocy promieniowania na strumień świetlny. Skuteczność świetlna promieniowania K jest to stosunek strumienia świetlnego do odpowiadającego mu strumienia energetycznego e : K K e V e Jednostką jest lm/w. Maksymalna wartość tej skuteczności wynosi ile? Kiedy? e m d d

23 Skuteczność świetlna Najbardziej popularnym parametrem jest jednak inna wielkość zdolność przetwarzania dostarczonej mocy (np. elektrycznej) na strumień świetlny. Skuteczność świetlna źródła światła jest to stosunek strumienia świetlnego wypromieniowywanego ze źródła do mocy do niego dostarczonej: P Jednostką jest znowu lm/w. Czyli uwaga na nazwę wielkości!

24 Skuteczność świetlna źródła światła Rodzaj źródła światła Żarówki wolframowe 8-12 Żarówki halogenowe LED (2003) ?! Lampy żarowe 30 Wysokoprężne lampy rtęciowe 50 Świetlówki Lampy halogenkowe 80 Wysokoprężne lampy sodowe Niskoprężne lampy sodowe 200 Robaczek świętojański: ok. 400lm/W! CZEMU? Skuteczność świetlna źródła [lm/w]

25 Skuteczność świetlna źródła światła A jak wyglądałaby skuteczność świetlna ciała doskonale czarnego w różnych temperaturach? Maksymalną skuteczność ok. 95lm/W osiąga się dla temperatury ok T=7000K. Ale np. żarówki wolframowej tak się rozgrzać nie da! Dla temperatury topnienia wolframu (3650K) można by osiągnąć 54lm/W. (To czemu w tabelce było tylko 8-12?)

26 Światłość w danym kierunku I(,) punktowego źródła światła lub elementu powierzchni niepunktowego źródła to iloraz elementarnego strumienia świetlnego d, wypromieniowywanego we wnętrze nieskończenie małego stożka obejmującego dany kierunek, oraz kąta bryłowego d tego stożka: I, d d Światłość O światłości można mówić, gdy źródło światła traktuje się jako punktowe kryterium jest stosunek geometrycznych rozmiarów źródła i jego odległości od odbiornika.

27 Światłość Światłość to inaczej gęstość kątowa strumienia świetlnego. Im mniejszy kąt bryłowy, w którym promieniuje źródło, tym większa światłość. PRZYKŁAD: Lustrzany, paraboidalny reflektor samochodowy, wyposażony w żarówkę halogenową H4 (55W, 1100lm). Światłość samej żarówki wynosi średnio 87,6 cd. Światłość układu żarówka-reflektor osiąga na osi reflektora około cd. Światłość jest wielkością charakteryzującą przede wszystkim źródła światła i oprawy oświetleniowe. Ale podana definicja odnosi się też do elementu powierzchni odbijającej strumień świetlny!

28 Światłość Orientacyjne wartości światłości przykładowych źródeł światła i niektórych opraw oświetleniowych Źródło lub oprawa Światłość [cd] Diodowy wskaźnik sygnałowy 0,01-0,5 Żarówka 100W 100 Świetlówka 18W 150 Typowa oprawa nasufitowa 1200 Reflektor samochodowy (światła drogowe)

29 Luminancja Luminancja danego punktu P powierzchni świecącej w danym kierunku (,) to iloraz elementarnej światłości I(C,), jaką cechuje się nieskończenie małe otoczenie ds punktu P w tym kierunku, oraz pola pozornej powierzchni ds tego otoczenia, widzianego z tego kierunku: L C, C, dic, di ds' ds cos cd/m 2

30 Luminancja Luminancja cechuje zarówno materiały samoświecące jak i świecące światłem odbitym. Luminancja określa gęstość powierzchniową światłości emitowanej w danym kierunku. Luminancja jest spośród wielkości fotometrycznych pojęciem najbliższym odczucia wizualnego jaskrawości ale jednak jest ona wielkością obiektywną, podczas gdy np. odczucie jaskrawości jest np. funkcją stanu adaptacji oczu (czyli też: jaskrawości otoczenia). PRZYKŁAD: Światła samochodowe widziane w jasny, słoneczny dzień i nocą. Można jednak na podstawie wrażenia jaskrawości porównywać i wartościować luminancje dwóch obiektów, jeśli znajdują się one w tym samym otoczeniu.

31 Luminancja Wartości luminancji niektórych obiektów świecących Obiekt Luminancja [cd/m 2 ] Tarcza słoneczna Żarówka halogenowa (włókno) Świetlówka Księżyc Błękit nieba Monitor komputera (białe pole) 200 Powierzchnia oświetlonej kartki 100 Elewacja iluminowanego budynku 12 Dobrze oświetlona jezdnia 2

32 Natężenie oświetlenia O ile luminancja określa, w przypadku przedmiotów oświetlanych, ilościowe cechy światła odbitego od powierzchni, o tyle natężenie oświetlenia informuje wyłącznie o ilościowych cechach światła padającego na daną powierzchnię. DEF 1: Natężenie oświetlenia E w danym punkcie powierzchni jest to iloraz elementarnego strumienia świetlnego d padającego na powierzchnię ds, stanowiącą otoczenie tego punktu, oraz jej wartości. ALBO: DEF 2: Natężenie oświetlenia E w danym punkcie powierzchni jest to suma działania wiązek świetlnych o luminancji L(C,), które z obszaru półprzestrzeni widzianej z danego punktu oświetlają ten punktpowierzchni. E d ds 2 L C, cosd

33 Natężenie oświetlenia Obie definicje są równoważne, ale DEF 1 lepiej odnosi się do sytuacji, gdy źródło oświetlające powierzchnię S jest na tyle małe, że jego odległość od punktu P jest dużo większa od rozmiarów źródła światła. DEF 2 dotyczy przypadku, gdy punkt P jest oświetlony przez dużą, przestrzenną powierzchnię o znanym rozkładzie luminancji (np. nieboskłon).

34 Natężenie oświetlenia Natężenie oświetlenia w zależności od źródła.

35 Natężenie oświetlenia Podane definicje natężenia oświetlenia odnosi się do przypadku ogólnego i jest określone w punkcie, a więc formalnie nie ma sensu mówić o orientacji otoczenia tego punktu względem oświetlającego źródła. W życiu codziennym natomiast zwykle obserwujemy natężenia oświetlenia pewnych płaszczyzn, które są zorientowane pionowo albo poziomo. Wprowadzono więc pojęcia: poziomego E h (horyzontalnego) i pionowego E v (wertykalnego) natężenia oświetlenia w danym punkcie jako parametry określające stan oświetlenia. E d ds E h E v d ds / cos d ds /sin E cos Esin

36 PRZYKŁAD: Natężenie oświetlenia horyzontalne i wertykalne Dla punktowego źródła światła, np. żarówki wiszącej wysoko nad powierzchnią stołu, wyznaczymy obie składowe natężenia oświetlenia korzystając z prawa odwrotności kwadratów odległości (prawa Lamberta- Beera): E h E v E I h E E h E v I I cos 2 2 r h 2 I I 3 cos cos 2 2 r h I I 2 sin cos sin 2 2 r h

37 Natężenie oświetlenia W praktyce często chcemy wyznaczyć natężenie oświetlenia od źródła (oprawy) o typowym kształcie (o dużej symetrii). PRZYKŁAD: natężenie oświetlenia pochodzące od półsfery o stałej luminancji L(C,). Ze względu na stałość luminancji, można ją wyłączyć spod całki; dodatkowo można związać kąt bryłowy z kątem wierzchołkowym stożka świetlnego. E L 2 1 cos 2 cos d L 2 0 d 2 sind 2sin cos d L 2 0 sin 2 d L Natężenie oświetlenia pochodzące od półsfery o stałej luminancji L(C,) nie zależy od promienia tej sfery!

38 Natężenie oświetlenia Poprzedni przykład można tez uogólnić na przypadek nieskończenie wielkiej płaszczyzny oświetlającej o stałej luminancji oświetla ona punkt pod sobą tak jak półsfera, ponieważ w obu przypadkach otacza ten punkt półprzestrzeń o stałej luminancji! WNIOSEK Jeśli np. trzeba obliczyć luminancję, jaką powinien mieć sufit, aby przy jego wykorzystaniu jako źródła światła pośredniego, uzyskać na płaszczyźnie stołu natężenie oświetlenia E, wystarczy podzielić wymaganą wartość E przez i otrzymać wynik w postaci luminancji. I nie jest to wynik typu: pi () razy drzwi!

39 Natężenie oświetlenia W technice świetlnej nie luminancja (która formalnie jest pełniejszą charakterystyka źródła!) ale właśnie natężenie oświetlenia stało się wielkością normującą poziom wymagań oświetleniowych. DLACZEGO? Aby określić wymagania w postaci luminancji, musielibyśmy znać ilościowe i geometryczne cechy odbicia światła od oświetlonych powierzchni pomieszczenia tego wymagania nie można stawiać źródłom światła, bo jest to od nich niezależne i wynika np. z efektu projektu architektonicznego obiektu, rodzaju materiałów użytych do wykończenia powierzchni itp. Praktyka pokazuje, że w określonych sytuacjach nie wystarcza podać natężenia oświetlenia na płaszczyźnie poziomej (pionowej). W specyficznych sytuacjach nie można wręcz określić stałych płaszczyzn, na których powinny być spełnione określone wymagania natężenia oświetlenia. PRZYKŁADY: oświetlenia na boisku piłkarskim (nie oglądamy boiska, ale piłkę i zawodników!), scenie estrady.

40 Natężenie oświetlenia Dla tych specyficznych sytuacji wprowadzono pojęcia: Cylindryczne natężenie oświetlenia E Z w danym punkcie to średnie pionowe natężenie oświetlenia obliczone (zmierzone) w tym punkcie dla chwilowych położeń pionowych płaszczyzn w trakcie ich pełnego obrotu wokół pionowej osi przechodzącej przez ten punkt: Pólcylindryczne natężenie oświetlenia E HZ w danym punkcie to średnie pionowe natężenie oświetlenia obliczone w tym punkcie dla chwilowych położeń pionowych płaszczyzn w trakcie ich półobrotu wokół pionowej osi przechodzącej przez ten punkt: E E Z HZ 0 n 2 EV i 1 i1 EV d 2 n n 2 1 i1 EV d 2 E V n i Sferyczne natężenie oświetlenia E O w danym punkcie to średnie pionowe natężenie oświetlenia obliczone w tym punkcie dla chwilowych położeń pionowych płaszczyzn zawierających dany punkt: E Ld 4 O L sr 4

41 Natężenie oświetlenia Przykłady uzyskiwanych wartości natężenia oświetlenia w oświetleniu naturalnym i sztucznym: Obiekt oświetlenia Powierzchnia Ziemi oświetlona Słońcem Powierzchnia Ziemi oświetlona zachmurzonym niebem w listopadzie 2000 Powierzchnia Ziemi przy świetle Księżyca 0,25 Dobrze oświetlone stanowisko do czytania/pisania 500 Nawierzchnia jezdni oświetlona sztucznie 30 Murawa stadionu piłkarskiego na potrzeby transmisji TV 2000 E [lx]

42 Kontrast Kontrast (w subiektywnym znaczeniu) to różnica w wyglądzie dwóch części pola widzenia oglądanych równocześnie lub kolejno. Definicja subiektywna, więc powodem obserwowanej różnicy może być zarówno luminancja jak i barwa (albo obie jednocześnie). Kontrast (w znaczeniu obiektywnym) jest definiowany różnie, najczęściej jako: Lob LT K L ob to luminancja obiektu L T L T to luminancja tła (otoczenia) Ta definicja ma sporo wad: kontrast może być dodatni i ujemny (i możemy otrzymać dwie różne wartości, w zależności od tego, co przyjmujemy za tło, a co za obiekt) a skala jest różna w zależności od tego, czy oceniamy obiekt jaśniejszy na ciemniejszym tle (duże zmiany kontrastu) czy obiekt ciemniejszy na tle ciemnym (małe zmiany kontrastu).

43 Kontrast Wspomnianych wad nie ma inna definicja kontrastu: Ten wzór daje symetryczną wartość kontrastu zawartą między -1 a 1. (Co oznaczają L 1 i L 2, to chyba oczywiste?!) K L L 1 2 L L 2 1 Bywają jeszcze inne formalne określenia kontrastu, np.: Przyjęto więc zasadę, że w przypadku podawania wartości kontrastu cytuje się wzór, według którego jest liczony! K 1 2 L L K L 2 L L 1 L 2

44 Egzytancja, naświetlenie Analogicznie do definicji egzytancji promienistej, egzytancją M w danym punkcie powierzchni promieniującej jest iloraz elementarnego strumienia świetlnego wypromieniowywanego z elementarnego pola da otaczającego dany punkt oraz powierzchni tego pola: M d da Jednostką jest lm/m 2, ale NIE luks! Naświetlenie H to gęstość powierzchniowa ilości światła dq padającego na elementarną powierzchnię da ALBO: jest to suma po czasie iloczynów chwilowych wartości natężenia oświetlenia E(t) w danym punkcie oraz czasu trwania t: H H dq da Jednostką jest lx s t Et dt 0 Pojęcie naświetlenia jest używane w dziedzinach, w których światło działające przez pewien okres czasu wywołuje określone reakcje chemiczne.

45 Związki między podstawowymi wielkościami fotometrycznymi

46 Oko i widzenie Budowa oka: BYŁO!

47 Oko i widzenie Receptory światła na siatkówce, czyli czopki i pręciki, ich budowa, wielkość, rozmieszczenie, czułość: BYŁO!

48 Oko i widzenie Proces widzenia: Światło (energia!) Fotoreceptor (czopek, pręcik) Fotorecepcja: zmiany konfiguracji fotopigmentów (np. rodopsyny) Pobudzanie i hamowanie komórek zwojowych Komórki dwubiegunowe) Transdukcja kaskada reakcji chemicznych, w wyniku których powstaje wtórny mechanizm regulujący przepływ jonów (wzmocnienie) Impulsy nerwowe Ośrodkowy układ nerwowy)

49 Oko i widzenie Pole widzenia to część przestrzeni dostrzegana przy jedno- lub obuocznym widzeniu, przy nieruchomej osi wzroku. Zakres pola widzenia określa się podając współrzędne kątowe γ najdalej oddalonego kątowo kierunku od osi wzroku, w różnych płaszczyznach C przechodzących przez oś wzrokową.

50 Oko i widzenie Pole widzenia jednego oka jest niesymetryczne, ze względu na nos, łuk brwiowy, policzki. Pole widzenia obuocznego jest symetryczne i można w nim wyodrębnić część wspólną dostrzeganą przez parę oczu i fragmenty pól widzenia dostrzegane przez każde oko osobno. Pole widzenia obuocznego jest owalne. W płaszczyźnie poziomej dostrzegane są obiekty położone w oddaleniu kątowym od osi wzroku o 90. W płaszczyźnie pionowej w górę dostrzega się obiekty oddalone kątowo o 60, a w dół o 70.

51 Oko i widzenie Poprzedni rysunek przedstawiał pole widzenia bez rozróżniania obszaru widzenia pręcików i czopków. Można też pokazać pole widzenia odbioru barw czyli tzw. linie graniczne dostrzegania kolorów. Okazuje się, że pola dostrzegania barw zajmują różną powierzchnię pola widzenia: największą dla barwy żółtej i niebieskiej, mniejszą dla czerwonej a najmniejszą dla zielonej.

52 Oko i widzenie Rys. 3.7 Adaptacja wzroku to właściwość oka polegająca na możliwości dostosowania do luminancji z zakresu od 10-6 cd/m 2 do 10 5 cd/m 2. Proces ten wynika z bezwładności oka, w jego czasie właściwości wzroku ulegają zmianie na skutek dużych zmian poziomu oświetlenia siatkówki. Adaptacja umożliwia stałą wydolność wzrokową w zakresie luminancji od 100 cd/m 2 do cd/m 2. Proces adaptacji, będący funkcją czasu, zależy wyraźnie od luminancji na początku i końcu adaptacji.

53 Oko i widzenie Adaptacja do ciemności to proces, w którym luminancja zmienia się od wartości większej do mniejszej. Jeśli oko jest zaadaptowane do widzenia dziennego pełna adaptacja do ciemności (np. po wejściu do ciemnego pomieszczenia) zajmuje nawet ponad godzinę! Czas adaptacji do ciemności zależy od natężenia i okresu wcześniejszego stanu adaptacji. Pozbawiony pręcików dołek środkowy ma ograniczone możliwości widzenia w ciemności, zaś jego adaptacja jest jednofazowa. Pozostała część siatkówki przeprowadza proces adaptacyjny dwufazowo: szybkie zwiększanie czułości czopków; po osiągnięciu maksimum czułości czopków powolne zwiększanie czułości (oślepionych wcześniej) pręcików.

54 Oko i widzenie Adaptacja do ciemności Co to jest troland? proszę Studentów o sprawdzenie

55 Oko i widzenie Adaptacja do jasności to proces, w którym luminancja zmienia się od wartości mniejszej do większej. Adaptacja do jasności zajmuje tylko kilka sekund. Po nagłym zwiększeniu natężenia oświetlenia pręciki zostają oślepione i od razu zaczyna się zmniejszanie czułości czopków Stąd światło w pierwszej chwili razi nas mocno, lecz po kilku minutach wzrok adaptuje się do jasności Ponowna adaptacja do ciemności wymaga znów długiego okresu czasu.

56 Oko i widzenie Proces adaptacji wzroku jest procesem złożonym, na który składa się kilka zjawisk: - Zmiana wielkości źrenicy (0,3 sek na zwężanie i 1,5 sek na rozszerzanie), - Adaptacja nerwowa (poniżej 1 sek), - Adaptacja fotochemiczna (czopki 1015 min, pręciki do 60 min), - Adaptacja przejściowa (częściowe przystosowanie się do zmienionych warunków oświetlenia).

57 Oko i widzenie Olśnienie Olśnienie to stan w procesie widzenia związany z odczuciem niewygody lub zmniejszeniem dolności wykonywania pracy wzrokowej, w wyniku nadmiernego poziomu luminancji w polu widzenia lub niewłaściwego rozkładu luminancji w czasie lub przestrzeni. Ze względu na warunki powstawania olśnienia dzieli się na: - Olśnienie bezpośrednie (jaskrawy obiekt położony jest w tym samym kierunku co obiekt obserwowany); - Olśnienie pośrednie (jaskrawy obszar występuje w polu widzenia, ale w pewnej odległości kątowej od kierunku obserwacji); - Olśnienie odbiciowe (w polu obserwacji występują obrazy odbitych źródeł światła o znacznej luminancji).

58 Oko i widzenie Olśnienie Ze względu na skutki, olśnienia dzieli się na: - Przykre zależy głównie od luminancji w polu widzenia; spowodowane jest zbyt dużym kontrastem między sąsiadującymi obszarami na siatkówce w sytuacji, gdy w polu widzenia wystąpi obiekt o skrajnie dużej luminancji; - Przeszkadzające zależy głównie od natężenia oświetlenia w płaszczyźnie oka obserwatora; duży strumień świetlny rozpraszany jest w oku, przez co cała siatkówka zyskuje luminancje rozproszoną i maleje je czułość; - Oślepiające najsilniejszy rodzaj tego szkodliwego zjawiska; jest ono tak silne, że przez pewien czas żaden zauważalny obiekt nie może być dostrzeżony ze względu na występowanie w polu widzenia bardzo dużych wartości luminancji i natężenia oświetlenia.

59 Oko i widzenie

BARWA. Barwa postrzegana opisanie cech charakteryzujących wrażenie, jakie powstaje w umyśle;

BARWA. Barwa postrzegana opisanie cech charakteryzujących wrażenie, jakie powstaje w umyśle; BARWA Barwa postrzegana opisanie cech charakteryzujących wrażenie, jakie powstaje w umyśle; Barwa psychofizyczna scharakteryzowanie bodźców świetlnych, wywołujących wrażenie barwy; ODRÓŻNIENIE BARW KOLORYMETR

Bardziej szczegółowo

Ćwiczenie Nr 11 Fotometria

Ćwiczenie Nr 11 Fotometria Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria

Bardziej szczegółowo

Techniki świetlne. Wykład 4. Obliczenia podstawowych wielkości fotometrycznych

Techniki świetlne. Wykład 4. Obliczenia podstawowych wielkości fotometrycznych Techniki świetlne Wykład 4 Obliczenia podstawowych wielkości fotometrycznych Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej

Bardziej szczegółowo

Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH

Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH Grupa: Elektrotechnika, sem 3., wersja z dn. 03.10.2011 Podstawy Techniki Świetlnej Laboratorium Ćwiczenie nr 1. Temat: BADANIE OSTROŚCI WIDZENIA W RÓŻNYCH WARUNKACH OŚWIETLENIOWYCH Opracowanie wykonano

Bardziej szczegółowo

Wprowadzenie do technologii HDR

Wprowadzenie do technologii HDR Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii

Bardziej szczegółowo

Temat ćwiczenia. Pomiary oświetlenia

Temat ćwiczenia. Pomiary oświetlenia POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary oświetlenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodami pomiaru natęŝenia oświetlenia oraz wyznaczania poŝądanej wartości

Bardziej szczegółowo

Środowisko pracy Oświetlenie

Środowisko pracy Oświetlenie Środowisko pracy Oświetlenie Budowa narządu wzroku dr inż. Katarzyna Jach 1 2 Budowa oka Pręciki rozdzielczość światłoczułe odpowiedzialne za wykrywanie kształtu i ruchu Nie rozróżniają kolorów Czopki

Bardziej szczegółowo

Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ STUDIA NIESTACJONARNE I STOPNIA, wersja z dn. 15.10.018 KIERUNEK ELEKTROTECHNIKA, SEM.5 Podstawy Techniki Świetlnej Laboratorium Ćwiczenie nr 4 Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

Bardziej szczegółowo

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu:

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu: Załącznik do rozporządzenia Ministra Pracy i Polityki Społecznej z dnia 27 maja 2010 r. Wyznaczanie poziomu ekspozycji na promieniowanie optyczne 1. Promieniowanie nielaserowe 1.1. Skutki oddziaływania

Bardziej szczegółowo

7. Wyznaczanie poziomu ekspozycji

7. Wyznaczanie poziomu ekspozycji 7. Wyznaczanie poziomu ekspozycji Wyznaczanie poziomu ekspozycji w przypadku promieniowania nielaserowego jest bardziej złożone niż w przypadku promieniowania laserowego. Wynika to z faktu, że pracownik

Bardziej szczegółowo

Środowisko pracy Oświetlenie

Środowisko pracy Oświetlenie Środowisko pracy Oświetlenie Oświetlenie podstawowe pojęcia Światło - Energia promieniowania o długości fali 380-760 nm, zdolna pobudzić siatkówkę i wywołać wrażenie wzrokowe. dr inż. Katarzyna Jach 1

Bardziej szczegółowo

Rys. 1. Zakres widzialny fal elektromagnetycznych dla widzenia w ciągu dnia i nocy.

Rys. 1. Zakres widzialny fal elektromagnetycznych dla widzenia w ciągu dnia i nocy. Pomiary natężenia oświetlenia Możliwości percepcyjne, a przez to stan psychofizyczny człowieka zależą w bardzo dużym stopniu od środowiska, w jakim aktualnie przebywa. Bodźce świetlne są decydującymi czynnikami

Bardziej szczegółowo

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 29.03.2016 aboratorium Techniki Świetlnej Ćwiczenie nr 5. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓŻYCH WŁASOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

PODSTAWY BARWY, PIGMENTY CERAMICZNE

PODSTAWY BARWY, PIGMENTY CERAMICZNE PODSTAWY BARWY, PIGMENTY CERAMICZNE Barwa Barwą nazywamy rodzaj określonego ilościowo i jakościowo (długość fali, energia) promieniowania świetlnego. Głównym i podstawowym źródłem doznań barwnych jest

Bardziej szczegółowo

Wydajność konwersji energii słonecznej:

Wydajność konwersji energii słonecznej: Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego

Bardziej szczegółowo

Oświetlenie oraz pole elektryczne i magnetyczne na stanowisku do pracy z komputerem.

Oświetlenie oraz pole elektryczne i magnetyczne na stanowisku do pracy z komputerem. Oświetlenie oraz pole elektryczne i magnetyczne na stanowisku do pracy z komputerem. I. Oświetlenie. 1. Przedmiot. Pomiar parametrów technicznych pracy wzrokowej na stanowiskach wyposażonych w monitory

Bardziej szczegółowo

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7 Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie

Bardziej szczegółowo

JAKOŚĆ ŚWIATŁA. Piotr Szymczyk. Katedra Automatyki i Inżynierii Biomedycznej, AGH

JAKOŚĆ ŚWIATŁA. Piotr Szymczyk. Katedra Automatyki i Inżynierii Biomedycznej, AGH JAKOŚĆ ŚWIATŁA Piotr Szymczyk Katedra Automatyki i Inżynierii Biomedycznej, AGH Kraków, 2017 Źródła światła -podział Żarowe źródła światła Żarówki tradycyjne Żarówki halogenowe Wyładowcze źródła światła

Bardziej szczegółowo

LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA

LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA LABORATORIUM OPTYKA GEOMETRYCZNA I FALOWA Instrukcja do ćwiczenia nr 4 Temat: Wyznaczanie współczynnika sprawności świetlnej źródła światła 1 I. Wymagania do ćwiczenia 1. Wielkości fotometryczne, jednostki..

Bardziej szczegółowo

Zasady oświetlania przejść dla pieszych

Zasady oświetlania przejść dla pieszych Zasady oświetlania przejść dla pieszych dr hab. inż. Piotr Tomczuk Politechnika Warszawska Wydział Transportu 1 Plan wystąpienia 1. Wstęp. 2. Wymagania oświetleniowe. 3. Propozycja zaleceń dotyczących

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria 9. (rodzaje receptorów; teoria Younga-Helmholtza i Heringa; kontrast chromatyczny i achromatyczny; dwu- i trzywariantowy system widzenia ssaków; kontrast równoczesny). http://www.if.pwr.wroc.pl/~wozniak/

Bardziej szczegółowo

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę.

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę. Ćwiczenie 3. Parametry spektralne detektorów. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami detektorów i ich podstawowych parametrów. Poznanie zależności związanych z oddziaływaniem

Bardziej szczegółowo

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity

Bardziej szczegółowo

OP6 WIDZENIE BARWNE I FIZYCZNE POCHODZENIE BARW W PRZYRODZIE

OP6 WIDZENIE BARWNE I FIZYCZNE POCHODZENIE BARW W PRZYRODZIE OP6 WIDZENIE BARWNE I FIZYCZNE POCHODZENIE BARW W PRZYRODZIE I. Wymagania do kolokwium: 1. Fizyczne pojęcie barwy. Widmo elektromagnetyczne. Związek między widmem światła i wrażeniem barwnym jakie ono

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Techniki świetlne. Wykład 6

Techniki świetlne. Wykład 6 Techniki świetlne Wykład 6 Kształtowanie przestrzennego rozsyłu strumienia świetlnego przez oprawy oświetleniowe Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów

Bardziej szczegółowo

Grupa: Elektrotechnika, sem 3, wersja z dn. 03.11.2015 Technika Świetlna Laboratorium

Grupa: Elektrotechnika, sem 3, wersja z dn. 03.11.2015 Technika Świetlna Laboratorium 6-965 Poznań tel. (-61) 6652688 fax (-61) 6652389 Grupa: Elektrotechnika, sem 3, wersja z dn. 3.11.2 Technika Świetlna Laboratorium Ćwiczenie nr 3 Temat: BADANIE POLA WIDZENIA Opracowanie wykonano na podstawie:

Bardziej szczegółowo

Definicje podstawowych pojęć występujących w normie PN-EN : 2004

Definicje podstawowych pojęć występujących w normie PN-EN : 2004 Definicje podstawowych pojęć występujących w normie PN-EN 12464-1: 2004 DEFINICJA OŚWIETLENIA Stosowanie światła w celu uwidocznienia miejsc, obiektów lub ich otoczenia. PODSTAWOWE WIELKOŚCI ŚWIETLNE I

Bardziej szczegółowo

POMIARY FOTOMETRYCZNE

POMIARY FOTOMETRYCZNE ĆWICZENIE 70 POMIARY FOTOMETRYCZNE Cel ćwiczenia: pomiar światłości oraz natężenia oświetlenia z zastosowaniem metod fizycznych (część A) i wizualnych (część B); poznanie budowy i zasady działania fotometru

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria 10. Opis barwy; cechy psychofizyczne barwy; indukcja przestrzenna i czasowa; widmo bodźca a wrażenie barwne; wady postrzegania barw; testy Ishihary. http://www.if.pwr.wroc.pl/~wozniak/ Miejsce i termin

Bardziej szczegółowo

Oświetlenie 1. Zakres wykładu. Podstawy techniki świetlnej Źródła światła Oprawy oświetleniowe Technika oświetlania. dr inż.

Oświetlenie 1. Zakres wykładu. Podstawy techniki świetlnej Źródła światła Oprawy oświetleniowe Technika oświetlania. dr inż. Politechnika Warszawska Oświetlenie 1 dr inż. Piotr Pracki Politechnika Warszawska Wydział Elektryczny Zakład Techniki Świetlnej Politechnika Warszawska Zakres wykładu Podstawy techniki świetlnej Źródła

Bardziej szczegółowo

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15 Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery i diody elektroluminescencyjne. 2

Bardziej szczegółowo

Barwa ciepła Barwa neutralna Barwa chłodna

Barwa ciepła Barwa neutralna Barwa chłodna W sprzedaży różnych źródeł światła spotykamy pojęcie barwy światła. Najczęściej spotykane rodzaje barw światła to: biała ciepła biała naturalna biała chłodna Odbiór przestrzeni w której się znajdujemy

Bardziej szczegółowo

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 18.03.2011 aboratorium Techniki Świetlnej Ćwiczenie nr 2. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓśYCH WŁAŚCIWOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310) Instrukcja dla studentów kierunku Automatyka i Robotyka

Bardziej szczegółowo

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH 6-965 Poznań tel. (-61) 6652688 fax (-61) 6652389 STUDIA NIESTACJONARNE II STOPNIA wersja z dnia 2.11.212 KIERUNEK ELEKTROTECHNIKA SEM 3. Laboratorium TECHNIKI ŚWIETLNEJ TEMAT: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ

Bardziej szczegółowo

OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH

OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH STUDIA NIESTACJONARNE II STOPNIA wersja z dnia 3.12.2009 KIERUNEK ELEKTROTECHNIKA SEM 3. Laboratorium PODSTAW TECHNIKI ŚWIETLNEJ TEMAT: OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15 Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery i diody LED. 2 Wy4 Oddziaływanie

Bardziej szczegółowo

w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma)

w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma) Przydatne źródła informacji w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma) wiarygodne źródło informacji to np. Radiometry and

Bardziej szczegółowo

STUDIA STACJONARNE II STOPNIA, sem KIERUNEK ELEKTROTECHNIKA Laboratorium TECHNIKI ŚWIETLNEJ OCENA JAKOŚCI OŚWIETLENIA WNĘTRZ

STUDIA STACJONARNE II STOPNIA, sem KIERUNEK ELEKTROTECHNIKA Laboratorium TECHNIKI ŚWIETLNEJ OCENA JAKOŚCI OŚWIETLENIA WNĘTRZ STUDIA STACJONARN II STOPNIA, sem. 1 15.04.2016 KIRUNK LKTROTCHNIKA Laboratorium TCHNIKI ŚWITLNJ wersja z dn. TMAT: OCNA JAKOŚCI OŚWITLNIA WNĘTRZ Opracowanie wykonano na podstawie: 1. PN-N 12464-1:2012:

Bardziej szczegółowo

lm Φ= 683 Φ λ V λ dλ (1) W

lm Φ= 683 Φ λ V λ dλ (1) W FOTOMETRA. stęp Postrzeganie bodźców wzrokowych uwarunkowana jest wieloma czynnikami pośród których dominującą rolę odgrywa ich charakterystyka fizyczna: - natężenie bodźca określane poprzez ilość energii

Bardziej szczegółowo

ZDOLNOŚĆ WIDZENIA A OŚWIETLENIE

ZDOLNOŚĆ WIDZENIA A OŚWIETLENIE BEZPIECZEŃSTWO PRACY nauka i praktyka 1/1999, str. 11 14 dr inż. AGNIESZKA WOLSKA Centralny Instytut Ochrony Pracy ZDOLNOŚĆ WIDZENIA A OŚWIETLENIE Praca wykonana w ramach Strategicznego Programu Rządowego

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Warszawa, dnia 11 lipca 2012 r. Poz. 787

Warszawa, dnia 11 lipca 2012 r. Poz. 787 Warszawa, dnia 11 lipca 2012 r. Poz. 787 ROZPORZĄDZENIE MINISTRA PRACY I POLITYKI SPOŁECZNEJ 1) z dnia 25 czerwca 2012 r. zmieniające rozporządzenie w sprawie bezpieczeństwa i higieny pracy przy pracach

Bardziej szczegółowo

OŚWIETLENIE, OGRZEWANIE I KLIMATYZACJA POMIESZCZEŃ PRACY BIUROWEJ

OŚWIETLENIE, OGRZEWANIE I KLIMATYZACJA POMIESZCZEŃ PRACY BIUROWEJ OŚWIETLENIE, OGRZEWANIE I KLIMATYZACJA POMIESZCZEŃ PRACY BIUROWEJ Szkolenia bhp w firmie szkolenie okresowe pracowników administracyjno-biurowych 105 Oświetlenie stanowiska pracy Wszystkie pomieszczenia

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Kryteria innowacyjnego oświetlenia

Kryteria innowacyjnego oświetlenia Kryteria innowacyjnego oświetlenia dr inż. Paweł Baranowski LUXMEDIA POLAND Sopocka Szkoła Wyższa Uniwersytet Artystyczny w Poznaniu Fot: Eric Johansson Kwiecień 2013 Promieniowanie Co się dzieje lampa

Bardziej szczegółowo

Ćwiczenie 3. Elementy fotometrii i testy rozdzielczości obiektywów fotograficznych. Wprowadzenie teoretyczne. Elementy fotometrii

Ćwiczenie 3. Elementy fotometrii i testy rozdzielczości obiektywów fotograficznych. Wprowadzenie teoretyczne. Elementy fotometrii Ćwiczenie 3 Elementy fotometrii i testy rozdzielczości obiektywów fotograficznych Wprowadzenie teoretyczne Elementy fotometrii W ogólności pomiarem ilościowym promieniowania fal elektromagnetycznych zajmuje

Bardziej szczegółowo

Oświetlenie obiektów 3D

Oświetlenie obiektów 3D Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

STUDIA STACJONARNE II STOPNIA, sem. 1 wersja z dn KIERUNEK ELEKTROTECHNIKA Laboratorium TECHNIKI ŚWIETLNEJ

STUDIA STACJONARNE II STOPNIA, sem. 1 wersja z dn KIERUNEK ELEKTROTECHNIKA Laboratorium TECHNIKI ŚWIETLNEJ STUDIA STACJONARNE II STOPNIA, sem. 1 wersja z dn. 20.03.2013 KIERUNEK ELEKTROTECHNIKA Laboratorium TECHNIKI ŚWIETLNEJ TEMAT: OCENA JAKOŚCI OŚWIETLENIA WNĘTRZ Opracowanie wykonano na podstawie: 1. PN-EN

Bardziej szczegółowo

Ćwiczenie 1. Część teoretyczna Światło jest falą elektromagnetyczną, zatem związana jest z nią funkcja ( r, t)

Ćwiczenie 1. Część teoretyczna Światło jest falą elektromagnetyczną, zatem związana jest z nią funkcja ( r, t) Ćwiczenie 1 Formowanie elementarnych frontów falowych. Zapoznanie się z podstawowymi elementami optycznymi i źródłami światła, które będą wykorzystywane podczas zajęć laboratoryjnych. Część teoretyczna

Bardziej szczegółowo

ŚWIATŁO. W zależności czy światłość jest nierównomierna, czy równomierna di L lub

ŚWIATŁO. W zależności czy światłość jest nierównomierna, czy równomierna di L lub ŚWIATŁO 1. Pojęcia ogólne Światło rodzaj energii elektromagnetycznej promienistej, powstającej przy zmianie układu cząsteczek materii emitującej energię, wskutek silnego rozgrzania reakcji chemicznych

Bardziej szczegółowo

Instrukcja dla użytkownika Ver

Instrukcja dla użytkownika Ver Instrukcja użytkownika Ver. 01.08 Instrukcja Badawcza Promieniowanie optyczne nielaserowe. EKOHIGIENA APARATURA Ryszard Putyra Sp.j. Ul. Strzelecka 19 55300 Środa Śląska Tel.: 0713176850 Fax: 0713176851

Bardziej szczegółowo

STUDIA NIESTACJONARNE II STOPNIA, sem. 3 wersja z dn KIERUNEK ELEKTROTECHNIKA Laboratorium TECHNIKI ŚWIETLNEJ

STUDIA NIESTACJONARNE II STOPNIA, sem. 3 wersja z dn KIERUNEK ELEKTROTECHNIKA Laboratorium TECHNIKI ŚWIETLNEJ STUDIA NISTACJONARN II STOPNIA, sem. 3 wersja z dn. 28.11.2016. KIRUNK LKTROTCHNIKA Laboratorium TCHNIKI ŚWITLNJ TMAT: OCNA JAKOŚCI I FKTYWNOŚCI NRGTYCZNJ OŚWITLNIA WNĘTRZ Opracowanie wykonano na podstawie:

Bardziej szczegółowo

OCENA OŚWIETLENIA STANOWISKA PRACY.

OCENA OŚWIETLENIA STANOWISKA PRACY. 1 OCENA OŚWIETLENIA STANOWISKA PRACY. I. WPROWADZENIE Oświetlenie dzienne i sztuczne stanowi jeden z podstawowych składników środowiska pracy, jest czynnikiem mającym znaczący wpływ na bezpieczeństwo i

Bardziej szczegółowo

Politechnika Poznańska, Zakład Techniki Świetlnej i Elektrotermii. Oświetlenie awaryjne i inne nowe normy i zalecenia

Politechnika Poznańska, Zakład Techniki Świetlnej i Elektrotermii. Oświetlenie awaryjne i inne nowe normy i zalecenia Małgorzata Górczewska Politechnika Poznańska, Zakład Techniki Świetlnej i Elektrotermii Oświetlenie elektryczne Oświetlenie awaryjne i inne nowe normy i zalecenia Streszczenie: Normy oświetleniowe, obowiązujące

Bardziej szczegółowo

Zmysły. Wzrok 250 000 000. Węch 40 000 000. Dotyk 2 500 000. Smak 1 000 000. Słuch 25 000. Równowaga?

Zmysły. Wzrok 250 000 000. Węch 40 000 000. Dotyk 2 500 000. Smak 1 000 000. Słuch 25 000. Równowaga? Zmysły Rodzaj zmysłu Liczba receptorów Wzrok 250 000 000 Węch 40 000 000 Dotyk 2 500 000 Smak 1 000 000 Słuch 25 000 Równowaga? Fale elektromagnetyczne Wzrok Informacje kształt zbliżony do podstawowych

Bardziej szczegółowo

PULSOWANIE STRUMIENIA ŚWIETLNEGO I SPOSOBY JEGO OGRANICZANIA

PULSOWANIE STRUMIENIA ŚWIETLNEGO I SPOSOBY JEGO OGRANICZANIA Przedmiot: SIECI I INSTAACJE OŚIETENIOE PUSOANIE STUMIENIA ŚIETNEGO I SPOSOBY JEGO OGANICZANIA Przemysław Tabaka prowadzenie Oko ludzkie przystosowane jest do odbierania światła stałego w czasie. Jeżeli

Bardziej szczegółowo

Polecenie ŚWIATPUNKT - ŚWIATŁO PUNKTOWE

Polecenie ŚWIATPUNKT - ŚWIATŁO PUNKTOWE Polecenie ŚWIATPUNKT - ŚWIATŁO PUNKTOWE Tworzy światło punktowe emitujące światło we wszystkich kierunkach. Lista monitów Wyświetlane są następujące monity. Określ położenie źródłowe : Podaj wartości

Bardziej szczegółowo

Techniki świetlne. Wykład 3. Geometryczne systemy prezentacji właściwości fotometrycznych źródeł światła i opraw oświetleniowych

Techniki świetlne. Wykład 3. Geometryczne systemy prezentacji właściwości fotometrycznych źródeł światła i opraw oświetleniowych Techniki świetlne Wykład 3 Geometryczne systemy prezentacji właściwości fotometrycznych źródeł światła i opraw oświetleniowych Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Badania oświetlenia na przejściu dla pieszych na ulicy Walerego Sławka w Warszawie

Badania oświetlenia na przejściu dla pieszych na ulicy Walerego Sławka w Warszawie Badania oświetlenia na przejściu dla pieszych na ulicy Walerego Sławka w Warszawie Wyniki opracował: Dr inż. Piotr Tomczuk Wydział Transportu Politechniki Warszawskiej Zakład Systemów Informatycznych i

Bardziej szczegółowo

W polskim prawodawstwie i obowiązujących normach nie istnieją jasno sprecyzowane wymagania dotyczące pomiarów źródeł oświetlenia typu LED.

W polskim prawodawstwie i obowiązujących normach nie istnieją jasno sprecyzowane wymagania dotyczące pomiarów źródeł oświetlenia typu LED. Pomiary natężenia oświetlenia LED za pomocą luksomierzy serii Sonel LXP W polskim prawodawstwie i obowiązujących normach nie istnieją jasno sprecyzowane wymagania dotyczące pomiarów źródeł oświetlenia

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

ELEKTRYCZNE ŹRÓDŁA ŚWIATŁA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ELEKTRYCZNE ŹRÓDŁA ŚWIATŁA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ELEKTRYCZNE ŹRÓDŁA ŚWIATŁA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wielkości charakteryzujące elektryczne źródło światła: moc P [W] napięcie

Bardziej szczegółowo

Ćwiczenie 3. Strona 1 z 10

Ćwiczenie 3. Strona 1 z 10 Ćwiczenie 3 Badanie oka. Pomiary fotometryczne. Badanie przetworników optoelektronicznych (szum, rozdzielczość) - różne natężenie oświetlenia. Porównanie wyników. Część teoretyczna Badanie narządu wzroku.

Bardziej szczegółowo

BADANIE OSTROŚCI WIDZENIA W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH

BADANIE OSTROŚCI WIDZENIA W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH ul.piotrowo a tel. (0-6) 665688 fax (0-6) 66589 STUDIA NISTACJONARN II STOPNIA wersja z dnia 0..0 KIRUNK LKTROTCHNIKA SM. Laboratorium: TCHNIKI ŚWITLNJ TMAT: BADANI OSTROŚCI WIDZNIA W RÓśNYCH WARUNKACH

Bardziej szczegółowo

Oświetleniowy audyt energetyczny (OAE) w budynkach użyteczności publicznej

Oświetleniowy audyt energetyczny (OAE) w budynkach użyteczności publicznej Oświetleniowy audyt energetyczny (OAE) w budynkach użyteczności publicznej Oznaczenia: OAE - oświetleniowy audyt energetyczny, Φ - strumień świetlny, Iα - światłość w określonym kierunku, E - natężenie

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

Oświetlenie przejść dla pieszych

Oświetlenie przejść dla pieszych Oświetlenie przejść dla pieszych mgr inż. Jan Jakiel Zarząd Dróg Miejskich w Warszawie współpraca: dr hab. inż. Piotr Tomczuk Politechnika Warszawska, Wydział Transportu Raport o stanie brd 2016 sytuacja

Bardziej szczegółowo

Pomiary jakościowe i fotometryczne gwarancją dobrze wykonanej instalacji oświetleniowej

Pomiary jakościowe i fotometryczne gwarancją dobrze wykonanej instalacji oświetleniowej Pomiary jakościowe i fotometryczne gwarancją dobrze wykonanej instalacji oświetleniowej Kornel Borowski Politechnika Gdańska Wydział Elektrotechniki i Automatyki, katedra elektroenergetyki kornel.borowski@pg.edu.pl

Bardziej szczegółowo

INSTRUKCJA NR 05 POMIARY NATĘŻENIA OŚWIETLENIA ELEKTRYCZNEGO POMIESZCZEŃ I STANOWISK PRACY

INSTRUKCJA NR 05 POMIARY NATĘŻENIA OŚWIETLENIA ELEKTRYCZNEGO POMIESZCZEŃ I STANOWISK PRACY LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 05 POMIARY NATĘŻENIA OŚWIETLENIA ELEKTRYCZNEGO POMIESZCZEŃ I STANOWISK PRACY 1. Cel instrukcji Celem instrukcji jest określenie

Bardziej szczegółowo

- 1 - OPTYKA - ĆWICZENIA

- 1 - OPTYKA - ĆWICZENIA - 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.

Bardziej szczegółowo

STUDIA STACJONARNE II STOPNIA wersja z dnia

STUDIA STACJONARNE II STOPNIA wersja z dnia KIERUNEK ELEKTROTECHNIKA SEM 1. Laboratorium TECHNIKI ŚWIETLNEJ 60-965 Poznań STUDIA STACJONARNE II STOPNIA wersja z dnia 20.03.2011 Ćwiczenie nr 4 TEMAT: OCENA JAKOŚCI OŚWIETLENIA MIEJSC PRACY WE WNĘTRZACH

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

POMIAR NATĘŻENIA OŚWIETLENIA

POMIAR NATĘŻENIA OŚWIETLENIA POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O1 Temat ćwiczenia POMIAR NATĘŻENIA OŚWIETLENIA Ćwiczenie O1 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie studentów z

Bardziej szczegółowo

LABORATORIUM Elementy i Układy Optoelektroniczne (Advanced Optoelectronics)

LABORATORIUM Elementy i Układy Optoelektroniczne (Advanced Optoelectronics) Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM Elementy i Układy Optoelektroniczne (Advanced Optoelectronics) Ćwiczenie opracował: dr inż. Damian Pucicki Ćwiczenie nr 3 Pomiary radiometryczne

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria 12. (współrzędne i składowe trójchromatyczne promieniowania monochromatycznego; układ bodźców fizycznych RGB; krzywa barw widmowych; układ barw CIE 1931 (XYZ); alychne; układy CMY i CMYK). http://www.if.pwr.wroc.pl/~wozniak/

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ 60-965 Poznań Grupa: Elektrotechnika, sem 3., Podstawy Techniki Świetlnej Laboratorium wersja z dn. 03.11.2015 Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ Opracowanie wykonano na podstawie

Bardziej szczegółowo

POMIAR NATĘŻENIA OŚWIETLENIA STANOWISKA PRACY

POMIAR NATĘŻENIA OŚWIETLENIA STANOWISKA PRACY POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: ISO 0123, INO 0123 Ćwiczenie Nr 18 POMIAR NATĘŻENIA

Bardziej szczegółowo

Nowe zalecenia dotyczące oceny zagrożenia światłem niebieskim emitowanym przez lampy i oprawy LED

Nowe zalecenia dotyczące oceny zagrożenia światłem niebieskim emitowanym przez lampy i oprawy LED Nowe zalecenia dotyczące oceny zagrożenia światłem niebieskim emitowanym przez lampy i oprawy D 1. Wprowadzenie Jednym z najważniejszych międzynarodowych dokumentów omawiających kwestię ryzyka fotobiologicznego

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria 3. Podstawy fotometrii wzrokowej i fizycznej (metody: wzrokowe, filtru, odchyłowa, zrównania; zasady: migotania, kontrastu). http://www.if.pwr.wroc.pl/~wozniak/fotometria.html Miejsce i termin konsultacji

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład II Promieniowanie elektromagnetyczne Widmo promieniowania EM Oddziaływanie światła z materią, reflektancja, transmitancja, absorpcja Widzenie barwne, diagram

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria 13. (współrzędne i składowe trójchromatyczne promieniowania monochromatycznego; układ bodźców fizycznych RGB; krzywa barw widmowych; układ barw CIE 1931 (XYZ); alychne; układy CMY i CMYK) http://www.if.pwr.wroc.pl/~wozniak/

Bardziej szczegółowo

III Międzynarodowa Konferencja PROBLEMY EKSPLOATACJI I ZARZĄDZANIA ZRÓWNOWAŻONYM TRANSPORTEM 4 6 lipca 2011 r.

III Międzynarodowa Konferencja PROBLEMY EKSPLOATACJI I ZARZĄDZANIA ZRÓWNOWAŻONYM TRANSPORTEM 4 6 lipca 2011 r. III Międzynarodowa Konferencja PROBLEMY EKSPLOATACJI I ZARZĄDZANIA ZRÓWNOWAŻONYM TRANSPORTEM 4 6 lipca 2011 r. Wymagania formalne dotyczące oświetlenia przejść dla pieszych dr inż. Piotr Tomczuk Wydział

Bardziej szczegółowo

Dr inż. Krzysztof Petelczyc Optyka Widzenia

Dr inż. Krzysztof Petelczyc Optyka Widzenia Literatura: Dr inż. Krzysztof Petelczyc Optyka Widzenia http://webvision.med.utah.edu/book A. Valberg Light Vision Color D. Atchison, G. Smith Optics of Human eye M. Zając Optyka okularowa Plan wykładu

Bardziej szczegółowo

Parametry świetlne. Parametry elektryczne. Parametry mechaniczne. Parametry eksploatacyjne

Parametry świetlne. Parametry elektryczne. Parametry mechaniczne. Parametry eksploatacyjne Dane podstawowe Rodzina produktów Typ oprawy Zintegrowany zasilacz Producent chipów LED Producent zasilacza Możliwości montażu Sterowanie Certyfikaty Gwarancja Parametry znamionowe HiRack Oprawa przemysłowa

Bardziej szczegółowo

Sygnalizatory uliczne

Sygnalizatory uliczne Sygnalizatory uliczne Ewa Łazowska Andrzej Stachlewski Milena Mentek Stosowane źródła światła Żarówki klasyczne o mocy 40-100W Żarówki halogenowe 10/12 [V] Diody elektroluminescencyjne - cała płaszczyzna

Bardziej szczegółowo

dr hab. inż. Agnieszka Wolska, prof. nadzw. CIOP-PIB 2016 r. Opracowano w ramach realizacji III etapu programu wieloletniego Poprawa bezpieczeństwa i

dr hab. inż. Agnieszka Wolska, prof. nadzw. CIOP-PIB 2016 r. Opracowano w ramach realizacji III etapu programu wieloletniego Poprawa bezpieczeństwa i dr hab. inż. Agnieszka Wolska, prof. nadzw. CIOP-PIB 2016 r. Opracowano w ramach realizacji III etapu programu wieloletniego Poprawa bezpieczeństwa i warunków pracy (2014-2016) finansowanego z zakresie

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Jeden z narządów zmysłów. Umożliwia rozpoznawanie kształtów, barw i ruchów. Odczytuje moc i kąt padania światła. Bardziej wyspecjalizowanie oczy

Jeden z narządów zmysłów. Umożliwia rozpoznawanie kształtów, barw i ruchów. Odczytuje moc i kąt padania światła. Bardziej wyspecjalizowanie oczy I CO MU ZAGRAŻA Jeden z narządów zmysłów. Umożliwia rozpoznawanie kształtów, barw i ruchów. Odczytuje moc i kąt padania światła. Bardziej wyspecjalizowanie oczy pozwalają np. widzieć w ciemności. Zewnętrzne

Bardziej szczegółowo

Oświetlenie LED nie wszystko jasne

Oświetlenie LED nie wszystko jasne Oświetlenie LED nie wszystko jasne ("Energia Elektryczna" - 5/2017) W projektowaniu oświetlenia drogowego coraz większą rolę odgrywają zarówno aspekty ekonomiczne, związane z poprawą efektywności energetycznej

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Technika świetlna Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Wykonał: Borek Łukasz Tablica rejestracyjna tablica zawierająca unikatowy numer (kombinację liter i cyfr),

Bardziej szczegółowo