Elektronika (konspekt)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektronika (konspekt)"

Transkrypt

1 Elektronika (konspekt) Franciszek Gołek Wykład 05 i 06 Obwody rezonansowe, transformatory, oscyloskop, układy diodowe.

2 Dobroć Q (Q-factor, quality factor) jest miarą ostrości krzywych rezonansowych. Dla pasmowego filtra z obwodem rezonansowym (jak na rysunku obok) jest zdefiniowany jako: Q = ω rez / ω 3dB = f rez / f 3dB. Q można wyrazić za pomocą wartości elementów filtra RLC. Np. gdy U WY = U R to k u = U R /U RLC i k umax = 1 k u /k umax = Zatem Q = ω rez L/R. Dodajmy, że w elektronice poza dobrocią układów rezonansowych mówi się o dobroci innych układów czy elementów. Przykładowo dobroć cewki zdefiniowana jest jako stosunek: ωl/r (gdzie L-indukcyjność cewki, R oporność cewki). Traktując kondensator jako równoległe połączenie idealnej pojemności i rezystancji R (reprezentującej straty dielektryczne) definiujemy dobroć kondensatora jako stosunek prądów I C /I R = (U/X C )/(U/R)=R/X C = ωcr. Wynika z tego, że układy o dużej dobroci to takie, które marnotrawią mało energii na straty w rezystancjach przewodów cewki i rezystora R.

3

4 Transformator Transformator to dwa, magnetycznie ze sobą sprzężone, uzwojenia pozwalające na zmianę wartości napięcia (i prądu) zmiennego przy niezmienionej (w przybliżeniu) mocy. Działanie transformatora opiera się na prawie Faradaya: gdzie z liczba zwoi,φ strumień magnetyczny w rdzeniu transformatora e siła elektromotoryczna. Widać, że do wytworzenia siły elektromotorycznej potrzebny jest zmienny strumień magnetyczny (niezerowa pochodna po czasie). Zatem transformator nie jest urządzeniem na prąd stały! Transformator został odkryty przez Faradaya w 1831r.,a następnie przez Williama Stanleya 1885 r. i zastosowany w instalacji oświetleniowej w Ameryce (w Massachusetts transformator podnosił napięcie z 500V na 3000V na początku linii o długości 1219 m a na jej końcu inny transformator obniżał je z powrotem do 500V).

5 Transformator Transformator oprócz dwóch (co najmniej) uzwojeń zwykle zawiera rdzeń prowadzący strumień magnetyczny. Rdzeń nie może być jednolitym przewodnikiem gdyż w czasie pracy pojawiałyby się duże prądy wirowe przynoszące duże straty energii. W praktyce, aby zapobiec znacznym stratom mocy rdzenie zbudowane są z wielu ściśniętych ale odizolowanych elektrycznie od ciebie blach (warstw materiału o dużym µ) lub materiałów o dużej rezystywności (oporze właściwym). Stratę mocy związaną z prądami wirowymi i przypadającą na jednostkę objętości można obliczyć ze wzoru: w którym: B m amplituda indukcji magnetycznej, d grubość blachy; f częstotliwość; ρ rezystywność materiału ferromagnetycznego. Widać, że straty mocy od prądów wirowych są proporcjonalne do kwadratu iloczynu indukcji magnetycznej, częstotliwości i grubości blachy oraz odwrotnie proporcjonalne do rezystywności. Przy zadanej częstotliwości i indukcji magnetycznej obniżenie strat od prądów wirowych można zatem uzyskać przez zastosowanie bardzo cienkich blach izolowanych papierem lub lakierem, albo stosując materiał ferromagnetycznego o dużej rezystywności.

6 Transformator Ważną przy wielu zastosowaniach transformatorów jest możliwość tzw. dopasowywania impedancji źródła i obciążenia. Bezpośrednie połączenie obciążenia do zacisków źródła napięcia oznacza, że maksymalny przekaz mocy ma miejsce przy impedancji obciążenia równej impedancji źródła. Gdy jednak zastosujemy trafo o przekładni na przykład obniżającej napięcie P- krotnie P = N 2 /N 1 < 1 to napięcie na zaciskach uzwojenia wtórnego (tam gdzie podłączamy odbiornik mocy) będzie P-krotnie mniejsze a prąd P-krotnie większy przy maksymalnym przekazie mocy. Oznacza to, że impedancja odbiornika dopasowywana do impedancji wewnętrznej źródła powinna spełniać relację Z odbiornika /Z źródła = P 2. Dzięki trafo impedancja odbiornika nie musi być równa impedancji źródła!

7 Transformator Dzięki N. Tesli już pod koniec XIX wieku zaczęto stosować transformatory w elektrotechnice i energetyce. Tesla pod koniec XIX wieku wygrał spór z Edisonem o to czy w sieci energetycznej powinien być prąd stały czy zmienny. Pamiętajmy, że ekonomiczne przesyłanie mocy U I na znaczne odległości ma miejsce wtedy gdy U jest duże a I małe (małe straty bo małe grzanie kabli). Napięcie jest za pomocą transformatorów podwyższane w miejscu wytworzenia energii elektrycznej a na końcach wysokonapięciowych linii przesyłowych u odbiorców energii napięcie jest obniżane do odpowiednich bardziej bezpiecznych wartości. Tesla wymyślił wirujące pola magnetyczne dla silników dużej mocy i stworzył podstawy trójfazowej energetyki.

8 Transformatory w elektronice spotykamy głównie jako transformatory sieciowe w zasilaczach. Transformator pozwala na odizolowanie galwaniczne dwóch obwodów pozostawiając bardzo dobrą wymianę energii między nimi. Dla bezpieczeństwa często na stanowisku pracy stosowane są tzw. transformatory separujące. W lutownicach transformatory obniżające napięcie (np. do 24 V) obniżają ryzyko uszkodzenia delikatnych układów scalonych podczas montażu. Stosunek ilości zwoi uzwojenia wtórnego i pierwotnego, zwany przekładnią (przełożeniem) określony jest przez: N 2 /N 1 =U 2 / U 1 =I 1 /I 2 (U 1 I 1 U 2 I 2 ). Przekrój rdzenia jest wprost proporcjonalny do pierwiastka z przekazywanej mocy S = c P [cm 2 ] (gdzie: P przekazywana moc w watach, c 1,2; ). Wadami są: histereza rdzenia, straty energii w rdzeniu (prądy wirowe), tzw. nasycenie rdzenia i możliwość przebicia między zwojami. Parametry: przełożenie, moc, zakres częstotliwości, waga i rozmiary. Autotransformator pozwala regulować wartość napięcia zmiennego przez zastosowanie jednego wspólnego uzwojenia z przemieszczalnym odczepem. Autotransformatory stosowane są do płynnej regulacji napięcia wtórnego. Autotransformator nie realizuje izolacji galwanicznej!

9 Oscyloskopy. Rozpoczynając omawianie obwodów z prądami zmiennymi wskazanym jest poznać zasadę działania oscyloskopu przyrządu do wizualizacji napięć elektrycznych. Oscyloskopy to najbardziej rozpowszechnione przyrządy przeznaczone do obrazowania sygnałów elektrycznych. Wyróżnia się oscyloskopy analogowe oraz cyfrowe (są też oscyloskopy analogowo-cyfrowe i analizatory sygnałowe). Oscyloskopy służą do obserwacji i rejestracji sygnałów elektrycznych, nawet kilku jednocześnie. Wykorzystywany jest do badania przebiegów rozmaitych wielkości fizycznych (po ich zamianie na sygnał elektryczny) w wielu laboratoriach badawczych. Z powodu swych zalet są często stosowane do uruchomiania i diagnozowania nawet bardzo skomplikowanych układów elektrycznych i elektronicznych. W oscyloskopie wyróżniamy cztery podstawowe systemy: system wyświetlania, odchylania w pionie, podstawa czasu i system synchronizacji. Zakończeniem systemu wyświetlania jest ekran lub lampa oscyloskopowa, na której ekranie wyświetlany jest obraz badanych wielkości fizycznych. Schemat blokowy prostego (jednokanałowego) oscyloskopu analogowego wraz ze szkicem lampy oscyloskopowej zamieszczono na rysunku poniżej (następna strona). Dla uzyskania świecenia luminoforu w lampie oscyloskopowej konieczne jest wytworzenie wiązki elektronowej, w której energie kinetyczne elektronów wynoszą kilka do 20 kev. Oznacza to, że w oscyloskopach starszego typu (z lampą oscyloskopową) wytwarzane są napięcia do około 20 kv! Najważniejsze parametry: Rozmiary ekranu, Pasmo częstotliwości, Liczba kanałów, Czas narastania, Rozdzielczość, Czułość, Maksymalne napięcie wejściowe. W oscyloskopach cyfrowych głębokość pamięci i szybkość próbkowania,

10 Analogowy oscyloskop 2-kanałowy. Badany sygnał jest po wzmocnieniu kierowany bezpośrednio do odchylania wiązki elektronowej przemieszczającej się po luminoforze ekranu co powoduje kreślenie świecącej linii obrazującej przebieg sygnału. Mamy tu bezpośrednie obrazowanie sygnału. Cyfrowy oscyloskop 2-kanałowy. Oscyloskop cyfrowy próbkuje sygnał elektryczny, dokonuje konwersji wartości analogowych na cyfrowe przy pomocy przetwornika analogowo-cyfrowego ADC, a następnie zapamiętane cyfrowe wartości wykorzystuje do obrazowania zbadanego sygnału. W oscyloskopach cyfrowych stosowane są ekrany płaskie np. ciekłokrystalicznym LCD.

11 Uproszczone przedstawienie napić doprowadzonych do płytek odchylających lampy oscyloskopowej (Y w pionie i X w poziomie) oraz uzyskany obraz.

12 Uproszczony schemat oscyloskopu

13 Badany sygnał poprzez tłumik o regulowanym tłumieniu dociera do wzmacniacza odchylania pionowego Y, na wyjściu którego uzyskuje się wzmocniony (i ewentualnie uzupełniony o kompensacje składowej stałej) przebieg napięcia sterujący odchyleniem wiązki elektronowej poprzez płytki Y. Dla dokonania pomiaru wielkości napięcia należy pamiętać, że opis przełącznika skokowego (np. 1V/działkę, 10mV/działkę czyli 1V/cm, 10mV/cm itd.) jest aktualny tylko przy skręceniu regulacji ciągłej w pozycję kalibr tj. pozycję kalibracji. Na powierzchni ekranu oscyloskopu znajduje się podziałka w postaci kratek i kresek. Tu jedna działka = 1 cm a nie 2 mm! Opisy przełączników przy gniazdach wejściowych: AC oznacza, że wejście przyjmuje tylko sygnał zmienny (sprzężenie pojemnościowe), DC oznacza, że wejście przyjmuje również składową stałą, GND oznacza, że sygnał jest odłączony a wejście jest zwarte do masy. Aby obraz na ekranie lampy był stabilny tj. aby wiązka elektronowa periodycznie powtarzała ten sam rysunek konieczna jest synchronizacji odchylania poziomego (podstawy czasu) z badanym sygnałem.

14 Zatem część sygnału badanego kierowana jest do układu wyzwalania, który steruje generatorem podstawy czasu i modulacją jaskrawości (tj. intensywności wiązki elektronowej docierającej do luminoforu). Pokrętłem poziom (ang. level lub trigger level) wybieramy wartość napięcia sygnału, przy którym następuje wyzwalanie tj. rozpoczynanie piło-zębnych impulsów dla płytek odchylania poziomego i impulsów prostokątnych podawanych na cylinder Wehnelta (elektroda z otworem otaczająca katodę) dla wypuszczania wiązki elektronowej. W przypadku oscyloskopu wielokanałowego należy odpowiednim przełącznikiem wybrać kanał, z którego pobierany jest sygnał synchronizujący (należy wybrać sygnał najmocniejszy). W przypadku gdy mają być oglądane sygnały bardzo słabe na wszystkich kanałach dobrą synchronizację uzyskamy gdy odpowiedni sygnał podamy na wejście wyzwalania zewnętrznego. Wejście wyzwalania zewnętrznego jest przydatne w badaniach układów cyfrowych i przy obserwacji nieperiodycznych sygnałów.

15 Podstawa czasu może być wyzwalana narastającym zboczem (znak +) lub opadającym zboczem sygnału (znak - ). W śród rodzajów wyzwalania można wymienić: a) normalne, b) automatyczne, c) sygnałem telewizyjnym, d) jednorazowe. Szybkość ruchu plamki w kierunku osi X można zmieniać w szerokim zakresie. Należy pamiętać, że opis przełącznika skokowego (np. 1s/cm czy 10ns/cm itd.) jest obowiązujący tylko przy ustawieniu pokrętła regulacji ciągłej w pozycję kalibr. W oscyloskopach wielokanałowych (zwykle dwu-kanałowych lub czterokanałowych) zastosowane są przełączniki elektroniczne przełączające sygnały z kilu wzmacniaczy wejściowych na jeden wspólny tor sterujący lampą oscyloskopową. Przełączniki te mogą mieć dwa rodzaje pracy: a) praca przemienna (alternating) przełączenie odbywa się podczas ruchu powrotnego plamki; b) praca siekana (chopped) przełączenie odbywa się wielokrotnie podczas każdego kreślenia plamką od lewego do prawego brzegu ekranu. Dla ochrony przed uszkodzeniami należy unikać podawania napięć większych niż kilkadziesiąt V na wejścia oscyloskopu a kabel sieciowy włączać tylko do gniazda z dobrym (tj. sprawnym) uziemieniem.

16 Brak obrazu badanego przebiegu lub plamki na ekranie oscyloskopu może mieć następujące przyczyny: a) pokrętłem przesuwu X lub Y przesunięto obraz poza obszar ekranu; b) przy stałonapięciowym sprzężeniu podano na wejście Y (lub X) sygnał o zbyt dużej wartości składowej stałej; c) podstawa czasu nie jest wyzwalana; d) pokrętło jaskrawości skręcono do minimum. W nowocześniejszych oscyloskopach cyfrowych instalowane są liczne udogodnienia np. a) na ekranie pojawiają się napisy informujące o aktualnych zakresach podstawy czasu, czułości itp.; b) kursory (zwykle dwie pionowe i dwie poziome linie) ułatwiają wyznaczenie czasu trwania wybranego fragmentu badanego przebiegu, jego częstotliwości, fazy oraz zmiany napięcia; c) stosowane są tzw. ekrany dotykowe, u których wybór funkcji oscyloskopu dokonuje się przez dotyk palcem odpowiednio opisanego miejsca na ekranie.

17 Oscyloskop cyfrowy Dzięki szybkim przetwornikom analogowo-cyfrowym budowane są oscyloskopy cyfrowe o częstotliwościach pobierania próbek ponad 1GHz i paśmie przenoszenia ponad 10 GHz. Działanie takich oscyloskopów polega na pobraniu n (np ) próbek i zapisaniu ich w pamięci. Pracę układu kontroluje układ mikroprocesorowy pozwalający na wielostronną analizę badanych sygnałów. Oscyloskopy cyfrowe budowane są również jako karty komputerowe a także jako kieszonkowe (wielkości kalkulatora z ekranem ciekłokrystalicznym) do celów diagnostycznych w warunkach terenowych. Często oscyloskopy konstruowane są jako oscyloskopy analogowo-cyfrowe. Zamiast lampy oscyloskopowej mogą być stosowane kineskopy monochromatyczne lub kolorowe. W oscyloskopach tych dzięki cyfrowym podstawom czasu (zliczanie impulsów zegara kwarcowego) możliwe są bardzo precyzyjne pomiary relacji czasowych badanych sygnałów. Precyzja pomiaru wielkości napięć zależy od długości słowa przetwornika A/D, które często są 8-bitowe i dające dokładność 1/2 8 tj. 1/256 zakresu.

18 W oscyloskopach cyfrowych oprócz obserwacji sygnału na bieżąco można oglądać sygnał zamrożony w pamięci nieprzetworzony lub przetworzony układem mikroprocesorowym w dowolnie pożądany sposób (wygładzony, uśredniony z wielu sekwencji, w postaci diagramu zawartości harmonicznych, zróżniczkowany itd.). W oscyloskopie cyfrowym zbieranie danych może zachodzić niezależnie od chwili wyzwalania i przebieg może być zapamiętany w dowolnej (regulowanej) relacji czasowej do impulsu wyzwalania. Zwykle tzw. rekord rejestracji (tj. n zamrożonych w pamięci próbek) jest wielokrotnie dłuższy od rekordu obrazowania na ekranie. Pozwala to swobodnie obrazować dowolne fragmenty i szczegóły raz zarejestrowanego przebiegu. Oscyloskopy cyfrowe dysponują wieloma funkcjami, których brak w oscyloskopach analogowych. Np. czuwanie (baby-sitting) oscyloskopu tak długo, jak długo nie pojawi się impuls wyzwalający, który spowoduje zamrożenie w pamięci tylko interesującej części ciągle próbkowanego sygnału z wyprzedzeniem czasowym takim jakie zostało z góry ustalone. Należy zaznaczyć, iż wyprzedzenia czasowe ograniczone jest głębokością pamięci natomiast opóźnienie czasowe może być dowolne.

19 Elementy półprzewodnikowe Początkowo podstawowym materiałem w technologii półprzewodnikowej był german między innymi ze względu na niską temperaturę topnienia (990 C). Szybko jednak okazało się, że na podłożu krzemowym (T. topnienia krzemu: 1410 C) można uformować stabilny tlenek (SiO 2 ) a na germanie nie. Ponadto napięcie przebicia dla tlenku krzemy jest wyższe niż dla tlenku germanu. Poczynając od lat 1960-tych krzem dominuje w technologii elementów elektronicznych. Warto porównać przewodności metalu np. miedzi: S/cm; izolatora np. szkła: S/cm oraz półprzewodnika np. krzemu: 10-8 do 10-1 S/cm. Atomy krzemu i germanu tworzą (poprzez hybrydyzację SP3) sieci krystaliczne typu diamentu.

20 W metalu obecność dużej ilości elektronów w paśmie przewodnictwa (czyli w energetycznym paśmie elektronów prawie swobodnych) powoduje, że mogą one stanowić znaczny prąd pod wpływem znikomego pola elektrycznego. Te elektrony będąc swobodnymi mogą być przyspieszane polem elektrycznym. W półprzewodnikach należy uwzględnić wiązania kowalencyjne, które ograniczają przemieszczanie się elektronów, dopiero energia rzędu 1 ev w postaci kwantu światła lub termicznych wibracji atomów może oswobodzić elektron (przenieść go z pasma walencyjnego do pasma przewodnictwa). Przykładowo w temperaturze pokojowej w nie domieszkowanym krzemie znajduje się (w termicznej równowadze) n e = elektronów/m 3 i tyle samo dziur. Okazuje się, że prąd mogą stanowić (być przyspieszane) oprócz elektronów w paśmie przewodnictwa również dziury po elektronach w paśmie walencyjnym. Dzieje się tak dlatego, że pole elektryczne wpływa na to, który elektron z otoczenia dziury ma największą szansę do niej przeskoczyć. Przeskok elektronu walencyjnego do dziury oznacza przemieszczenie się dziury, której ładunek elektryczny jest dodatni - jak wiemy dziura to brak elektronu neutralizującego. Ponieważ ilość elektronów i dziur zależy od temperatury toteż wiele własności półprzewodników zależy od temperatury. W praktyce stosowane są półprzewodniki domieszkowane w taki sposób aby mieć albo nadmiar dziur (są to półprzewodniki tupu p) albo nadmiar elektronów (półprzewodniki typu n). Domieszki dające typ n półprzewodnika nazywane są donorami (pierwiastki 5-wartościowe) gdyż dodają elektrony do pasma przewodnictwa, natomiast domieszki dające typ p nazywane są akceptorami (pierwiastki 3-wartościowe) gdyż pobierają elektrony z pasma walencyjnego generując dziury. Choć oddzielny kawałek półprzewodnika ma mało interesujące własności i zastosowania to już odpowiednio dobrze połączone dwie warstwy półprzewodnika jedna typu p a druga typu n dają coś co jest szeroko stosowane w układach elektronicznych złącze pn. Najprostrzym i szeroko stosowanym elementem zawierającym takie złącze jest dioda prostownicza. Historycznie to to roku 1874 niemiecki fizyk Ferdynand Braun odkrył, że w pewnych warunkach obwody z kryształem nie spełniają prawa Ohma, mogą przewodzić tylko w jednym kierunku efekt prostowania.

21 Diody i złącza p-n. Prostym i często spotykanym półprzewodnikowym a przy tym nieliniowym (nie omowym) elementem jest dioda czyli pojedyncze złącze p-n. W równowadze złącze p-n zawiera dyfuzyjną barierę potencjału a znikomy prąd pokonywania bariery przez nośniki większościowe jest równoważony znikomym prądem utworzonym przez nośniki mniejszościowe (nośniki mniejszościowe tworzą prąd zgodny z polem elektrycznym w barierze). Poziom Fermiego (tak jak potencjał chemiczny) jest wyrównany w całej objętości układu p-n dopóki nie przyłożymy zewnętrznego napięcia wymuszającego prąd i pewne pochylenia poziomu Fermiego. Zależność prądu w diodzie od napięcia przyłożonego na zaciski diody (wymuszającego pochylenie poziomu Fermiego, zmianę wysokości bariery i zmianę szerokości obszaru przejściowego) ma przybliżaną postać: gdzie: m parametr korekcyjny (1 do 2), U T = k B T/q = V Linia przerywana ilustruje złącze omowe (kontakt omowy)

22 Złącza p-n. Jest to prawie bezdefektowe połączenie dwóch półprzewodników z domieszkami (czyli półprzewodników niesamoistnych) o dwu różnych typach przewodnictwa elektrycznego p i n. Półprzewodnik niedomieszkowany (samoistny) kiepsko przewodzi prąd elektryczny w temperaturze pokojowej. Złe przewodnictwo wynika z faktu, że w takich materiałach elektrony walencyjne (najsłabiej związane) są unieruchomione wiązaniami kowalencyjnymi a minimalna porcja energii konieczna do uczynienia jednego elektronu swobodnym wynosi około 1eV. Taka wartość energii określana jest jako przerwa energetyczna między pasmem walencyjnym (przedziałem na skali energii potencjalnej zajmowanym przez elektrony w wiązaniach międzyatomowych) a pasmem przewodnictwa (przedziałem na skali energii potencjalnej zajmowanym przez elektrony oswobodzone i mogące przemieszczać się po objętości materiału przewodzić prąd elektryczny). Przypomnijmy, że energia średnia drgań termicznych w temperaturze pokojowej 300K wynosi zaledwie E 300K = stała Boltzmana T = k 300K=0,026eV i jest zbyt mała aby oswobadzać liczącą się ilość elektronów w jednostce czasu. Domieszkowanie półprzewodnika silnie poprawia jego przewodnictwo elektryczne. Przykładowo domieszkując 4-wartościowy krzem atomem pięciowrtościowym (donorem) tworzymy sytuację, w której cztery elektrony domieszki biorą udział w wiązaniach kowalencyjnych a piąty jako słabo związany (około 0,1eV) jest przez drgania termiczne oswobodzony ( wrzucony do pasma przewodnictwa). Półprzewodnik, który zawiera znaczną ilość donorów nazywa się półprzewodnikiem typu n, jego poziom Fermiego umiejscowiony jest blisko pasma przewodnictwa. Poziom Fermiego to taki poziom energetyczny, dla którego prawdopodobieństwo obsadzenia przez elektron wynosi ½. Podobną poprawę przewodnictwa uzyskamy, gdy zamiast atomu krzemu wstawimy atom trójwartościowy (akceptor). Powstanie wtedy jedno wolne miejsce w wiązaniach kowalencyjnych dziura, która jako puste miejsce po elektronie w paśmie walencyjnym może się przemieszczać. Półprzewodnik, który zawiera znaczną ilość akceptorów nazywa się półprzewodnikiem typu p, jego poziom Fermiego umiejscowiony jest blisko pasma walencyjnego. Zauważmy, że donor po utracie piątego elektronu jest niemobilnym jonem dodatnim a akceptor po przyłączeniu czwartego elektronu i wypuszczeniu dziury jest niemobilnym jonem ujemnym. Wynalazcą fotodetektora i pierwszego użytecznego złącza p-n w 1940r. był Russel Shoemaker Ohl.

23 Złącza p-n Podobnie jak w połączonych naczyniach z wodą wyrównuje się poziom lustra wody tak w połączonych galwanicznie materiałach zawierających mobilne nośniki ładunku (elektrony i dziury) następuje wyrównanie poziomu Fermiego E F. Przemieszczenie ładunków pociąga za sobą wytworzenie skoku potencjału elektrycznego w pewnym wąskim obszarze samego złącza pn. W tym obszarze poziom Fermiego jest oddalony od pasm dozwolonych i mamy tu niemobilne jony i brak mobilnych nośników ładunku, a zatem obszar złego przewodnictwa elektrycznego! Sytuację można zmieniać przez przyłożenie zewnętrznej siły elektromotorycznej, która wymusi pochylenie poziomu Fermiego, a przez to zmieni szerokość obszaru złego przewodzenia.

24 Diody Diody działają jak jednokierunkowe zawory zezwalające na przepływ prądu tylko w jednym kierunku (od anody do katody). Diody krzemowe Napięcie otwarcia (początek dobrego przewodzenia) diody krzemowej w temperaturze pokojowej wynosi około 0,65 V (diody mocy mają napięcie progowe około 1 V). Ze względu na małą szybkość przełączania głównym obszarem zastosowania diod krzemowych są prostowniki w zasilaczach urządzeń elektronicznych. Do prostowania (przewodzenia tylko w jednym kierunku) dużych napięć stosowane są diody wysokonapięciowe, które w istocie stanowią szeregowe połączenie określonej liczby diod (złączy pn). W jednej obudowie. Napięcie otwarcia takiej kaskady diod jest wielokrotnie większe od 0,65 V (tyle razy większe od 0,65 V ile diod znajduje się w kaskadzie). Ponieważ napięcie otwarcia diody zależy od jej temperatury, diody mogą być stosowane do pomiaru temperatury. Dla diod krzemowych V = -2(mV/K) T(K) co sprawia, że diody te stosowane są jako termometry w laboratoriach kriogenicznych pracujące w zakresie temperatur 1,8 400 K. Diody germanowe nie wyszły z użycia ze względu na niski spadek napięcia 0,3 V przy otwarciu (tj. przy polaryzacji w kierunku przewodzenia).

25 Dioda ogólnego zastosowania i dioda prostownicza powinny mieć duże graniczne napięcie zaporowe (wsteczne). Diody Schottky ego (złącze metal-półprzewodnik) wyróżnia mały czas przełączania, rzędu 100 ps. Napięcie otwarcia około 0,3 V. Diody Zenera (stabilistor), polaryzowane zaporowo, stosowane są do stabilizowania napięcia i polaryzowane zaporowo. Napięcia stabilizacji mogą wynosić od 2 do 200 V. Napięcie otwarcia 0,6V. Dioda pojemnościowa (warikap, waraktor) wykazuje znaczną zmianę pojemności złącza. Pojemność maleje od kilkuset pf do kilku pf ze wzrostem napięcia wstecznego. Diody świecące (LED) mając silnie domieszkowane złącza pn świecą gdy są spolaryzowane (zasilane) w kierunku przewodzenia. Z opornikiem zabezpieczającym są uniwersalnymi detektorami napięć.

26 Można jeszcze wymienić diody: Dioda zabezpieczająca jest w zasadzie diodą Zenera, która potrafi tłumić krótkotrwałe impulsy napięciowe. Są bardzo szybkie i wytrzymują wysokie prądy chwilowe. Stosowane są jako zabezpieczenia przed zakłóceniami. Dioda lawinowa jest diodą, która nie ulega zniszczeniu przy przekroczeniu zadanego napięcia wstecznego. Nadmiar napięcia jest na niej neutralizowany. Dioda lawinowa jest przydatna jako element zabezpieczający od przepięć. Dioda o krótkim czasie wyłączania (około 1 do 100 ns) jest stosowana w układach przełączających. Diody PIN mają wbudowaną dodatkową warstwę między obszarami P i N. Diody PIN są używane w układach wysokich częstotliwości. Mają małą rezystancję w kierunku przewodzenia i małą pojemność przy polaryzacji w kierunku zaporowym. Wykazują pewną bezwładność przy przełączaniu. Diody PIN lub p-i-n jako fotodiody z dodatkową wewnętrzną warstwą (intrinsic layer, P-Intrinsic-N) między obszarami P i N obok zwiększonej szybkości działania mają zwiększoną fotoczułą objętość a przez to większą wydajność. Dioda Ładunkowa jest typem diody, która podobnie jak diody PIN ma trzy warstwy ale zmiana rezystancji odbywa się gwałtownie. Stosowana jest w powielaczach częstotliwości.

27 Diody ograniczające prąd lub diody regulujące prąd, są to dwuzaciskowe wersje tranzystorów polowych (typu JFET). Diody IMPATT są diodami wielowarstwowymi dużej mocy przeznaczonymi do generowania sygnałów względnie dużej mocy w zakresie 3 do 100 ghz. Diody tunelowe (diody ESAKI ego). Są to diody o bardzo dużym domieszkowaniu obu stron P i N. Wykorzystują kwantowy efekt tunelowania rezonansowego, co w pewnym zakresie napięć (w kierunku przewodzenia) prowadzi do ujemnej oporności dynamicznej. Diody Gunn a. Składają się z trzech warstw półprzewodnika tylko jednego typu N o różnym stopniu domieszkowania. Warstwa środkowa o słabym domieszkowaniu znajduje się między dwoma silnie domieszkowanymi warstwami. W diodach Gunn a również uzyskujemy obszar napięcia o ujemnej rezystancji dynamicznej gdzie ze wzrostem napięcia maleje prąd. Diody Shockley a. Są to diody czterowarstwowe PNPN zwane dynistorami. Przewodzą po przekroczeniu pewnego znacznego napięcia otwarcia, a przestają przewodzić dopiero po znacznym jego obniżeniu, niemal do zera. Fotoogniwa są rodzajem diod o dużej powierzchni i wykorzystują zjawisko fotoelektryczne w obszarze złącza PN. Stosowane są do budowy baterii słonecznych.

28 Diody świecące LED Spolaryzowane w kierunku przewodzenia generują światło, jako wynik rekombinacji elektronów i dziur w złączu pn. Barwa zależy od materiału (podczerwień - GaAs, światło widzialne GaP). Są to np. wskaźniki, wyświetlacze, nadajniki w transoptorach. A.A. Bergh, phys. stat. Sol.(a) 201 (2004) Fotodioda. Przy braku polaryzacji może stanowić baterię słoneczną. W zaporowo spolaryzowanych fotodiodach natężenie prądu zaporowego zmienia się wraz ze zmianami oświetlenia złącza (bo zmienia się oporność złącza). Fotodiody są stosowane do detekcji światła (bywają szybsze od fotopowielaczy).

29 Dioda Laserowa (LD). Diody z akcją laserową zapewniają widmo o wąskim przedziale długości fali. Osiągane są wydajności 50% i moce około 10 2 W (fali ciągłej). Częstotliwość modulacji sygnału poprzez modulację prądu sięga wartości do kilku GHz. Olbrzymie zastosowanie (telekomunikacja-układy światłowodowe, medycyna, CD-ROM, DVD, HD, TV, drukarki itp.) A.A. Bergh, phys. stat. Sol. (a) 201 (2004) 2740.

30 Układy do odczytu dysków CD CD-ROM i DVD zapewniają dużą odporność na uszkodzenia powierzchni dysków. Czytająca wiązka światła jest ogniskowana około1mm pod powierzchnią dysku do plamki o średnicy porównywalnej z długością fali używanego światła. Na samej powierzchni wiązka jest jeszcze szeroka i obejmuje okrąg o średnicy około 0,8mm. Popularne prędkości napędów CD: od 1x0,15 MB/s do 52x0,15MB/s = 7,62MB/s, oraz DVD: od 1x1,32MB/s do 52x1,32MB/s = 68,55MB/s. (www.cdrinfo.pl/cdr/artykuly/plyty/docs/plyty.php3). Informacja na CD jest magazynowana na spiralnej ścieżce idącej od środka (na średnicy około 50 mm z 4 mm rozbiegiem) dysku do jego brzegu. Odległość między ścieżkami wynosi 1,6 µm. Wgłębienie na ścieżce (o wymiarach 0,5 µm szerokości i około 100 nm głębokości) oznaczają cyfrowe 1 a brak wgłębienia 0. Powierzchnia niosąca informację jest pokryta aluminium dla uzyskania dobrego odbicia promienia światła a ta warstwą ochronną i etykietą. Wiązka odbitego światła jest rozszerzana na strukturze wgłębienie/wzniesienie i to poszerzanie wiązki jest czytane przez układ optyczny.

31 Rysunek przedstawia przykładowy (są też inne) układ do odczytu dysków CD. Światło z lasera półprzewodnikowego biegnie przez siatkę S, polaryzator, ćwierćfalówkę, odbija się od warstwy kodu w dysku i ponownie biegnie przez ćwiećfalówkę. Dwukrotne przejście przez ćwierćfalówkę zmienia polaryzację światła o 90º, dzięki czemu zostaje ono skierowane do detektora w płytce polaryzująco-rozdzielającej. Detektor rejestruje jeden z dwóch poziomów 0, 1. Siatka S służy do uzyskania dwóch dodatkowych, bocznych wiązek. Dzięki nim detektor i układ ujemnego sprzężenia zwrotnego zapewniają utrzymanie się wiązki centralnej na czytanej ścieżce (tj. mamy ciągłą korektę położenia punktu padania wiązki). Centralna część detektora podzielona na cztery sektory oraz lekko astygmatyczna soczewka skupiająca pozwalają innemu układowi ujemnego sprzężenia zwrotnego korygować ogniskowanie wiązki światła na właściwej głębokości.

32 Należy pamiętać, że złącza spolaryzowane w kierunku przewodzenia wykazują małą oporność i zazwyczaj musimy dbać o ograniczenie prądu aby uniknąć zniszczenia elementu zawierającego złącze. Diody np. typu LED polaryzujemy poprzez szeregowo włączony rezystor ograniczający prąd i ratujący diodę przed zniszczeniem! Przy rozwiązywaniu układów zawierających element nieliniowy wygodna i często stosowana jest metoda graficzna. Poniższy rys. ilustruje tę metodę. Napięcie na diodzie w tym układzie przy prądzie I, wynosi: U D =E-IR. To równanie opisuje tzw. prostą obciążenia na płaszczyźnie U D I D. Punkt przecięcia tej prostej z charakterystyką elementu nieliniowego, diody, jest tzw. punktem pracy i pozwala wyznaczyć prąd i napięcie elementu nieliniowego. Punkt pracy diody: Każdy punkt na prostej to para wartości: I - natężenie prądu przez R, U - wartość napięcia pozostawianego dla diody, o którą należy pomniejszyć E aby E-U=IR

33

34 Powielacz napięcia

35 Układy z diodami prostowniczymi Układy clamp. W układach clamp kondensator C efektywnie ładuje się poprzez diodę i nieefektywnie przeładowuje przez impedancję R o przy: R o C >>T. Zależnie od podłączenia diody U out U in ± amplituda U in.

36 Układy z diodami prostowniczymi

37 Zasilacz napięcia stałego Prostownik Zasilanie w postaci zasilacza sieciowego lub baterii (akumulatora) jest podzespołem, który znajduje się w niemal każdym urządzeniu elektrycznym i elektronicznym ożywia go.

38 Zasilacze napięcia stałego Komercyjnie dostępne i stosowane w laboratoriach zasilacze mogą być dwojakiego rodzaju. 1) Mogą zawierać masywny transformator sieciowy, zwykle obniżający lub czasem podwyższający napięcie, które następnie jest prostowane i filtrowane. 2) Mogą nie zawierać transformatora sieciowego a prostownik prostuje napięcie sieciowe dla uzyskania napięcia stałego, które następnie jest szatkowane z dużą częstotliwością albo zasila generator (10 khz 1 MHz) w tzw. przetwornicy. Napięcie o tak wysokiej częstotliwości może być zmieniane przez małe transformatory a następnie prostowane i bardziej skutecznie filtrowane. Ważnym parametrem zasilaczy, poza zakresami wartości prądu i napięcia, jest wielkość fluktuacji stabilizowanej wielkości. Wielkość fluktuacji (ripple) jest określana w procentach liczonych od wartości stabilizowanej. Zasilacze są wyposażone w dwie regulacje: a) regulację napięcia i b) regulację natężenia prądu. Przy jakimkolwiek ustawieniu tych regulacji realizowana i stabilizowana jest ta, która osiągana jest dla niższej mocy (czyli osiągana jest wcześniej przy wzroście obu od zera). Zatem od użytkownika zależ co (napięcie czy prąd) ma być stabilizowane. Jeżeli wybieramy stabilizację określonego prądu to regulator napięcia zwykle ustawiamy na wartość maksymalną. Jeżeli stabilizowane ma być wybrane napięcie to regulację prądu ustawiamy na wartość maksymalną. Takie postępowanie zapewnia, że nawet przy znacznych zmianach obciążenia będzie stabilizowana jedna i ta sama wielkość. Unikamy niepożądanego przełączania rodzaju stabilizacji.

39 Stabilizatory napięcia. Produkowane są liczna wersje stabilizatorów (z 3 lub 4 końcówkami na pojedyncze napięcie oraz złożone, na napięcia bipolarne). Rys. a) przedstawia trójzaciskowy układ LM317. Układ ten daje natężenia prądu wyjściowego 0-1,5A, działając tak aby między zaciskami Wy i Reg utrzymywało się napięcie 1.25V (spadek napięcia na Rm). Zwykle na Rm dobieramy małą oporność około 200Ω natomiast R dobieramy tak aby uzyskać stabilizowane napięcie Uwy = (1+ R/Rm) 1,25V. Prąd wpływający do zacisku Reg jest mały i do pominięcia! Rys. b) pokazuje najprostszy sposób powiększenia zakresu prądów wyjściowych przez zastosowanie zewnętrznego tranzystora dużej mocy. Gdy spadek napięcia na R BE przekroczy 0,6V tranzystor ten się otwiera i przepuszcza dodatkowy prąd do wyjścia.

40 Elektronika lista zadań Narysuj przebiegi napięć wyjściowych dla podanych układów z diodami Krzemowymi (otwierającymi się przy napięciu +0,7V) gdy na wejścia układów podawane są napięcia sinusoidalne o amplitudzie 5V i małej częstotliwości. 2. Zaproponuj wartości R1, C1, R2 i C2 tak aby poniższy układ był filtrem pasmowym na zakres częstotliwości 1kHz 10kHz. 3 Dobierz kondensator C tak aby pulsacja napięcia na odbiorniku R=1k Ω wynosiła nie więcej niż 5%.

Urządzenia półprzewodnikowe

Urządzenia półprzewodnikowe Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor

Bardziej szczegółowo

Elektrotechnika i elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl. Wykład 9. Diody

Elektrotechnika i elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl. Wykład 9. Diody Elektrotechnika i elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 9. Diody W tym wykładzie omówimy złącza pn i diody. Pominiemy zgłębianie ilościowe fizyki

Bardziej szczegółowo

Miłosz Andrzejewski IE

Miłosz Andrzejewski IE Miłosz Andrzejewski IE Diody Diody przepuszczają prąd tylko w jednym kierunku; służą do prostowania. W tym celu używa się ich w: prostownikach wchodzących w skład zasilaczy. Ogólnie rozpowszechnione są

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw

Bardziej szczegółowo

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Elementy optoelektroniczne. Przygotował: Witold Skowroński

Elementy optoelektroniczne. Przygotował: Witold Skowroński Elementy optoelektroniczne Przygotował: Witold Skowroński Plan prezentacji Wstęp Diody świecące LED, Wyświetlacze LED Fotodiody Fotorezystory Fototranzystory Transoptory Dioda LED Dioda LED z elektrycznego

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

Prostowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY

Prostowniki. 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników. Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY POLITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ ELEKTRYCZNY Prostowniki 1. Prostowniki jednofazowych 2. Prostowniki trójfazowe 3. Zastosowania prostowników ELEKTRONIKA Jakub Dawidziuk sobota, 16

Bardziej szczegółowo

Lekcja 80. Budowa oscyloskopu

Lekcja 80. Budowa oscyloskopu Lekcja 80. Budowa oscyloskopu Oscyloskop, przyrząd elektroniczny służący do badania przebiegów czasowych dla na ogół szybkozmiennych impulsów elektrycznych. Oscyloskop został wynaleziony przez Thomasa

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

1. Nadajnik światłowodowy

1. Nadajnik światłowodowy 1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE

POMIARY OSCYLOSKOPOWE Ćwiczenie 51 E. Popko POMIARY OSCYLOSKOPOWE Cel ćwiczenia: wykonanie pomiarów wielkości elektrycznych charakteryzują-cych przebiegi przemienne. Zagadnienia: prąd przemienny, składanie drgań, pomiar amplitudy,

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe

Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Instrukcja do ćwiczenia Nr 60

Instrukcja do ćwiczenia Nr 60 Instrukcja do ćwiczenia Nr 60 Temat: BADANIE PRĄDÓW ZMIENNYCH ZA POMOCĄ U ELEKTRONOWEGO I. Wstęp. Oscylograf elektronowy jest urządzeniem służącym do obserwacji przebiegu różnego rodzaju napięć oraz do

Bardziej szczegółowo

Ćwiczenie nr 28. Badanie oscyloskopu analogowego

Ćwiczenie nr 28. Badanie oscyloskopu analogowego Ćwiczenie nr 28 Badanie oscyloskopu analogowego 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania oraz nabycie umiejętności posługiwania się oscyloskopem analogowym. 2. Dane znamionowe

Bardziej szczegółowo

Własności i zastosowania diod półprzewodnikowych

Własności i zastosowania diod półprzewodnikowych Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,

Bardziej szczegółowo

OBSŁUGA OSCYLOSKOPU. I. Cel ćwiczenia: Poznanie budowy, zasady działania, obsługi oraz podstawowych zastosowań oscyloskopu.

OBSŁUGA OSCYLOSKOPU. I. Cel ćwiczenia: Poznanie budowy, zasady działania, obsługi oraz podstawowych zastosowań oscyloskopu. Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie z ćwiczenia nr Temat ćwiczenia: PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA imię i nazwisko OBSŁGA OSCYLOSKOP rok szkolny klasa grupa data wykonania

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi:

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: 1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: A. 10 V B. 5,7 V C. -5,7 V D. 2,5 V 2. Zasilacz dołączony jest do akumulatora 12 V i pobiera z niego prąd o natężeniu

Bardziej szczegółowo

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości

Bardziej szczegółowo

Diody półprzewodnikowe

Diody półprzewodnikowe Diody półprzewodnikowe prostownicze detekcyjne impulsowe... Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA INSTRUKCJA DO ĆWICZENIA Temat: Pomiary oscyloskopowe. Budowa oscyloskopu 1. Cel ćwiczenia Poznanie obsługi i zasad wykorzystania oscyloskopu do obserwacji i pomiarów amplitudy napięcia przebiegów elektrycznych.

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie

Bardziej szczegółowo

4. Diody DIODY PROSTOWNICZE. Są to diody przeznaczone do prostowania prądu przemiennego.

4. Diody DIODY PROSTOWNICZE. Są to diody przeznaczone do prostowania prądu przemiennego. 4. Diody 1 DIODY PROSTOWNICE Są to diody przeznaczone do prostowania prądu przemiennego. jawisko prostowania: przepuszczanie przez diodę prądu w jednym kierunku, wtedy gdy chwilowa polaryzacja diody jest

Bardziej szczegółowo

IV. TRANZYSTOR POLOWY

IV. TRANZYSTOR POLOWY 1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Elektrotechnika elektronika miernictwo Franciszek Gołek Wykład 7. Diody

Elektrotechnika elektronika miernictwo Franciszek Gołek  Wykład 7. Diody Elektrotechnika elektronika miernictwo Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 7. Diody Początki W 1799 roku A.G.A. Volta buduje ogniwo elektryczne (baterię) co pozwoliło

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA. W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy.

PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA. W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy. PODSTAWOWE ELEMENTY ELEKTRONICZNE DIODA PROSTOWNICZA W diodach dla prądu elektrycznego istnieje kierunek przewodzenia i kierunek zaporowy. Jeśli plus (+) zasilania jest podłączony do anody a minus (-)

Bardziej szczegółowo

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,

Bardziej szczegółowo

Elementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elementy optoelektroniczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy optoelektroniczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Półprzewodnikowe elementy optoelektroniczne Są one elementami sterowanymi natężeniem

Bardziej szczegółowo

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Ćwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE

Ćwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE Ćwiczenie - 2 DIODA - PARAMETRY, CHARAKTERYSTYKI I JEJ ZASTOSOWANIE Spis treści 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe rodzaje diod półprzewodnikowych................... 3 2.1.1 Dioda

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza

1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza Elementy półprzewodnikowe i układy scalone 1. Właściwości materiałów półprzewodnikowych 2. Półprzewodniki samoistne i domieszkowane 3. Złącze pn 4. Polaryzacja złącza ELEKTRONKA Jakub Dawidziuk sobota,

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU

Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU Spis treści Wstęp...2 1. Opis podstawowych przełączników regulacyjnych oscyloskopu...3 1.1 Przełączniki sekcji odchylania pionowego (Vertical)...3

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik

Bardziej szczegółowo

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b) Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

Głównym elementem oscyloskopu jest lampa próżniowa z ekranem pokrytym od wewnątrz warstwą luminoforu. Luminofory to substancje emitujące

Głównym elementem oscyloskopu jest lampa próżniowa z ekranem pokrytym od wewnątrz warstwą luminoforu. Luminofory to substancje emitujące Oscyloskop Używany jest przede wszystkim do pomiarów, obserwacji i analizy kształtu czasowych przebiegów okresowych lub nieokresowych napięcia i prądu, do pomiaru wartości częstotliwości, kąta fazowego

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Elementy przełącznikowe

Elementy przełącznikowe Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia

Bardziej szczegółowo

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć. Diody, tranzystory, tyrystory Materiały pomocnicze do zajęć. Złącze PN stanowi podstawę diod półprzewodnikowych. Rozpatrzmy właściwości złącza poddanego napięciu. Na poniŝszym rysunku pokazano złącze PN,

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

12.7 Sprawdzenie wiadomości 225

12.7 Sprawdzenie wiadomości 225 Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4

Bardziej szczegółowo

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego

Bardziej szczegółowo

Diody półprzewodnikowe cz II

Diody półprzewodnikowe cz II Diody półprzewodnikowe cz II pojemnościowe Zenera tunelowe PIN Schottky'ego Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 7

Instrukcja do ćwiczenia laboratoryjnego nr 7 Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Kątowa rozdzielczość matrycy fotodetektorów

Kątowa rozdzielczość matrycy fotodetektorów WYKŁAD 24 SMK ANALIZUJĄCE PRZETWORNIKI OBRAZU Na podstawie: K. Booth, S. Hill, Optoelektronika, WKŁ, Warszawa 2001 1. Zakres dynamiczny, rozdzielczość przestrzenna miara dokładności rozróżniania szczegółów

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Badanie diod półprzewodnikowych

Badanie diod półprzewodnikowych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie diod półprzewodnikowych (E 7) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

Wyjścia analogowe w sterownikach, regulatorach

Wyjścia analogowe w sterownikach, regulatorach Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa.

a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektroniczno-telekomunikacyjnej na zawody I. stopnia 1 Na rysunku przedstawiony jest schemat

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Zasada działania tranzystora bipolarnego

Zasada działania tranzystora bipolarnego Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

(57) 1. Układ samowzbudnej przetwornicy transformatorowej (12) OPIS PATENTOWY (19) PL (11) (13) B2 PL B2 H02M 3/315. fig.

(57) 1. Układ samowzbudnej przetwornicy transformatorowej (12) OPIS PATENTOWY (19) PL (11) (13) B2 PL B2 H02M 3/315. fig. RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 161056 (13) B2 (21) Numer zgłoszenia: 283989 (51) IntCl5: H02M 3/315 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 23.02.1990 (54)Układ

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4 Ćwiczenie 4 Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk statycznych układów scalonych CMOS oraz ich własności dynamicznych podczas procesu przełączania. Wiadomości podstawowe. Budowa i działanie

Bardziej szczegółowo

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Spis treści 3. Spis treści

Spis treści 3. Spis treści Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw

Bardziej szczegółowo

Badanie układów prostowniczych

Badanie układów prostowniczych Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,

Bardziej szczegółowo

PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07.

PL 217306 B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL 27.09.2010 BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL 31.07. PL 217306 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217306 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387605 (22) Data zgłoszenia: 25.03.2009 (51) Int.Cl.

Bardziej szczegółowo

Stabilizatory impulsowe

Stabilizatory impulsowe POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Temat ćwiczenia: BADANIE WZMACNIA- CZA SELEKTYWNEGO Z OBWODEM LC NIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTT TECHNIKI. 2. 3. Imię i Nazwisko 4. Data wykonania Data oddania

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.

Bardziej szczegółowo

ELEKTROTECHNIKA. Zadanie 1. Zadanie 2. Zadanie 3. Urządzenie elektryczne, którego symbol przedstawia poniższy rysunek:

ELEKTROTECHNIKA. Zadanie 1. Zadanie 2. Zadanie 3. Urządzenie elektryczne, którego symbol przedstawia poniższy rysunek: ELEKTROTECHNIKA Zadanie 1 Urządzenie elektryczne, którego symbol przedstawia poniższy rysunek: A) zwiększa moc B) zmniejsza wartość napięcia wyjściowego w stosunku do wartości napięcia wejściowego C) zmienia

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 14 Pomiar i podstawowe przyrządy pomiarowe w elektronice Oscyloskopy. Oscyloskopy to najbardziej rozpowszechnione

Bardziej szczegółowo

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL

Bardziej szczegółowo

EL08s_w03: Diody półprzewodnikowe

EL08s_w03: Diody półprzewodnikowe EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo