PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki"

Transkrypt

1 PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM Joanna Górka Wdział Nauk Ekonomicznch i Zarządzania UMK w Toruniu Kaedra Ekonomerii i Saski WSTĘP Niesacjonarne proces o średniej zero mogą bć reprezenowane przez proces ARMA ze zmiennmi paramerami. Klasa procesów auoregresjnch z losowmi paramerami (ozn. RCA bła po raz pierwsz opisana w monografii Nichollsa i Quinna (98. Przedmioem zaineresowań są modele auoregresjne rzędu pierwszego z losowm paramerem, zn. modele posaci: + ε, gdzie ε ~ NID(, σ ε. Można wróżnić dwa przpadki:. jeżeli exp( α ( σ α α ~ NID m,, gdzie α jes sacjonarnm procesem akim, że, o mam proces pu STUR (por. Lebourne, McCabe, Tremane (996, Lebourne, McCabe, Mills (996, Grager, Swanson (997, Osińska (4,. jeżeli ~ IID( p, σ, o wówczas mam do cznienia z modelem RCA( (por. Lebourne, McCabe, Tremane (996. Powsaje panie: jakie własności posiada model AR( ze zmiennm paramerem, jeżeli paramer opisan jes przez model AR(p? W lieraurze ekonomercznej ego pu modele nie bł jak doąd przedmioem badań. Praca przgoowana w ramach projeku badawczego nr -HB-5-5 finansowanego przez Komie Badań Naukowch. Ang. random coefficien auoregressive model. --

2 Celem referau jes przedsawienie procesu RCA(, p, jego własności, przkładowch realizacji oraz porównanie z innmi klasami modeli. Przedmioem badań są proces auoregresjne rzędu pierwszego ze zmiennm paramerem, prz czm paramer jes opisan przez model AR rzędu p. Proces aki można zapisać w posaci ogólnej jako: gdzie + ε ( + α + α α p p ( ~ NID( σ ε, ~ NID(, σ ε,. W szczególnm przpadku, gd ~ NID μ, σ, mam do cznienia z modelem auoregresjnm ze zmiennm paramerem rzędu pierwszego (RCA(, kór jes zaliczan do klas modeli z niejednorodną wariancją. p oraz (. MODEL RCA Niech dan będzie proces RCA(, opisan równaniami gdzie + ε (3 α + (4 ~ NID( σ ε, ~ NID(, σ ε,. Dokonując odpowiednich podsawień, równania (3 i (4 można zasąpić równaniem: j k ε + α i k ε j. (5 j i k Własności procesu auoregresjnego rzędu pierwszego opisanego równaniem (4 są nasępujące: ( E (6 σ var ( σ prz założeniu α α < (7 --

3 cov zaś procesu RCA(, s ( α σ ( s (8 E (9 σ var prz założeniu σ < ( ( ε ( σ cov s. ( Zaem proces RCA(, charakerzuje się zerową średnią, zerowmi kowariancjami oraz wariancją, kóra jes funkcją parameru α i wariancji składnika losowego. Ławo wkazać, że jeśli α < σ, o isnieje skończona wariancja procesu. Uogólniając dla modelu RCA(,p, orzmujem: ( E ( var ( cov s. ( f ( α,..., α, σ (3 σ ε p Model RCA(,p można zapisać w posaci modelu przesrzeni sanów (SS: gdzie H x... x Fx + G, (4 p+ H x + ε, (5... [ ] α F... α α p α p G... Modelu opisan równaniami (4-(5 jes połączeniem modelu SS ze sałmi paramerami (równanie sanu oraz modelu SS ze zmiennmi paramerami (równanie wjścia. Zaem do esmacji paramerów modelu -3-

4 RCA można zasosować meodę największej wiargodności wkorzsującą filr Kalmana. Niech paramer procesu auoregresjnego rzędu pierwszego będzie opisan poprzez proces AR( ze sałą (średnia różna od zera. Wówczas proces RCA(, ma posać: gdzie + ε (6 + α + α (7 ~ NID( σ ε, ~ NID(, σ ε,. Proces RCA(, ze sałą, podobnie jak proces RCA(, bez sałej, można zapisać w posaci: j k ( ε + α α + i k ε j. (8 j i k Jeżeli α <, o własności procesu opisanego równaniami (6 i (7 są nasępujące: ( α E (9 α σ var ( σ ( α cov α zaś dla procesu RCA(, ze sałą: s ( α σ ( s + α ( E ( σ var, prz założeniu σ <, (3 ε ( σ s α σ ε cov( α s, prz założeniu σ <. (4 σ -4-

5 Zaem proces RCA(, ze sałą ma podobnie własności jak proces RCA(, bez sałej z wjąkiem kowariancji, kóra w m przpadku jes funkcją paramerów α, α i wariancji składnika losowego. Model RCA(,p opisan równaniami (6 i (7 można zapisać w posaci modelu przesrzeni sanów (SS: gdzie H x... x Fx + E + G, (5 p+ H x + ε, (6... [ ] α F... α α p α p α E... G... Różnica posaci modelu przesrzeni sanów, w sosunku do modelu RCA bez sałej, wsępuje lko w równaniu sanu. W przpadku modelu RCA(,p ze sałą, należ dodać w równaniu (4 jedną macierz.. IDENTYFIKACJA WŁASNOŚCI MODELU RCA ZA POMOCĄ SYMULACJI W celu zilusrowania własności RCA oraz przeprowadzono ekspermen smulacjn. Wgenerowano szeregów po 5 obserwacji każd. Dla każdego z wgenerowanch szeregów przeprowadzono analizę funkcji auokorelacji (ACF oraz funkcji auokorelacji cząskowej (PACF, wznaczono warość średnią, odchlenie sandardowe, współcznniki skośności, kuroz oraz warości sask: Boxa-Ljunga, Engla ARCH, DF, McLeoda i Li. Wbrane wniki zaware są w ablicach -4. Proces generujące dane dla poszczególnch przpadków mają posać: MODEL I AR( (7. 5 gdzie ~ NID(, ε, + ε MODEL II RCA(, (8 + ε

6 gdzie ~ NID(, ε, ~ NID(, σ MODEL III RCA(, (9 + ε gdzie ~ NID(, ε, ~ NID(, σ MODEL IV RCA(,3 (3 + ε gdzie ~ NID(, ε, ~ NID(, σ Przkładowe realizacje przedsawiono na rsunku i. Rs. Przkładowe realizacje procesów ( σ. 6 i ich charakerski -6-

7 Rs. Przkładowe realizacje procesów ( σ. i ich charakerski Poniżej przedsawiono niekóre z uzskanch wników sask opisowch oraz esów sascznch. Tablica. Własności sasczne procesów dla σ. 6 Średnia Odchlenie Sandardowe AR( -,557,564,47,498,58,483 RCA(, -,56,94,84,66,9383,35 RCA(, -,574,65 -,6,399,656,387 RCA(,3 -,83,84 -,35,5,944,443 Skośność Kuroza -7-

8 AR( -,36,69,6,566 3,635,9539 RCA(, -,3593 3,493,437,7 58,4964 5,756 RCA(, -,9876,357 -,7,6385 9,3 4,5747 RCA(,3 -,6,5397 -,395,938,553 6,78 Tablica. Własności sasczne procesów dla σ. Średnia Odchlenie Sandardowe AR( -,688,378,4,53,648,489 RCA(, -,344,4,4,96,86,999 RCA(, -,393,4,,97,85, RCA(,3 -,395,9,,9,884, Skośność Kuroza AR( -,577,36,9,563 3,6346,9844 RCA(, -,39,93,74,545 4,63,998 RCA(, -,964,84,7,49 4,49,977 RCA(,3 -,35,785,6,5 4,663,977 Tablica 3. Wniki esów procesów dla σ. 6 Tes Boxa-Ljunga Engla ARCH es DF McLeoda i Li AR(,,,,,,,99,,,99 RCA(,,37,64,63,56,,,98,,,98 RCA(,,7,9,9,8,,,99,,,99 RCA(,3,4,89,86,8,,,,,, Liczba oznacza prawdopodobieńswo odrzucenia H Tablica 4. Wniki esów procesów dla σ. Tes Boxa-Ljunga Engla ARCH es DF McLeoda i Li

9 AR(,,,,,99,98,97,,99,97 RCA(,,5,4,,3,,5,7,,,7 RCA(,,6,4,,,,4,5,,,5 RCA(,3,4,4,5,3,,3,6,,,5 Analiza funkcji ACF oraz funkcji PACF oraz przedsawionch powżej wników pozwoliła na sformułowanie nasępującch wniosków:. warości współcznników ACF i PACF zależą od warości wariancji resz modelu ( w procesie generującm paramer, prz czm dla wariancji σ. prawie wszskie warości współcznników ACF i PACF są sascznie nieisone (por. ablica 4,. dla kwadraów realizacji widoczna jes jeszcze większa zależność pomiędz isonością warości współcznników ACF i PACF a warością wariancji reszowej. Wższa warość wariancji składnika losowego z równania (, o wsępowanie efeku ARCH, nieliniowość procesu 3, podwższona kuroza 3. dla wższch warości wariancji składnika losowego ( σ.36 własności sasczne procesu RCA są podobne jak własności sasczne procesów biliniowch, 4. za pomocą przedsawionch własności i esów isnieje możliwość rozróżnienia pomiędz procesem AR a procesem RCA, 5. w przpadkach granicznch, gd α σ α < σ auokorelacja wsępuje w większej ilości realizacji. Dla modelu RCA ze sałą wniki również ulegają zmianie. Powórzono ekspermen smulacjn dodając w modelach RCA sałą w równaniu ( wnoszącą.5. Wniki przedsawiono w ablicach 5-8. W m przpadku wniki esów nie zależą od warości wariancji składnika losowego. Od wariancji reszowej zależ lko warość wariacji procesu, co jes zgodne z równanie (. Tablica 5. Własności sasczne procesów ze sałą dla σ. 6 Średnia Odchlenie Sandardowe 3 według esu McLeoda i Li. -9-

10 min Max śr min max Śr AR( -,76,5,77,37,79,537 RCA(, -5, ,537,633, ,998,787 RCA(, -,6963,789 -,6,6674 7,746,846 RCA(,3-3,864 8,683,663,76 4,877 6,464 Skośność Kuroza AR( -,3564,775,8,5657 3,686,94 RCA(, -,39,647,3667 6,63 83,757 4,9339 RCA(, -,4864 7,9,48 4,66 59,959 9,8497 RCA(,3 -,95,635 -,558 4,75 8,346 45,669 Tablica 6. Własności sasczne procesów ze sałą dla σ. Średnia Odchlenie Sandardowe AR( -,79,67,6,,67,54 RCA(, -,365,3768,,68,783,4435 RCA(, -,46,3585,,,6775,49 RCA(,3 -,485,3769,9,48,7366,45 Skośność Kuroza AR( -,856,874,48,64 4,79,969 RCA(, -,466,737,,537 5,767 3,6 RCA(, -,343,64 -,79,473 4,938 3,367 RCA(,3 -,45,5673 -,34,485 6,64 3,59 Tablica 7. Wniki esów procesów ze sałą dla σ. 6 Tes Boxa-Ljunga Engla ARCH es DF McLeoda i Li AR(,,,,,,,98,,,98 RCA(,,,,,,,,,,, RCA(,,,,,,,,,,, RCA(,3,,,,,,,,,, --

11 Tablica 8. Wniki esów procesów ze sałą dla σ. Tes Boxa-Ljunga Engla ARCH es DF McLeoda i Li AR(,,,,,99,98,98,,99,97 RCA(,,,,,,,,,,, RCA(,,,,,,,,,,, RCA(,3,,,,,,,,,, 3. PODSUMOWANIE Przeprowadzona analiza własności modeli RCA(,p wkazała, że modele e charakerzują się średnią zero, wariancją zależną od warości paramerów modelu opisującego proces parameru i wariancji składników reszowch w równaniach ( i (. Warość kowariancji w zależności od pu RCA(,p (bez sałej cz ze sałą wnosi zero lub jes od zera różna i zależ od warości paramerów modelu opisującego proces parameru i wariancji składników reszowch w równaniach ( i (. Na podsawie wników ekspermenu smulacjnego można swierdzić, iż niekóre modele RCA(,p, ze względu na swoje własności, mogą opiswać sop zwrou cen akcji. Problem wkorzsania modeli RCA(,p w ekonomicznch szeregach czasowch nie jes w lieraurze rozpoznan i wmaga jeszcze dalszch pogłębionch sudiów. LITERATURA. Grager C. W. J., Swanson N. R. (997, An inroducion o sochasic uni-roo process, Journal of Economerics, 8.. Harve A. C., (99, Forecasing, Srucural Time Series Models and he Kalman Filer, Cambridge Universi Press. 3. Lebourne S. J., McCabe B. P. M., Mills T. C. (996, "Randomized uni roo processes for modeling and forecasing financial ime series: heor and applicaions", Journal of Forecasing, Lebourne S. J., McCabe B. P. M., Tremane A. R., (996, Can Economic Time Series Be Differenced Saionai?, American Saisical Associaion Journal of Business & Economic Saisics, Vol. 4, No Lükepohl H., (99, Inroducion o Muliple Time Series Analsis, Springer-Verlag, Berlin. --

12 6. Nicholls D. F., Quinn B. G., (98, Random Coefficien Auoregressive Models: An Inroducion, Springer-Verlag, New York. 7. Osińska M. (4, "Proces zawierające sochasczne pierwiaski jednoskowe - idenfikacja i zasosowania", AUNC 368, Toruń. Joanna Górka RANDOM-COEFFICIENT AUTOREGRESSIVE PROCESSES Summar In he paper we presen sochasic process which is called randomcoefficien auoregressive processes. In his aricle we show analsis of assumpion of random-coefficien auoregressive processes order one, where auoregressive model describe he coefficien. Advanage of his class of models rel on possibili descripion nonlinear mechanism in he daa. --

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 390 TORUŃ 009 Uniwerse Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saski WŁASNOŚCI

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saski, Uniwerse Mikołaja Kopernika w Toruniu Uniwerse Mikołaja Kopernika w Toruniu Idenfikacja

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Konspekty wykładów z ekonometrii

Konspekty wykładów z ekonometrii Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1

Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 Jacek Kwiakowski Uniwersye Mikołaja Kopernika w Toruniu Bayesowskie porównanie modeli STUR i GARCH w finansowych szeregach czasowych 1 WSTĘP Powszechnie wiadomo, że podsawowymi własnościami procesów finansowych

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA * ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

Modelowanie i analiza szeregów czasowych

Modelowanie i analiza szeregów czasowych Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki

PIOTR FISZEDER, JACEK KWIATKOWSKI Katedra Ekonometrii i Statystyki PIOTR FISZEDER, JACEK KWIATKOWSKI Kaedra Ekonomerii i Saysyki DYNAMICZNA ANALIZA ZALEŻNOŚCI POMIĘDZY OCZEKIWANĄ STOPĄ ZWROTU A WARUNKOWĄ WARIANCJĄ Sreszczenie: W badaniu zasosowano modele GARCHM ze sałym

Bardziej szczegółowo

ANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM

ANALIZA POWIĄZAŃ MIĘDZY INDEKSAMI GIEŁDY FRANCUSKIEJ, HOLENDERSKIEJ I BELGIJSKIEJ Z WYKORZYSTANIEM MODELU KOREKTY BŁĘDEM Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 083-86 Nr 89 06 Uniwersye Ekonomiczny w Kaowicach Wydział Ekonomii Kaedra Meod Saysyczno-Maemaycznych w Ekonomii pawel.prenzena@edu.ueka.pl

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

ZASTOSOWANIA EKONOMETRII

ZASTOSOWANIA EKONOMETRII ZASTOSOWANIA EKONOMETRII Budowa, esmacja, werfikacja i inerpreacja modelu ekonomercznego. dr Doroa Ciołek Kaedra Ekonomerii Wdział Zarządzania UG hp://wzr.pl/~dciolek doroa.ciolek@ug.edu.pl Lieraura Osińska

Bardziej szczegółowo

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ KRZYSZTOF JAJUGA Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ EKONOMETRIA FINANSOWA OKREŚLENIE Modele ekonomerii finansowej są worzone

Bardziej szczegółowo

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,

Bardziej szczegółowo

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

FINANSOWE SZEREGI CZASOWE WYKŁAD 3 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III) Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Modele wielorownaniowe

Modele wielorownaniowe Część 1. e e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e makroekonomiczne z reguły składają się z większej

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK

WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA NA PRZYKŁADZIE VALUE AT RISK Przemysław Jeziorski Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Zakład Demografii i Saysyki Ekonomicznej przemyslaw.jeziorski@ue.kaowice.pl WYBRANE TESTY NIEOBCIĄŻONOŚCI MIAR RYZYKA

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

Przemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne

Przemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne Przemysław Klęsk O ALGORYTMIE PRINCIPAL MANIFOLDS OPARTYM NA PCA SŁUŻACYM DO ZNAJDOWANIA DZIEDZIN JAKO ROZMAITOŚCI ALGEBRAICZNYCH NA PODSTAWIE ZBIORU DANYCH, PROPOZYCJA MIAR JAKOŚCI ROZMAITOŚCI Sreszczenie

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii 1

Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii 1 Jerzy Marzec Adres e mail: marzecj@uek.krakow.pl Uniwersye Ekonomiczny w Krakowie Kaedra: Kaedra Ekonomerii i Badań Operacyjnych Wybrane dwuwymiarowe modele dla zmiennych licznikowych w ekonomii. Wsęp

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO KIERZKOWSKI Arur 1 Transpor loniczy, szeregi czasowe, eksploaacja, modelowanie MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO W referacie przedsawiono probabilisyczny model czasu obsługi naziemnej saku

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Analiza szeregów czasowych w Gretlu (zajęcia 8)

Analiza szeregów czasowych w Gretlu (zajęcia 8) Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaa Kopernika w Toruniu Małgorzaa Borzyszkowska Uniwersye Gdański

Bardziej szczegółowo

Analiza szeregów czasowych uwagi dodatkowe

Analiza szeregów czasowych uwagi dodatkowe Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.

Bardziej szczegółowo

Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH

Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 3) Modele MGARCH 1 / 11 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE Pior Fiszeder UMK w Toruniu ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSEM WIG A WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE. Wprowadzenie Rynki kapiałowe na świecie są coraz silniej powiązane. Do najważniejszych

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

Wpływ kohortowych tablic trwania życia y na wysokość świadczeń emerytalnych

Wpływ kohortowych tablic trwania życia y na wysokość świadczeń emerytalnych Wpływ kohorowych ablic rwania życia y na wysokość świadczeń emeryalnych Kaedra Ubezpieczenia Społecznego Szkoła Główna Handlowa w Warszawie Warszawa, 27 października 2010 r. Plan prezenacji Wprowadzenie

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Testowanie współzależności w rozwoju gospodarczym

Testowanie współzależności w rozwoju gospodarczym The Wroclaw School of Banking Research Journal ISSN 1643-7772 I eissn 2392-1153 Vol. 15 I No. 5 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu ISSN 1643-7772 I eissn 2392-1153 R. 15 I Nr 5 Tesowanie

Bardziej szczegółowo

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU

Bardziej szczegółowo