Korekcja energii dżetów w eksperymencie CMS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Korekcja energii dżetów w eksperymencie CMS"

Transkrypt

1 Maciej Misiura Wydział Fizyki UW opiekun: dr Artur Kalinowski

2 Wstęp O czym seminarium? Zmierzyliśmy energię dżetu w CMS. Jak ona ma się do energii na poziomie hadronowym? Dlaczego taki temat? Zagadnienie wydaje się bardzo techniczne, ale: Pokazuje jak ważne jest konfrontowanie symulacji Monte Carlo z danymi. Wykorzystane są proste koncepcje, takie jak zasada zachowania pędu, do kalibracji, która jest zagadnieniem skomplikowanym. Plan prezentacji: 1) Czym są dżety? 2) Eksperyment CMS, w szczególności HCAL i ECAL. 3) Korekcje dżetowe. 4) Podsumowanie. 2/26

3 What is a Jet? Where I come from, Seattle, WA the answer is simple! Stephen Ellis, University of Washington, wykład dla studentów, CERN, /26

4 What is a Jet at the LHC? Wąski strumień wysokoenergetycznych cząstek. W warunkach eksperymentalnych powstaje np. w kolajderach przy zderzaniu wysokoenergetycznych cząstek. Przejaw istnienia kwarków i gluonów to z nich w procesie hadronizacji powstają dżety: kwarki i gluony zaczynają oddziaływać ze sobą tworząc hadrony. Kwarki i gluony nie mogą istnieć jako swobodne cząstki. Dżet rzeczywisty (poziom hadronowy), a dżet mierzony w eksperymencie (poziom detektora). 4/26

5 5/26

6 Charakterystyka CMS Bardzo dobra identyfikacja mionów, w dużym zakresie pędów i kątów, dobra rozdzielczość masy układu dwóch mionów, możliwość ustalenia znaku mionów z dużymi pędami: system mionowy Dobra rozdzielczość pędowa naładowanych cząstek i efektywność ich rekonstrukcji w detektorze śladowym, konieczność dokładnej rekonstrukcji wierzchołków półprzewodnikowy det. śladowy i detektor mozaikowy w centrum Dobra rozdzielczość przestrzenna składowej elektromagnetycznej (e. m.): elektronów i fotonów ECAL, preshower Dobra hermetyczność detektora (pomiar brakującej energii poprzecznej, duże pokrycie w η i dobra rozdz. przestrzenna, HCAL Do pomiarów dżetów (ich energii i pozycji w η i φ) duże znaczenie mają wszystkie poddetekory, ale największe kalorymetry: HCAL i ECAL. Budowa warstwowa 6/26

7 ECAL (kalorymetr elektromagnetyczny) Odpowiedzialny za pomiary składowej elektromagnetycznej, głównie elektrony i fotony. Scyntylator kryształy wolframku ołowiu PbWO4 (duża gęstość). Emisja światła proporcjonalna do energii mierzonej cząstki (niebieski-zielony). Dwie zasadnicze części: centralna ( barrel ) oraz pokrywy ( endcap ) hermetyczność. Pełne pokrycie φ w oraz η <1.48 część centralna, pokrywy: 1.48< η <3.0. 7/26

8 ECAL 78 tys. kryształów, ich wzrost zajął 10 lat (2 dni/kryształ) 2.2 x 2.2 x 23 cm, 3 x 3 x 23 cm Fotodiody: APD (Avalanche Photodiodes) w obszarze centralnym oraz VPT (Vacuum Phototriodes) w obszarze endcap. Oba rodzaje muszą pracować w polu magnetycznym! Bardzo duża wrażliwość na temperaturę T =18 C z dokładnością 0.05 C. VPT APD VPT APD Korekcja energii dżetów w VPT eksperymencie CMS 8/26

9 HCAL kalorymetr hadronowy. Zatrzymuje i mierzy parametry hadronów: protonów, neutronów, pionów... Detektor próbkujący światło jest zbierane tylko w pewnych miejscach mniej elektroniki mniejsze koszty, mniejsza moc i wydzielane ciepło. Naprzemienne warstwy absorbera i scyntylatora. Światło (niebieski-fiolet) wyprowadzane jest z wykorzystaniem światłowodów do HPD (Hybrid Photodiode, światło zielone). HCAL jest podzielony na kilka części różniących się budową: HB, HO (część centralna), HE (endcup) oraz HF ( do przodu ). HO HO jest wewnątrz solenoidu (absorber). HB HE HF 9/26

10 HCAL Absorberem w HB jest mosiądz z ok. miliona rosyjskich łusek z czasów II Wojny Światowej. 10/26

11 Dżety w CMS różne typy... Dżety kalorymetryczne (tzw. CaloJets)- wykorzystują jedynie informację z kalorymetrów HCAL oraz ECAL (tj. nie wykorzystują informacji z detektora śladowego). Dżety Particle Flow (PF) - wykorzystują informację z kalorymetrów oraz z detektora śladowego, identyfikujemy pojedyncze cząstki i przyporządkowujemy je dżetom (a la poziom generatora) Również: Dżety JPT (Jet Plus Track) - wykorzystują informację z kalorymetrów oraz z detektora śladowego (depozyty energii są częściowo zamieniane energią śladów. 11/26

12 Poprawki - motywacja Dwa komentarze: Dżety są obiektami, których skład jest bardzo różny i nie jest znany a priori. nieznajomość składu dżetu jest problemem przy pomiarze, na przykład w zależności od liczby pionów fluktuuje składowa elektromagnetyczna Niepewność związana z wyznaczaniem rzeczywistej energii dżetów ma największy wpływ na niepewność systematyczną pomiarów i analiz wykorzystujących dżety. Dlaczego musimy poprawiać energię dżetów? Odpowiedź detektora jest nieliniowa. Detektor nie jest jednorodny. 12/26

13 Poprawki dżetowe Poprawki dżetowe są współczynnikami liczbowymi poprawiającymi energię dżetów mierzonych w CMS do poziomu hadronowego. Poprawiamy wszystkie składowe czteropędu:, μ = 0,1,2,3 Poprawki są kilkupoziomowe: C MC-truth, podstawowa poprawka, MC obliczana tylko z Monte Carlo C poprawka relatywna, zapewniająca rel jednorodność detektora w η C poprawka absolutna, jednorodność w pt abs Crel, Cabs poprawiają niedoskonałość poprawek MC korzystając z danych 13/26

14 Poprawki MC-Truth (CMC) Wykorzystujemy symulację MC. Generujemy oddziałujące partony, symulujemy proces ich hadronizacji (dżet hadronowy), a następnie takie obiekty poddajemy symulacji detektora (dżet na poziomie detektora). Dopasowanie przestrzenne dżetów na poziomie hadronowym (gen) do dżetów na poziomie detektora (reco): ΔR(gen,reco) < 0.25 Pomiar odpowiedzi (response): r = preco/pgen 1/r = 14/26

15 Sprawdzenie domknięcia poprawek MC-Truth. - powtarzamy procedurę do już poprawionych dżetów nie powinna ona nic zmienić, - zgodność na poziomie 2% (zadowalająca) 15/26

16 Poprawki relatywne (Crel) Metoda balansowania pędu poprzecznego. r= Wykorzystanie zasady zachowania pędu w płaszczyźnie poprzecznej do wiązki. Wyobraźmy sobie przypadek z dwoma dżetami: jeden w obszarze centralnym, drugi jet próbkowany. Definiujemy zmienne wypisane powyżej. B mierzy niezbalansowany pęd. B w idealnej sytuacji powinno być 0, ale problem z kalibracją będzie objawiał się jako przesunięcie rozkładu B 16/26

17 Poprawki relatywne (Crel) Dla MC odpowiedź powinna być równa 1. Nie jest, głównie przez obciążenie spowodowane gorszą rozdzielczością dżetu centralnego od dżetu próbkowanego Efekt rozdzielczości mniejszy dla JPT/PF dżety tego typu mają lepszą rozdzielczość w obszarze barrel od CaloJets. Poprawiamy rozbieżności między punktami danych a Monte Carlo (poprawki rzędu 10%) 17/26

18 Poprawki relatywne (Crel) Wartości poprawek relatywnych dla różnych wartości η na poziomie Metoda czuła na obecność większej liczby dżetów. Ostatecznie poprawki obliczanę są z wykorzystaniem ekstrapolacji pędu trzeciego dżetu do 0. 18/26

19 Poprawki absolutne (Cabs) Poprawki obliczane tylko dla obszaru centralnego ( η <1.3) z wykorzystaniem przypadków foton-dżet, stosowane do wszystkich dżetów. Dwie metody: Metoda balansowania pędu poprzecznego (wykorzystywana jako sprawdzenie) MPF Missing E Fraction (metoda główna) t Idea bardzo podobna do poprzedniego punktu, tym razem obiektem referencyjnym jest foton (którego energia jest mierzona precyzyjnie przez ECAL), a próbkowanym dżet. 19/26

20 Poprawki absolutne (Cabs) Pęd fotonu pt > 15 GeV, η <1.3, Dżet w obszarze η <1.3, Odpowiednia separacja dżetu i fotonu w płaszczyźnie poprzecznej. Pęd kolejnych dżetów nieznaczący: psecond/pgamma<0.2 Układ równań do rozwiązania. W idealnej sytuacji nie ma brakującej energii. MPF jest traktowana jako odpowiedź dżetu. 20/26

21 Poprawki absolutne (Cabs) Duże obciążenie dla metody balansowania pędu poprzecznego (poprawa przy ekstrapolacji drugiego dżetu do 0). Dodana stała poprawka na poziomie 0.7%: Cabs = /26

22 Ostateczne poprawki Zaaplikowane wszystkie 3 stopnie: MC-Truth, poprawki relatywna i absolutna. 22/26

23 Ostateczne poprawki 23/26

24 Zaaplikowane poprawki - przykład Przykład analizy, gdzie wykorzystywane są dżety, przez co korekcje są ważne. Lewy histogram zestawienie rozkładu pędów dżetów poprawionych i niepoprawionych; widać przesunięcie w kierunku większych wartości oraz rozmycie rozkładu po zaaplikowaniu poprawek. Prawy histogram rozkład pędu dżetu wiodącego w przypadku, wyzwalanie detektora na dżetach z pędem powyżej 15 GeV; widać przesunięcie i rozmycie rozkładu. 24/26

25 Zaaplikowane poprawki - przykład Pomiar przekroju czynnego, wyraźna zależność od wartości cięcia na pędzie poprzecznym. W tego typu analizie niepewność pomiaru pędu rzędu kilku procent będzie miała dominujący wkład do niepewności systematycznej. 25/26

26 Podsumowanie Detektor CMS ma możliwość dokładnego pomiaru dżetów, kluczowe znaczenie mają kalorymetry elektromagnetyczny (ECAL) oraz hadronowy (HCAL). Ze względu na skomplikowany charakter jetów (np. problem z składową elektromagnetyczną), nieliniowość i niejednorodność detektora konieczne jest stosowanie poprawek. Omówione zostały trzy rodzaje, kolejno aplikowanych, poprawek: MC-Truth, poprawka relatywna (jednorodność w η) oraz absolutna (jednorodność w pt). 26/26

27 Dziękuję za uwagę.

28 Bibliografia 1) JME PAS, 2) JME PAS, 3) JME PAS, 4) Prezentacja z zatwierdzenia analizy JME PAS (17 listopad 2010, General Weekly Meeting), 5) 2008 JINST 3 S08004, The CMS experiment at the CERN LHC. 28/26

Compact Muon Solenoid

Compact Muon Solenoid Compact Muon Solenoid (po co i jak) Piotr Traczyk CERN Compact ATLAS CMS 2 Muon Detektor CMS był projektowany pod kątem optymalnej detekcji mionów Miony stanowią stosunkowo czysty sygnał Pojawiają się

Bardziej szczegółowo

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC

r. akad. 2008/2009 V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC V. Precyzyjne testy Modelu Standardowego w LEP, TeVatronie i LHC 1 V.1 WYNIKI LEP 2 e + e - Z 0 Calkowity przekroj czynny 3 4 r. akad. 2008/2009 s Q N 3 4 s M s N Q I M 12 s ) M (s s s 2 f C 2 Z C f f

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS

Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Poszukiwania bozonu Higgsa w rozpadzie na dwa leptony τ w eksperymencie CMS Artur Kalinowski Wydział Fizyki Uniwersytet Warszawski Warszawa, 7 grudnia 2012 DETEKTOR CMS DETEKTOR CMS Masa całkowita : 14

Bardziej szczegółowo

Pakiet ROOT. prosty generator Monte Carlo. Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauki

Pakiet ROOT. prosty generator Monte Carlo. Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauki M. Trzebiński ROOT generator MC 1/5 Pakiet ROOT prosty generator Monte Carlo Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Wprowadzenie

Bardziej szczegółowo

Marek Kowalski

Marek Kowalski Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być

Bardziej szczegółowo

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne

Bardziej szczegółowo

Algorytmy rekonstrukcji dżetów w CMS

Algorytmy rekonstrukcji dżetów w CMS Algorytmy rekonstrukcji dżetów w CMS Michał Szleper Zebranie analizy fizycznej, 31.01.2011 Główny cel rekonstrukcji dżetów: ustanowienie ścisłego związku pomiędzy: - wielkościami mierzonymi bezpośrednio

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

LHC: program fizyczny

LHC: program fizyczny LHC: program fizyczny Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 2 Program fizyczny LHC Model Standardowy i Cząstka Higgsa Poza Model Standardowy:

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie

Bardziej szczegółowo

Fizyka cząstek elementarnych warsztaty popularnonaukowe

Fizyka cząstek elementarnych warsztaty popularnonaukowe Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu

Bardziej szczegółowo

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek

Bardziej szczegółowo

Poszukiwania mezonu B s w eksperymencie CMS

Poszukiwania mezonu B s w eksperymencie CMS Uniwersytet Warszawski Wydział Fizyki Piotr Kuszaj Nr albumu: 277903 Poszukiwania mezonu B s w eksperymencie CMS Praca licencjacka na kierunku Fizyka Praca wykonana pod kierunkiem dr. Marcina Koneckiego

Bardziej szczegółowo

Bozon Higgsa prawda czy kolejny fakt prasowy?

Bozon Higgsa prawda czy kolejny fakt prasowy? Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu Struktura protonu Wykład V równania ewolucji QCD spin protonu struktura fotonu Elementy fizyki czastek elementarnych Funkcja struktury Różniczkowy przekrój czynny na NC DIS elektron proton: d 2 σ dx dq

Bardziej szczegółowo

Fizyka do przodu Część 2: przegląd wyników z CMS

Fizyka do przodu Część 2: przegląd wyników z CMS Fizyka do przodu Część 2: przegląd wyników z CMS Grzegorz Brona Seminarium Fizyki Wielkich Energii Warszawa, 23.03.2012 Do przodu czyli gdzie? Fizyka do przodu = Zjawiska obserwowane pod małym kątem θ

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział: BMiZ Kierunek: MiBM / KMiU Prowadzący: dr hab. Tomasz Stręk Przygotował: Adrian Norek Plan prezentacji 1. Wprowadzenie 2. Chłodzenie największego na świecie magnesu w CERN

Bardziej szczegółowo

Marcin Kucharczyk Zakład XVII

Marcin Kucharczyk Zakład XVII Strumienie ciężkich kwarków przy energiach LHC: Model Standardowy i modele egzotyczne Marcin Kucharczyk Zakład XVII 27.06.2013 Plan Motywacja fizyczna Eksperyment LHCb Pomiar przekroju czynnego na produkcję

Bardziej szczegółowo

Analiza danych LHC w poszukiwaniu rezonansów w rozkładzie masy niezmienniczej dwóch mionów.

Analiza danych LHC w poszukiwaniu rezonansów w rozkładzie masy niezmienniczej dwóch mionów. Uniwersytet Warszawski Wydział Fizyki Robert Boniecki Nr albumu: 7683 Analiza danych LHC w poszukiwaniu rezonansów w rozkładzie masy niezmienniczej dwóch mionów. Praca licencjacka na kierunku fizyka Praca

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

Rozpraszanie elektron-proton

Rozpraszanie elektron-proton Rozpraszanie elektron-proton V Badania struktury atomu - rozpraszanie Rutherforda. Rozpraszanie elastyczne elektronu na punktowym protonie. Rozpraszanie elastyczne elektronu na protonie o skończonych wymiarach.

Bardziej szczegółowo

LEPTON TAU : jako taki, oraz zastosowania. w niskich i wysokich energiach. Zbigniew Wąs

LEPTON TAU : jako taki, oraz zastosowania. w niskich i wysokich energiach. Zbigniew Wąs LEPTON TAU : jako taki, oraz zastosowania w niskich i wysokich energiach Zbigniew Wąs Podziękowania: A. Kaczmarska, E. Richter-Wąs (Atlas); A. Bożek (Belle); T. Przedziński, P. Golonka (IT); R. Decker,

Bardziej szczegółowo

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU) WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:

Bardziej szczegółowo

Po co nam CERN? Po co nam LHC? Piotr Traczyk

Po co nam CERN? Po co nam LHC? Piotr Traczyk Po co nam CERN? Po co nam LHC? Piotr Traczyk Sympozjum IPJ Plan 1)Wstęp Po co nam LHC? 2)Eksperymenty w CERNie w których bierzemy udział COMPASS LHCb ALICE CMS 3)Podsumowanie 2 Po co nam LHC? Po co kopać

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Detektory w fizyce cząstek

Detektory w fizyce cząstek 4 Detektory w fizyce cząstek Krzysztof Fiałkowski Instytut Fizyki UJ Kiedy czytamy o nowych odkryciach z dziedziny fizyki cząstek, rzadko zastanawiamy się nad szczegółami doświadczeń, które doprowadziły

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

Grzegorz Stefanek Instytut Problemów Jądrowych w Warszawie Akademia Świętokrzyska w Kielcach

Grzegorz Stefanek Instytut Problemów Jądrowych w Warszawie Akademia Świętokrzyska w Kielcach Grzegorz Stefanek Instytut Problemów Jądrowych w Warszawie Akademia Świętokrzyska w Kielcach Grzegorz Stefanek, Instytut Problemów Jądrowych Akademia Świętokrzyska w Kielcach Konspekt Wstęp Cele fizyczne

Bardziej szczegółowo

POMIAR NATĘŻENIA PRZEPŁYWU

POMIAR NATĘŻENIA PRZEPŁYWU POMIAR NATĘŻENIA PRZEPŁYWU Określenie ilości płynu (objętościowego lub masowego natężenia przepływu) jeden z najpowszechniejszych rodzajów pomiaru w gospodarce przemysłowej produkcja światowa w 1979 ropa

Bardziej szczegółowo

W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński

W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Gimli Glider Boeing 767-233 lot: Air Canada

Bardziej szczegółowo

Poszukiwanie sygnału rozpraszania bozonów W w eksperymencie CMS przy LHC

Poszukiwanie sygnału rozpraszania bozonów W w eksperymencie CMS przy LHC Uniwersytet Warszawski Wydział Fizyki Tomasz Kuśmierczyk Nr albumu: 290810 Poszukiwanie sygnału rozpraszania bozonów W w eksperymencie CMS przy LHC Praca licencjacka na kierunku FIZYKA Praca wykonana pod

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012 Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest

Bardziej szczegółowo

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest

Bardziej szczegółowo

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm

Bardziej szczegółowo

Łamanie symetrii względem odwrócenia czasu cz. I

Łamanie symetrii względem odwrócenia czasu cz. I FOTON 126, Jesień 214 9 Łamanie symetrii względem odwrócenia czasu cz. I Oscylacje mezonów dziwnych Paweł Moskal Instytut Fizyki UJ Symetria względem odwrócenia w czasie Czasu raczej cofnąć się nie da.

Bardziej szczegółowo

Eksperyment CMS w oczekiwaniu na wiązki: plany poszukiwania Nowej Fizyki. Część 1

Eksperyment CMS w oczekiwaniu na wiązki: plany poszukiwania Nowej Fizyki. Część 1 Eksperyment CMS w oczekiwaniu na wiązki: plany poszukiwania Nowej Fizyki Część 1 Piotr Traczyk Warszawa, Plan Akcelerator LHC Detektor CMS Nowa fizyka w CMS organizacja pracy Wybrane analizy - szczegóły

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW

Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 14.X.2009 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne I? Cząstka i fale falowe własności cząstek elementarnych Cząstki fundamentalne

Bardziej szczegółowo

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV

Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu NC DIS Deep Inelastic

Bardziej szczegółowo

WYKŁAD 6. Oddziaływania kolorowe cd. Oddziaływania słabe. Wszechświat cząstek elementarnych dla przyrodników

WYKŁAD 6. Oddziaływania kolorowe cd. Oddziaływania słabe. Wszechświat cząstek elementarnych dla przyrodników Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 6 Maria Krawczyk, Wydział Fizyki UW 11.XI.2009 Oddziaływania kolorowe cd. Oddziaływania słabe Cztery podstawowe oddziaływania Oddziaływanie grawitacyjne

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

Oddziaływanie Promieniowania Jonizującego z Materią

Oddziaływanie Promieniowania Jonizującego z Materią Oddziaływanie Promieniowania Jonizującego z Materią Plan Ogólne własności detektora Czułość Rozdzielczość energetyczna Funkcja odpowiedzi Wydajność i czas martwy Tomasz Szumlak AGH-UST Wydział Fizyki i

Bardziej szczegółowo

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

WYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe

WYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW 5.I. 2011 Hadrony i struny gluonowe Model Standardowy AD 2010 Hadrony = stany związane kwarków Kwarki zawsze

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Monte Carlo. Modelowanie matematyczne procesów zbyt złożonych, aby można było przewidzieć ich wyniki za pomocą podejścia analitycznego.

Monte Carlo. Modelowanie matematyczne procesów zbyt złożonych, aby można było przewidzieć ich wyniki za pomocą podejścia analitycznego. Monte Carlo 1 Monte Carlo 2 Monte Carlo Modelowanie matematyczne procesów zbyt złożonych, aby można było przewidzieć ich wyniki za pomocą podejścia analitycznego. Stochastyczna znajomość funkcji gęstości

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Tryger RPC jako część systemu mionowego CMS - analiza pierwszych danych LHC przy energii 7 TeV.

Tryger RPC jako część systemu mionowego CMS - analiza pierwszych danych LHC przy energii 7 TeV. Uniwersytet Warszawski Wydział Fizyki Dominik Bartkiewicz Nr albumu: 234454 Tryger RPC jako część systemu mionowego CMS - analiza pierwszych danych LHC przy energii 7 TeV. Praca magisterska na kierunku

Bardziej szczegółowo

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

ANALIZA SYSTEMU POMIAROWEGO (MSA)

ANALIZA SYSTEMU POMIAROWEGO (MSA) StatSoft Polska, tel. 1 484300, 601 414151, info@statsoft.pl, www.statsoft.pl ANALIZA SYSTEMU POMIAROWEGO (MSA) dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek

Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek i jeszcze kilka, których nie chcieliście wiedzieć, ale i tak się dowiecie mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż.

Bardziej szczegółowo

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Ćw.1. Monitorowanie temperatury

Ćw.1. Monitorowanie temperatury Ćw.1. Monitorowanie temperatury Wstęp Ćwiczenie przedstawia metodę monitorowania temperatury w obecności pola elektromagnetycznego przy użyciu czujników światłowodowych. Specjalna technologia kryształów

Bardziej szczegółowo

Fizyka hadronowa. Fizyka układów złożonych oddziałujących silnie! (w których nie działa rachunek zaburzeń)

Fizyka hadronowa. Fizyka układów złożonych oddziałujących silnie! (w których nie działa rachunek zaburzeń) Fizyka układów złożonych oddziałujących silnie! (w których nie działa rachunek zaburzeń) Fizyka hadronowa Podstawowe pytania: Mechanizm generacji masy i uwięzienia związany z naturą oddziaływań silnych

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Title. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań

Title. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Title Tajemnice neutrin Justyna Łagoda obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Cząstki i oddziaływania 3 generacje cząstek 2/3-1/3 u d c s t b kwarki -1 0 e νe µ νµ

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Wszechświat cząstek elementarnych

Wszechświat cząstek elementarnych Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad.. 2010/11 http://www www.fuw.edu.pl/~

Bardziej szczegółowo

Akceleratory Cząstek

Akceleratory Cząstek M. Trzebiński Akceleratory cząstek 1/30 Akceleratory Cząstek Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Obserwacje w makroświecie

Bardziej szczegółowo

Materia i jej powstanie Wykłady z chemii Jan Drzymała

Materia i jej powstanie Wykłady z chemii Jan Drzymała Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań

Bardziej szczegółowo

KOMUNIKAT DOTYCZĄCY BEZPIECZEŃSTWA STOSOWANIA PRODUKTU / POWIADOMIENIE DOTYCZĄCE PRODUKTU

KOMUNIKAT DOTYCZĄCY BEZPIECZEŃSTWA STOSOWANIA PRODUKTU / POWIADOMIENIE DOTYCZĄCE PRODUKTU KOMUNIKAT DOTYCZĄCY BEZPIECZEŃSTWA STOSOWANIA PRODUKTU / POWIADOMIENIE DOTYCZĄCE PRODUKTU Temat: Ograniczenia dokładności oprogramowania w przypadku bardzo małych rozmiarów pola kolimatora wielolistkowego

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

Spis treści 1. Wstęp eksperyment ALICE wyzwaniem dla nauki i techniki...6 2. LHC program badawczy i realizacja praktyczna...8

Spis treści 1. Wstęp eksperyment ALICE wyzwaniem dla nauki i techniki...6 2. LHC program badawczy i realizacja praktyczna...8 Streszczenie Eksperyment ALICE (A Large Ion Collider Experiment Eksperyment Wielkiego Zderzacza Jonów), zlokalizowany przy zderzaczu LHC w Europejskim Laboratorium Badań Jądrowych CERN jest największym

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Boska cząstka odkryta?

Boska cząstka odkryta? FOTON 118, Jesień 2012 27 Boska cząstka odkryta? Krzysztof Fiałkowski Instytut Fizyki UJ 4 lipca 2012 roku w wielkiej sali seminaryjnej CERNu w Genewie odbyło się nadzwyczajne seminarium. Organizatorzy

Bardziej szczegółowo

POMIARY KOMPUTEROWO WSPOMAGANE w WIELKIM ZDERZACZU HADRONÓW (LHC)

POMIARY KOMPUTEROWO WSPOMAGANE w WIELKIM ZDERZACZU HADRONÓW (LHC) POMIARY KOMPUTEROWO WSPOMAGANE w WIELKIM ZDERZACZU HADRONÓW (LHC) Henryk Szydłowski Wydział Fizyki UAM Umultowska 85, 61-614 Poznań henryksz@amu.edu.pl Streszczenie W pracy omówiono sposoby detekcji cząstek

Bardziej szczegółowo

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b].

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b]. Rachunek Prawdopodobienstwa MAEW104 Wydział Elektroniki, rok akad. 2008/09, sem. letni wykład: dr hab. Agnieszka Jurlewicz Temat projektu: Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Plan. Motywacja fizyczna. Program badań. Akcelerator LHC. Detektor LHCb. Opis wybranych systemów

Plan. Motywacja fizyczna. Program badań. Akcelerator LHC. Detektor LHCb. Opis wybranych systemów Eksperyment LHCb Plan Motywacja fizyczna Program badań Akcelerator LHC Detektor LHCb Opis wybranych systemów Łamanie symetrii CP Parzystość CP jednoczesne wykonanie operacji sprzężenia ładunkowego C i

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku Opory ruchu Fizyka I (B+C) Wykład XII: Tarcie Lepkość Ruch w ośrodku Tarcie Tarcie kinetyczne Siła pojawiajaca się między dwoma powierzchniami poruszajacymi się względem siebie, dociskanymi siła N. Ścisły

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

Elektrodynamika cząstek o spinie 1/2

Elektrodynamika cząstek o spinie 1/2 Elektrodynamika cząstek o spinie 1/2 Dodatkowa gama^0, aby mieć odpowiedniość z oddziaływaniem nierelatywistycznym dla składowych, gdy A^mu=A^0 Tak powstają tzw. Reguły Feynmana Przykłady Spiny Spiny s,s'

Bardziej szczegółowo

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory

Bardziej szczegółowo

Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( )

Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( ) Lucja Sławianowska 7 grudnia 2001 Motywacja do dokładnego wyznaczania elementów macierzy Cabbibo-Kobayashi-Maskawy ( ) macierz opisuje łamanie CP i niezachowanie zapachu w Modelu Standardowym jest to jedyne

Bardziej szczegółowo

Polacy i Polska w technologiach detektorów w CERN-ie. L. Zwalinski CERN EP/DT December 16 th 2016

Polacy i Polska w technologiach detektorów w CERN-ie. L. Zwalinski CERN EP/DT December 16 th 2016 Polacy i Polska w technologiach detektorów w CERN-ie L. Zwalinski CERN EP/DT December 16 th 2016 1 Eksperymenty LHC technologie detektorów LHCb ATLAS CMS ALICE * Neutrino platform * CLIC Polskie zespoły

Bardziej szczegółowo

DLACZEGO BUDUJEMY AKCELERATORY?

DLACZEGO BUDUJEMY AKCELERATORY? FIZYKA WYSOKICH ENERGII W EDUKACJI SZKOLNEJ Puławy, 29.02.2008r. DLACZEGO BUDUJEMY AKCELERATORY? Dominika Domaciuk I. Wprowadzenie Na świecie jest 17390 akceleratorów! (2002r). Różne zastosowania I. Wprowadzenie

Bardziej szczegółowo