Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski"

Transkrypt

1 Badania marketingowe 2016_12 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

2 Ramowy program konwersatorium 1. Formułowanie oraz wyjaśnianie tematyki badań 2. Identyfikacja oraz analiza i ocena źródeł informacji marketingowej 3. Konceptualizacja, operacjonalizacja i pomiar 4. Logika doboru próby 5. Dane wtórne oraz ich wykorzystanie 6. Dane syndykatywne 7. Badania jakościowe 8. Obserwacja jako metoda badawcza 9. Badania sondażowe 10.Metody eksperymentalne 11.Podstawy analizy danych 12.Elementy statystyki opisowej 13.Model analizy rozbudowanej 14.Wnioskowanie statystyczne 15.Prezentacja danych i raport z badań

3 Agenda Ogólna charakterystyka statystyki opisowej Analiza jednozmiennowa Tendencja centralna oraz rozproszenie Zmienne ciągłe i dyskretne Porównywanie podgrup oraz łączenie kategorii odpowiedzi Kategoria nie wiem Analiza dwuzmiennowa i wielozmiennowa Korelacja, związki przyczynowe i pozorne zależności przyczynowe

4 Ogólna charakterystyka analizy ilościowej Analiza ilościowa służy do przedstawienia danych ilościowych w syntetycznej formie. Analiza ilościowa może być opisowa lub wyjaśniająca. Czasami chcemy opisać jedną zmienną, czasami zaś chcemy opisać związek łączący jedną zmienną z inną. Analiza jednozmiennowa to najprostsza forma analizy ilościowej. Polega ona na opisywaniu przypadku w kategoriach jednej zmiennej, ze szczególnym uwzględnieniem rozkładu tej wartości. Analiza jednoczesnych powiązań pomiędzy wiekiem, wykształceniem, a poglądami politycznymi (ekonomicznymi, w kwestiach obyczajowych etc.) to przykład analizy wielozmiennowej. Celem analizy jednozmiennej jest opis. Analiza dwu i wielozmienna służy przede wszystkim wyjaśnianiu.

5 Uczestnictwo w mszach i nabożeństwach według GSS Uczestnictwo Wartość Częstość Procent Procent ważnych Procent skumulowany Nigdy ,9 15,1 15,4 Rzadziej niż 1 raz do roku 1 lub 2 razy do roku ,3 9,4 25, ,0 12,1 36,6 Kilka razy do roku ,9 13,1 49,7 Raz w miesiącu ,6 5,7 55,4 2 lub 3 razy w miesiącu ,1 9,2 64,5 Prawie co tydzień ,6 7,7 72,2 Co tydzień ,6 19,8 92,0 Kilka razy w tygodniu lub częściej Nie wiem oraz brak odpowiedzi ,9 8,0 100, ,1 brak Ogółem ,0 100,0 Ważnych 1483

6 Tendencja centralna trzy zmienne Wiek Liczba Wartość 13 * * * 14 * * * * 15 * * * * * * średnia arytmetyczna = 15,87 16 * * * * * * * * modalna (dominanta) 17 * * * * 18 * * * 19 * * * mediana = wartość środkowa = 16,31 14 jednostek

7 Rozproszenie Rozproszenie odnosi się do rozkładu wartości wokół pewnej wartości centralnej, takiej jak średnia arytmetyczna. Miary rozproszenia: Odstęp, czyli różnica pomiędzy najwyższą a najniższą wartością Odchylenie standardowe, czyli błąd standardowy rozkładu z próby Zakres międzykwartylowy, czyli zakres wyników dla środkowych 50% badanych.

8 Zmienne ciągłe i dyskretne Zmienna ciągła czyli ilorazowa na przykład waga lub wiek. Zmienna dyskretna czyli skokowa na przykład rok studiów. Możliwe obliczenia: Zmienne nominalne modalna (dominanta) Zmienne interwałowe mediana Zmienne ilorazowe średnia arytmetyczna

9 Porównywanie podgrup mediana zarobków pełnoetatowych pracowników cywilnych z uwzględnieniem płci USA Rok Kobiety Mężczyźni Stosunek K:M , , , , , , , , , , ,58

10 Porównywanie podgrup mediana zarobków pełnoetatowych pracowników cywilnych z uwzględnieniem płci USA Rok Stosunek K:M , , , ,76

11 Płeć, czas trwania stosunku pracy a zarobki pracowników stawka godzinowa w USA Na Staż pracy Przeciętna stawka godzinowa w USD Stosunek K:M Mężczyźni Kobiety Poniżej 2 lat Od 2 do 4 lat Od 5 lat do 9 lat 10 lat i więcej 8,46 6,03 0,71 9,38 6,78 0,72 10,42 7,56 0,73 12,38 7,91 0,64

12 Łączenie kategorii odpowiedzi Jak ONZ radzi sobie z rozwiązywaniem problemów, wobec których staje? Kategoria Niemcy W. Brytania Francja Japonia USA Bardzo dobrze 2% 7% 2% 1% 5% Dobrze 46% 39% 45% 11% 46% Źle 21% 28% 22% 43% 27% Bardzo źle 6% 9% 3% 5% 13% Nie wiem 26% 17% 28% 41% 10%

13 Łączenie kategorii odpowiedzi Jak ONZ radzi sobie z rozwiązywaniem problemów, wobec których staje? Łączenie skrajnych odpowiedzi. Kategoria Niemcy W. Brytania Francja Japonia USA Bardzo dobrze lub dobrze Źle lub bardzo źle Nie wiem 48% 46% 47% 12% 51% 27% 37% 25% 48% 40% 25% 17% 28% 40% 9%

14 Łączenie kategorii odpowiedzi Jak ONZ radzi sobie z rozwiązywaniem problemów, wobec których staje? Pominięcie odpowiedzi nie wiem. Kategoria Niemcy W. Brytania Francja Japonia USA Bardzo dobrze lub dobrze Źle lub bardzo źle 65% 55% 65% 20% 57% 35% 45% 35% 80% 43%

15 Analiza dwuzmiennowa Uczestniczenie w mszach i nabożeństwach mężczyzn i kobiet w 1966 roku USA Mężczyźni Kobiety Co tydzień 25% 34% Rzadziej 75% 66% Liczebność

16 Wprowadzenie do analizy wielozmiennowej Zależność wielozmianowa: uczestniczenie w mszach i nabożeństwach, płeć i wiek Jak często uczestniczysz w mszach i nabożeństwach? Poniżej 40 lat 40 lat i więcej Mężczyźni Kobiety Mężczyźni Kobiety Co tydzień 24% 32% 33% 48% Rzadziej 76% 68% 67% 52% 100% = (325) (383) (323) (452)

17 Wprowadzenie do analizy wielozmiennowej Odsetek osób uczestniczących we mszach i w nabożeństwach mniej więcej co tydzień Jak często uczestniczysz w mszach i nabożeństwach? Mężczyźni Kobiety Poniżej 40 lat 24% (325) 52% (383) 40 lat i więcej 33% (323) 48% (452)

18 Dwa modele wyjaśniania przyczynowości Wyjaśnienie idiograficzne uprzedzeń społecznych Nieznośny lokator (sąsiad) Wpływ telewizji Internet Lektury Przekazy rodzinne Odrzucenie przez dziewczynę (chłopaka) Konkurencja na rynku pracy Niska samoocena Inne jakie?... Bardzo wiele czynników może wyjaśniać uprzedzenia społeczne.

19 Dwa modele wyjaśniania przyczynowości Wyjaśnienie monotetyczne uprzedzeń społecznych Staramy się wyjaśnić uprzedzenia społeczne jedną przyczyną. Wykształceni Niewykształceni Tolerancyjni * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Uprzedzeni * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

20 Korelacja oraz związki przyczynowe Dodatnia korelacja Wyższy poziom wykształcenia wiąże się z możliwością uzyskania wyższych zarobków i odwrotnie. WYKSZTAŁCENIE WYKSZTAŁCENIE POTENCJALNE DOCHODY POTENCJALNE DOCHODY Wyższy poziom wykształcenia jest przyczyną możliwości uzyskania wyższych dochodów.

21 Korelacja oraz związki przyczynowe Ujemna (odwrotna) korelacja Wyższy poziom wykształcenia wiąże się z niższym poziomem uprzedzeń i odwrotnie. WYKSZTAŁCENIE WYKSZTAŁCENIE UPRZEDZENIA UPRZEDZENIA Wyższy poziom wykształcenia jest przyczyną zmniejszenia poziomu uprzedzeń.

22 Korelacja oraz pozorne zależności przyczynowe Zaobserwowana dodatnia korelacja ROZMIARY OBUWIA ROZMIARY OBUWIA UMIEJĘTNOŚCI MATEMATYCZNE UMIEJĘTNOŚCI MATEMATYCZNE Ani większy rozmiar obuwia nie jest przyczyną większych umiejętności matematycznych, ani większe umiejętności matematyczne nie powodują potrzeby zmiany rozmiarów obuwia.

23 Korelacja oraz pozorne zależności przyczynowe Rzeczywiste zależności przyczynowe Zmienna wieku jest przyczyną zarówno większego rozmiaru obuwia, jak i wyższych umiejętności matematycznych, a więc leży u podstaw zaobserwowanej korelacji i wyjaśnia ją. Wiek Rozmiar obuwia Umiejętności matematyczne

24 Przyczyny konieczne i wystarczające Przyczyna konieczna oznacza warunek, który musi być spełniony, aby nastąpił określony skutek. Mężczyźni Kobiety w ciąży * * * * * * * * * * * * * * * * * Przyczyna konieczna nie w ciąży * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

25 Zalecana literatura 1. Babbit, E. (2003). Badania społeczne w praktyce, Wydawnictwo Naukowe PWN, Warszawa. 2. Bielecka, A. (2011). Statystyka dla menedżerów, Oficyna a Wolters Kluwer business, Warszawa. 3. Francuz, P., Mackiewicz, R. (2007). Liczby nie wiedzą skąd przychodzą. Przewodnik po metodologii i statystyce nie tylko dla psychologów, KUL, Lublin.

ANALIZA I PREZENTACJA DANYCH ANALIZA DANYCH JAKOŚCIOWYCH METODY BADAŃ SPOŁECZNYCH WYKŁAD 6

ANALIZA I PREZENTACJA DANYCH ANALIZA DANYCH JAKOŚCIOWYCH METODY BADAŃ SPOŁECZNYCH WYKŁAD 6 METODY BADAŃ SPOŁECZNYCH WYKŁAD 6 dr Agnieszka Kacprzak ANALIZA I PREZENTACJA DANYCH ANALIZA DANYCH JAKOŚCIOWYCH Analiza jakościowa nieliczbowe badanie i interpretacja obserwacji Metody jakościowe zakładają

Bardziej szczegółowo

Badania marketingowe 2016_1. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2016_1. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2016_1 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. Formułowanie oraz wyjaśnianie tematyki badań 2. Identyfikacja

Bardziej szczegółowo

12/13/2015 ANALIZA DANYCH ILOŚCIOWYCH KWANTYFIKACJA DANYCH METODY BADAŃ SPOŁECZNYCH WYKŁAD 11: ANALIZA I PREZENTACJA DANYCH ILOŚCIOWYCH

12/13/2015 ANALIZA DANYCH ILOŚCIOWYCH KWANTYFIKACJA DANYCH METODY BADAŃ SPOŁECZNYCH WYKŁAD 11: ANALIZA I PREZENTACJA DANYCH ILOŚCIOWYCH METODY BADAŃ SPOŁECZNYCH WYKŁAD 11: ANALIZA I PREZENTACJA DANYCH ILOŚCIOWYCH dr Agnieszka Kacprzak ANALIZA DANYCH ILOŚCIOWYCH KWANTYFIKACJA DANYCH Aby możliwe było poddanie danych analizie ilościowej konieczna

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/201 WydziałPsychologii i Nauk Humanistycznych Kierunek studiów:

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II Podział zmiennych Zmienne zależne zmienne, które są przedmiotem badania, których związki z innymi zmiennymi chcemy określić Zmienne

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata

Bardziej szczegółowo

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie

Bardziej szczegółowo

Metody statystyczne w socjologii SYLABUS A. Informacje ogólne Opis

Metody statystyczne w socjologii SYLABUS A. Informacje ogólne Opis Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu Język przedmiotu Rodzaj przedmiotu Dziedzina i dyscyplina

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Badania marketingowe 2013_2. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2013_2. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2013_2 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. System informacji rynkowej i jego składowe 2. Istota oraz klasyfikacja

Bardziej szczegółowo

Metody statystyczne.

Metody statystyczne. #1 gkrol@wz.uw.edu.pl 1 Podsumowanie Sprawy formalne Statystyka i statystyka Badania korelacyjne Badania eksperymentalne Por. badań eksperymentalnych i korelacyjnych Przykłady badań Zarzuty pod adresem

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Badania marketingowe 2013_3. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2013_3. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2013_3 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. System informacji rynkowej i jego składowe 2. Istota oraz klasyfikacja

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 Alex.Celinski@gmail.com Rozkład wyników Przedziały 30-minutowe Lp. Przedział Liczebność Częstość czasowy Liczebność Częstość skumulowana skumulowana 1 2:00-2:30

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO

METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO Badania naukowe Badania naukowe to przemyślane i systematyczne działania zmierzające do zrozumienia świata zjawisk fizycznych i psychicznych.

Bardziej szczegółowo

10/25/2015 PROJEKTOWANIE BADAŃ PROJEKT BADAWCZY. METODY BADAŃ SPOŁECZNYCH WYKŁAD 4: PROJEKTOWANIE BADAŃ (cz.1) dr Agnieszka Kacprzak ZAINTERESOWANIA

10/25/2015 PROJEKTOWANIE BADAŃ PROJEKT BADAWCZY. METODY BADAŃ SPOŁECZNYCH WYKŁAD 4: PROJEKTOWANIE BADAŃ (cz.1) dr Agnieszka Kacprzak ZAINTERESOWANIA METODY BADAŃ SPOŁECZNYCH WYKŁAD 4: PROJEKTOWANIE BADAŃ (cz.1) dr Agnieszka Kacprzak PROJEKTOWANIE BADAŃ PROJEKT BADAWCZY ZAINTERESOWANIA PRZEGLĄD LITERATURY, OBSERWACJE, BADANIA EKSPLORACYJNE OKRESLENIE

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 WydziałPrawa, Administracji i Stosunków Miedzynarodowych

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo

WYKŁAD 2: PSYCHOLOGIA POZNAWCZA JAKO NAUKA EKSPERYMENTALNA

WYKŁAD 2: PSYCHOLOGIA POZNAWCZA JAKO NAUKA EKSPERYMENTALNA WYKŁAD 2: PSYCHOLOGIA POZNAWCZA JAKO NAUKA EKSPERYMENTALNA Psychologia poznawcza dr Mateusz Hohol METODA NAUKOWA (1) problem badawczy (2) hipoteza (4) analiza danych (3) eksperyment (5) wniosek: potwierzenie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Badania sondażowe. Wprowadzenie. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Wprowadzenie. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badania sondażowe Wprowadzenie Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa 1 Zasady zaliczenia części Badania sondażowe: 3 prace zaliczeniowe wysyłane

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

SYLABUS. Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii

SYLABUS. Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii Rzeszów, 1 październik 014 r. SYLABUS Nazwa przedmiotu Statystyka i demografia Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii Kod przedmiotu MK_8 Studia Kierunek

Bardziej szczegółowo

Metodologia badań psychologicznych

Metodologia badań psychologicznych Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Wydział Prawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu

Bardziej szczegółowo

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. 1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM

TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Badanie pilotażowe TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Czy łatwa prośba etyczna zostanie spełniona istotnie częściej jeśli poprzedzi się ją nieetyczną prośbą trudną? H0 nie, H1 tak. Schemat eksperymentu

Bardziej szczegółowo

Badania marketingowe 2016_2. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2016_2. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2016_2 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. Formułowanie oraz wyjaśnianie tematyki badań 2. Identyfikacja

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Badania rynkowe 2013_4. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania rynkowe 2013_4. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania rynkowe 2013_4 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. System informacji rynkowej i jego składowe 2. Istota oraz klasyfikacja

Bardziej szczegółowo

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1.

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Spis treści 1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Zastosowana metodologia rangowania obiektów wielocechowych... 53 1.2.2. Potencjał innowacyjny

Bardziej szczegółowo

10/24/2015 CELE ZAJĘĆ PLAN ZAJĘĆ METODY BADAŃ SPOŁECZNYCH WYKŁAD 1

10/24/2015 CELE ZAJĘĆ PLAN ZAJĘĆ METODY BADAŃ SPOŁECZNYCH WYKŁAD 1 METODY BADAŃ SPOŁECZNYCH WYKŁAD 1 dr Agnieszka Kacprzak CELE ZAJĘĆ Jak w poprawnie metodologiczny sposób rozwiązywać problemy pojawiające się w nauce i w biznesie? Jak definiować problemy badawcze? Jakie

Bardziej szczegółowo

Badania marketingowe 2013_7. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2013_7. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2013_7 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. System informacji rynkowej i jego składowe 2. Istota oraz klasyfikacja

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2013 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna

EGZAMIN GIMNAZJALNY 2013 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna EGZAMIN GIMNAZJALNY 2013 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja wiosenna Jaworzno 2013 SPIS TREŚCI 1. WPROWADZENIE... 3 2. WYNIKI SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH DOTYCZĄCE STANDARDOWYCH

Bardziej szczegółowo

Metody statystyczne w pedagogice Kod przedmiotu

Metody statystyczne w pedagogice Kod przedmiotu Metody statystyczne w pedagogice - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody statystyczne w pedagogice Kod przedmiotu 05.9-WP-PEDD-MS-L_pNadGen0DXUI Wydział Kierunek Wydział Pedagogiki,

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Do egzaminu maturalnego w II Liceum Ogólnokształcącego im. Mikołaja Kopernika w Cieszynie z matematyki na poziomie podstawowym

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna

EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja wiosenna EGZAMIN GIMNAZJALNY 2012 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja wiosenna Jaworzno 2012 SPIS TREŚCI 1. WPROWADZENIE... 3 2. WYNIKI SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH DOTYCZĄCE STANDARDOWYCH

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

Metodologia badań empirycznych z elementami statystyki.

Metodologia badań empirycznych z elementami statystyki. Metodologia badań empirycznych z elementami statystyki. A. Tematy zajęć: 1. Wprowadzenie. Kiedy i do czego w psychologii potrzebna jest znajomość zasad metodologii badań naukowych i statystyki?. Specyfika

Bardziej szczegółowo

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna

Bardziej szczegółowo

Warsztaty diagnostyczne Zastosowanie psychologii w zarządzaniu dr B.Bajcar

Warsztaty diagnostyczne Zastosowanie psychologii w zarządzaniu dr B.Bajcar Warsztaty diagnostyczne Zastosowanie psychologii w zarządzaniu dr B.Bajcar Nr zajęć Termin 1 16.02 2 23.02 Organizacja zajęć 3 1.03. 4 8.03 5 15.03 6 22.03 7 29.03 8 5.04 9 12.04 10 19.04 11 26.04 12 10.05

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Statystyka SYLABUS A. Informacje ogólne

Statystyka SYLABUS A. Informacje ogólne Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Badanie opinii Warsaw Watch. Oferta badawcza

Badanie opinii Warsaw Watch. Oferta badawcza Badanie opinii Warsaw Watch Oferta badawcza Kim jesteśmy? SW Research Agencja badań rynku i opinii Rok założenia 2011 Wizerunek Firma oferująca profesjonalne rozwiązania badawcze, usługi analityczne i

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2015 roku. Warszawa 2015 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

SYLABUS/ OPIS PRZEDMIOTU

SYLABUS/ OPIS PRZEDMIOTU 1. Nazwa przedmiotu w języku polskim SYLABUS/ OPIS PRZEDMIOTU Metodologia 2. Nazwa przedmiotu w języku angielskim Methodology 3. Jednostka prowadząca przedmiot Wydział Nauk Historycznych i Pedagogicznych,

Bardziej szczegółowo

ANALIZA DWUZMIENNOWA. czyli ABC KOREALCJI

ANALIZA DWUZMIENNOWA. czyli ABC KOREALCJI ANALIZA DWUZMIENNOWA czyli ABC KOREALCJI DZIASIAJ PoŜegnanie ze statystyką: Krótko o tym, co to znaczy, Ŝe e ze sobą korelują Jak te korelacje badać Kilka ćwiczeń praktycznych Skończymy 15 min wcześniej

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo