Rozszerzenie zmysłów poprzez komputer pomiary termiczne, optyczne ielektryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozszerzenie zmysłów poprzez komputer pomiary termiczne, optyczne ielektryczne"

Transkrypt

1 Rozszerzenie zmysłów poprzez komputer pomiary termiczne, optyczne ielektryczne Mario Gervasio, Marisa Michelini, Rossana Viola Research Unit in Physics Education, University of Udine, Italy Streszczenie: Przesłanki użycia komputera wszkolnym laboratorium są rozliczne, poczynając od uwarunkowań społecznych współczesnego świata po powody aparaturowe.przedstawionoprzykładyzastosowania komputera wtrzechgałęziachfizyki:1.czteropunktowy pomiartemperatury wfunkcji czasu, 2. pomiar natężenia światła wfunkcji położenia wzjawisku dyfrakcji i3. pomiar oporu elektrycznego nadprzewodników wfunkcji temperatury za pomocą metody czterech punktów.pomiary przeprowadzane były za pomocą sondy konstrukcji Uniwersytetu wudine. Expanding our senses by computer thermal, optical and electrical measurements Abstract:Thereasonstousethecomputerinschoollaboratoriesarediscussed,startingfromsocial demand and ending on technical advantages. Three examples of the use of computer at school experiments are shown variations of temperature vs. time by four point gauge, measurements of the light intensity vs. position in adiffraction experiment, dependence of resistance in superconductors vs. temperature. Measurements were done with the use of asystem constructed at the University of Udine. 1. Znaczenie czujników on-line wszkolnym laboratorium Społeczne, metodologiczno-dyscyplinarne i praktyczne powody przemawiają za użyciem komputerów wszkolnym laboratorium, gdyż: Nasze życie codzienne jest całkowicie skomputeryzowane, staje się zatem ważne ze społecznego punktu widzeniaprzygotowaniestudentówdokorzystaniazmetod inarzędzi technologii informacyjnej. Wlaboratoriach naukowych komputery zarządzają danymi isą nierozłączną (integralną) częścią badań naukowych. Eksperymenty on-line pozwalają studentom poznać metody badawcze fizyki. Na poziomie praktycznym, doświadczenia on-line oferują skuteczność, wydajność, oszczędność czasu, niezawodność, precyzję ipowtarzalność wyników pomiarów.co więcej,pozwalająonenatychmiastowoibezpośredniozapoznaćsięzprzebiegiemzjawiskafizycznego dzięki następującym możliwościom: obserwacjazdarzeńowiele szybszychiwolniejszych niż pozwala na to mierzenie ręczne pomiary wniedostępnych miejscach łatwiejsze gromadzenie danych, pozwalające na porównanie wyników na diagramach iwykresach, poszukiwaniecharakterystykiróżnychinformacjioanalizowanych systemach (np. energetycznych) badanieprocesównieliniowychdziękiszybkiemupobieraniu danych; jest to niemożliwe wtradycyjnym laboratorium,gdzie pomiary wykonujesię wpoczątkowymikońcowymstanierównowagi;pozwalatona porównanie danych doświadczalnych imodeli teoretycznych. Powyższe możliwości czynią przeprowadzanie doświadczeń wszkole bliższymi rzeczywistości, aprzez to bardziej interesującymi istymulującymi. Doświadczenia on-line pozwalają na: oszczędność czasu idobrą powtarzalność pomiarów, przez co jest możliwe skupienie uwagi na uzyskiwanych wynikach ina planowaniu eksperymentu gromadzenie dużej ilości danych pozwalające na użycie metod statystycznych skupienie uwagę na pojęciowym aspekcie procedury pomiaru, tj. ustawieniu ikalibracji systemu, wybieraniu czasu pomiaru, czułości, rozdzielczości itp. śledzenie wczasie rzeczywistym ewolucji zjawiska, co pobudza uczniów do szukania interpretacji oraz wspólnej dyskusji zastosowaniefunkcjikontrolieksperymentu,co pozwala na poznanie takich pojęć, jak sprzężenie zwrotne, stabilność, nieliniowość; pojęcia te są wprowadzeniem do automatyzacji procesów. Oczywiście, doświadczenia on-line nie mogą inie muszą być jedynym tylko sposobem przeprowadzania doświadczeń laboratoryjnych. POSTEPY FIZYKI TOM 60 ZESZYT6 ROK

2 2. Czujniki USB jako propozycja rozszerzenia zmysłów Skutecznie dydaktycznie pomiary on-line wlaboratoriach szkolnych, szczególnie na niższym poziomie nauczania (12 16 lat), wymagają używania prostych systemów, składających się zczujników połączonych bezpośrednio do komputera za pomocą portu USB. Zazwyczaj oprogramowanie oferuje kilka opcji iużytkownik może dokonać np. kalibracji czujnika, włączyć pomiar, zarządzać plikami, ustawiać czas próbkowania,wybieraćliczbę użytych czujników, ustalać skale wykresów itd. Przedstawimy teraz 3przykłady systemów do pomiarów zjawisk termicznych, optycznych ielektrycznych. 3. Pomiary temperatury wczasie rzeczywistym za pomocą układu TERMOCRONO Termocrono to układ on-line umożliwiający pomiary temperatury wczasie rzeczywistym za pomocą czterech czujników.pozwalaon na śledzenienietylkostanówustalonychaleiprocesówtermodynamicznych.podłączeniedo komputera zrealizowane jest za pomocą portu USB. System pomiarowyskładasię zczęści sprzętowejiprogramu. Część sprzętowa zawiera układ do zbierania danych oraz układ konwersji analogowo-cyfrowej.pomiar temperatury jest oparty na mierzeniu wstecznego prądu nasycenia diody germanowej spolaryzowanej zaporowo. Opór diody germanowejspolaryzowanejzaporowo zależy silnie od temperatury. Konwersja jest typu prądowo-czasowego i wykorzystuje dokładność komputerowego oscylatora kwarcowego. Prąd płynący przez każdą zdiod (z tego samego zasilania komputera) ładuje kondensator podłączony do komparatoranapięcia, który reaguje na zadaną minimalną imaksymalną wartość napięcia. Generator monostabilny wytwarzafalęprostokątną,począwszyodmomentu,wktórym została zarejestrowanazadanaminimalnawartośćnapięcia, aż do momentu, wktórym zarejestrowano maksymalną wartość napięcia. Wten sposób czas, przez jaki jest generowana fala, zależy od czasu ładowania się kondensatora, ten zaś od oporu diody wmomencie pomiaru (zgodnie ze wzorem na stałą czasowąτ=rc). Czas trwania fali prostokątnej jest mierzony za pomocą oscylatora kwarcowego (16 MHz) zliczana jest liczba impulsów fali. Liczba ta zależy bezpośrednio od temperaturydiody.licznikimpulsówjest32-bitowy;22-gi bit (tj zliczeń) przerywa pomiar: powyżej tej wartości czujnik może pracować niepoprawnie. Karta interfejsu, używająca mikrokontrolera18f252 firmy Microchip Technology, jest użyta do czytania wtym samym czasie czterechzliczeń zczterech niezależnychczujników. ZliczeniasąprzesyłanedokomputeraprzezportUSBprzy użyciu dekodującego modułu FT245BM. Rysunek 1pokazuje układ znajdujący się wmałym pudełku (9 cm 4cm 1,5 cm). Diodowe czujniki temperaturowe są połączone do czterech kabli bipolarnych (o długości 2m), które są podłączone do pudełka przez jeden tylko łącznik. Cztery czujniki mogą być użyte także niezależnie. Rys. 1. Układ do wykrywania sygnałów ikonwerter analogowo-cyfrowy nabyty przez Termocrono Rysunek 2pokazuje interfejs użytkownika: umożliwia on wizualizację wtym samym czasie wykresu danych zjednego lub wszystkich czujników. Skala wykresów może być dynamiczna lub zadana. Specyficzna funkcja układu pozwala na kalibrację przez porównanie zinnym termometrem wminimalnej (2) imaksymalnej (15) liczbie termicznie równowagowychstanów.wartości temperaturysą wyznaczaneprzezukład poprzezdopasowanie pomiędzy punktami kalibracji, przy zastosowaniu regresji nieliniowej. Rys. 2. Interfejs użytkownika oprogramowania układu Termocrono Zakres pomiarowy układu wynosi [ 10 C,+100 C], czułość:0,1 C,dokładnośćpomiaru:±0,3 C.Każdagrupa POSTEPY FIZYKI TOM 60 ZESZYT6 ROK

3 czujników wymaga kalibracji przed użyciem. Kalibracja jest stabilna dla tej samej grupy sprzętu komputerowego. Funkcja programu Real Time Plot uruchamia pomiar. Pomiar jest dokonywany co sekundę ina ekranie komputera pojawia się wykres wczasie rzeczywistym. Wykresy itabelkimogąbyćzapisywanenadysku,abymożnajeponowniewczytaćdo badaniai/lub wydrukować.formatzapisutabelekzdanymijestzgodnyzkażdymarkuszemkalkulacyjnym. Układ może współpracować zkażdym komputerem posiadającym port USB Przykłady pomiarów Układ pomiarowy Termocrono dzięki swojej prostocie ielastyczności [Michelini istefanel, 2004; Michelini ipighin, 2005] proponowany jest jako rozszerzenie zmysłów dla doświadczalnego badania zjawisk przyrodniczych przez młodszych uczniów lub nawet przedszkolaków. Dzięki czułości, dokładności iszybkości pobierania danych, pozwala doświadczalnie badać procesy dynamiczne. Pozwala on także na badanie stanów przejściowych inietrwałych, takich jak impulsy ifale termiczne [Mazzera 1996]. Poniżej zaprezentowano kilka przykładów pomiarów, istotnych zróżnych powodów dla zrozumienia znaczenia pomiaru temperatury izerowej zasady termodynamiki. A) Dwa czujniki znajdują się na stole; student bierze wręcepierwszyznich,następnieobaiwkońcuponownie kładzie jeden czujnik na stół. Todoświadczenie uświadamia studentowi, że: stółijegoręcesą dwomaukładamioróżnychistałych temperaturach, czujnik mierzy swoją temperaturę, informację o temperaturze otrzymuje się tylko wtedy,kiedyczujnikiukładsąwrównowadzetermicznej, różnica długości czasu trwania faz ogrzewania ioziębiania czujnika jest spowodowana przez różne efektywności sprzężenia termicznego. B) Na rysunku 3pokazano zmiany wczasie temperatury dwóch mas wody (m 1 =300 gwt 1 =10,2 C im 2 =150 gwt 2 =49,8 C). Układ jest złożony zpojemnika zawierającego wodę omasie m 1 iwłożonego do drugiegopojemnika,zwodąomasiem 2.Dwaukładydążą do wspólnej temperatury równowagowej, tj. średniej wa- Rys. 3. Ewolucja wczasie temperatury dwóch mas wody: 300gi150gotemperaturzepoczątkowejodpowiednio10,2 C i49,8 C żonej temperatur początkowych, gdzie wagą statystyczną są masy tych ciał (praworównowagitermicznejfouriera). Końcowątemperaturąstanurównowagijest24,1 C,copozwala obliczyć równoważne masy pojemników ( równoważne masie wody). C) Czujnikileżąnastole(wtemperaturzepokojowej) isą przykrytefoliami zróżnychmateriałów (np.folią metalową, folią plastikową, kartonem); student kładzie rękę na czujniku iczeka na stan równowagi termicznej. Todoświadczenieuświadamiastudentowi,żeczujniki osiągajątakąsamątemperaturę,alewróżnymczasie,który zależy od grubości folii ijej przewodności cieplnej. D)Rysunek4pokazujedaneotrzymane,kiedycztery czujniki są pokryte różnymi masami aluminium (0, 2, 4 i10 g) oraz zostały włożone wdużą masę ciepłej wody (proces izotermiczny). Rys.4. Ewolucjawczasietemperatury 4czujników zróżnymi masami wwielkiej ilości ciepłej wody Zależność uzyskania równowagi masy aluminium od czasu pozwala zrozumieć znaczenie pojęcia czasu odpowiedzi systemu oraz go obliczyć, Możliwe jest badania wykładniczejzależnościzmiantemperaturywtrakcieosiągania równowagi termicznej. 4. Prosty układ do eksperymentów dyfrakcyjnych: Lucegrafo Przedstawiamy poniżej opis sprzętu komputerowego ioprogramowania dla prostych, domowych układów pomiaru on-line natężenia światła wfunkcji położenia. Wyposażenie zestawu doświadczalnego jest elementarne: komercyjny potencjometr liniowy ze znacznikiem, fototranzystor,pudełko montażowe, kabel USB. Rysunek 5pokazujefototranzystorwłożonywaluminiowąobudowęrazemzsuwakiempotencjometrutak, aby sygnał optyczny był skorelowany zpołożeniem poprzez opór potencjometru. Mały prostokątny ekran (12 cm 2cm),umieszczonynawspólnympostumenciepozwalana jakościową ocenę rozkładu natężenia światła. Wcentrum ekranu jest otwór (o powierzchni 1mm 2 )pełniący rolę diafragmy dla sensora optycznego. Dodatkowo możliwe POSTEPY FIZYKI TOM 60 ZESZYT6 ROK

4 jest zamontowanie regulacji położenia za pomocą śruby mikrometrycznej. Oba czujniki (potencjometru ifototranzystora) są połączone do procesora komputera przez port USB. Kalibracja systemu jest wykonywana przez pomiar intensywnościświatławfunkcjiodległościodpunktowego źródła. Eksperymentalna zależność intensywności światła od kwadratu odległości jest zarówno potwierdzeniem założonej funkcji transferu jak isposobem na znalezienie nieznanych parametrów układu. A) Badanie rozkładu natężenia światła wobrazie dyfrakcji. Jakościowe badanie obrazu dyfrakcji na ekranie przy zmianie odległości D pomiędzy szczeliną a ekranem: ekran przechwytuje stały kątowy rozkład natężenia światła tak, że odległości minimów imaksimów od centralnego maksimum wzrastają proporcjonalnie do odległości D. Układ ten nie może przedstawić wtej samej skali natężenia zarówno centralnego maksimum jak itych leżących wpobliżu, chyba że natężenie wejściowe zostanie zredukowane (porównaj rys. 7irys. 8). Daje to możliwośćdyskusjizarównocharakterystykobrazudyfrakcjijak idziałania czujników optycznych. Rys. 5. Układ Lucegrafo Rys. 7. Obraz dyfrakcji zukładem wzakresie minimum czułości Rys. 6. Aparat do pomiarów Układ posiada 3przedziały czułości tak, aby zmierzyć natężenie maksimów dyfrakcyjnych aż do 12-tego maksimum oraz maksimum centralne; pomiaru dokonujemywodległości2modpojedynczegootworuośrednicy 0,1 mm, przy użyciu lasera odługości faliλ 650 Å. Oprogramowanie: Podczas pomiaru układ zbiera iprzedstawia na ekranie pary wartości (I,x) (natężenie światła, położenie), zarówno wformie graficznej inumerycznej, Pomiary dokonywane są co 1s, tak więc przesuwając kursor liniowo otrzymujesięwciągu10minutprzestrzennyrozkładnatężenia światła na długości60 cm. Pomiar ten jest przedstawianywpostacizależnościliniowej:natężenienawykresie jest przedstawione warbitralnie wybranych jednostkach, proporcjonalnych do natężenia światła oddziałującego na czujnik. Poniżej przedstawiono kilka przykładów ćwiczeń, niemożliwych do przeprowadzenia wtradycyjnych laboratoriach dydaktycznychbez czujników komputerowych. Rys.8. Obrazdyfrakcji zukładem wzakresiemaksimumczułości B) Analiza wysokości maksimum PrawodyfrakcjiwprzybliżeniuFraunhoferadlanatężeniaświatła I M wmaksimumrzędu M>0wodniesieniu do natężenia maksimum centralnego I 0 : I M 4 = I 0 π 2 (2M+1) 2 wyraża proporcjonalność pomiędzy szczytowym pikiem aodwrotnością kwadratu odległości od centralnego maksimum na ekranie. POSTEPY FIZYKI TOM 60 ZESZYT6 ROK

5 Itak,przezwprowadzenieprzybliżonejzależnościdla położenia maksimum: X M X 0 D =(2M+1) λ 2a równanie poprzednie może być zapisane prościej: I ( M Dλ ) 2 1 = I 0 πa (X M X 0 ) 2 1 ( πa ) 1 = (X M X 0 ) IM Dλ I0 Wykreślając 1/ I M wzależności od X M X 0 otrzymuje się, wprzybliżeniu, linię prostą (rys. 9). umożliwiającymi pomiar napięcia na próbce (pomiędzy dwoma wewnętrznymi punktami styczności) do poziomu oporu rzędu milioma. Napięcie kontaktowe na stykach możnapominąć,ponieważwyjściowenapięcieodniesienia możebyćustalonepoprzezukładpomiarowy;minimalizujemywtensposóbprądwejściowywzmacniaczaoperacyjnego.zakreswzmocnieniawynosiod5(otwarcieobwodu) do1000.drugiwzmacniaczgwarantujemierzonewartości rzędu mv.pomiartemperaturyjest prowadzonyprzezplatynowy opornikpt100 (R=100Ωw0 C)orozdzielczości 0,4Ω/ C.12-bitowy przetwornik analogowo-cyfrowy (ADC) wystarcza do pomiaru temperatury wzakresie roboczym zdokładnością lepszą od 0,1 C. Pozyskiwanie danych ioprogramowanieinterfejsu: Pomiary temperatury ioporności właściwej są przeprowadzane przy użyciu 12-bitowego przetwornika ADC oraz programowalnego multipleksera PIC 18F252 firmy Microchip Technology. Dane są dostarczane przez USB przy użyciu modułu dekodera. Interfejs (rys. 10) jest bardzoprostyiprzyjazny.wykresysągenerowanenaekranie wczasie rzeczywistym. Rys.9.Odwrotnośćpierwiastkakwadratowegonatężeniamaksimum jako funkcja jego odległości od maksimum głównego. Przypadekdlaszczeliny12µmiodległości ekranu D=1,4m. Natężenie maksimum głównego może zostać obliczone zkąta nachylenia prostej przechodzącej przez początek układu współrzędnych, korzystając znatężenia pozostałych maksimów. 5. Pomiar oporu nadprzewodników wfunkcji temperatury Rozwiązania elektroniczne dla pomiarów: Opór próbki jest mierzony wczterech punktach nadprzewodnikależących na linii prostej,za pomocąpomiaru napięcia pomiędzy dwoma wewnętrznymi punktami, przy natężeniu prądu przepływającego (między punktami zewnętrznymi) 100 ma. Ustaloną stałą wartość prądu otrzymujesię przez podanie stałego napięcia odniesienia za pomocą diody Zenera wobwodzie zdwoma wzmacniaczami operacyjnymi Rys. 10. Interfejs użytkownika Skrzynka pomiarowa Rysunek 11 przedstawia układ pomiarowy. Cylindryczne pudełko A1 stanowi przestrzeń grzewczą. Pręt Rys. 11. Układ pomiarowy oporu nadprzewodników POSTEPY FIZYKI TOM 60 ZESZYT6 ROK

6 miedzianypojemnikazostajeumieszczonywciekłymazocie.grzejnikskładasięzdwóchoporników100ω(1watt) wukładzierównoległym,umieszczonychnapodstawiepojemnikaa1. Wzrost temperaturyjest regulowanyvia software za pomocą potencjometru typu helipot podłączonego do tranzystora mocy stabilizującego prąd grzejnika. Pomiary oporu przeprowadzasię na rampie zmian temperatury. Układ testujący Czujnik temperatury jest połączony zpróbką wpudełku A1 aprzewody są zebrane wprzykrywce termosu zawierającego ciekły azot. Testowanie danych Na rysunku 12 pokazano otrzymywanie danych na rampie zmian temperatury 0,02 C/s. Rys.12.Otrzymywaniedanychzkomercyjnej próbkinadprzewodnika grzanej zprędkością 0,02 Cna sekundę Literatura [1] M. Michelini, L elaboratore nel laboratorio didattico di fisica: nuove opportunità per l apprendimento, Giornale di Fisica XXXIII, 4, 1992, p [2] E. Mazzega, M. Michelini, Termograjb: un sistema per misure di temperatura on-line nel laboratorio didattico, La Fisica nella Scuola XXII, 4, 1990, p. 38. [3] D. Girardini, A. Sconza, E. Mazzega. M. Michelini, Studiodellaconduzione del caloreconl utilizzodelcomputer on-line, La Fisica nella Scuola XXIV, 2, 1991, p. 71. [4] E.Mazzega, M.Michelini, On-linemeasurements ofthermal conduction in solids: an experiments for high school and undergraduate students, Teaching the Science of CondensedMatterandNewMaterials,GIREP-ICPEBook,Forum [5] E. Mazzega, M. Michelini, Termografo: a computer on-line acquisition system for physics education, Teaching the Science of Condensed Matter and New Materials, GIREP-ICPEBook, Forum 1996, p. 239; M. Gervasio, M. Michelini, TERMOCRONO. Un semplice sistema economicoeflessibilepermisureditemperaturaintemporeale, Didamatica 2006 Atti, red. A. Andronico, F. Aymerich, G. Fenu, AICA, Cagliari 2006, p [6] V. Mascellani, E. Mazzega, M. Michelini, Nuove opportunità di apprendimento in ottica mediante l uso dell elaboratore, La Fisica nella Scuola XXII, suppl. 4, 4, 1989, p. 48. [7] V.Mascellani, E. Mazzega, M. Michelini, Un sistema per esperienze di ottica on-line eindicazioni per attività didattiche nello studio della dffiazione ottica, La Fisica nella Scuola XXV, (Speciale congiunto AIF-SIF), 1992, p. l32. [8] F. Corni, V.Mascellani, E. Mazzega, M. Michelini, G. Ottaviani, A simple on-line system employed in experiments, Light and Information, GIREPAbstract Book, red. L.C. Pereira, J.A. Ferreira, H.A. Lopes, Univ.do Minho, Braga [9] A.Frisina,M.Michelini, Physicalopticswithon-linemeasurements of light intensity,teaching the Science of CondensedMatterandNewMaterials,GIREP-ICPEBook,Forum 1996, p Tłumaczenie: dr Przemysław Miszta POSTEPY FIZYKI TOM 60 ZESZYT6 ROK

Rozszerzenie zmysłów poprzez komputer pomiary termiczne, optyczne i elektryczne

Rozszerzenie zmysłów poprzez komputer pomiary termiczne, optyczne i elektryczne Rozszerzenie zmysłów poprzez komputer pomiary termiczne, optyczne i elektryczne Mario Gervasio, Marisa Michelini, Rossana Viola Research Unit in Physics Education, University of Udine, Italy Streszczenie:

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0 2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Badanie własności diód krzemowej, germanowej, oraz diody Zenera

Badanie własności diód krzemowej, germanowej, oraz diody Zenera 23 kwietnia 2001 Ryszard Kostecki Badanie własności diód krzemowej, germanowej, oraz diody Zenera Streszczenie Celem tej pracy jest zapoznanie się z tematyką i zbadanie diód krzemowej, germanowej, oraz

Bardziej szczegółowo

Zastosowania nieliniowe wzmacniaczy operacyjnych

Zastosowania nieliniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Uniwersytet Wirtualny VU2012

Uniwersytet Wirtualny VU2012 XII Konferencja Uniwersytet Wirtualny VU2012 M o d e l N a r z ę d z i a P r a k t y k a Andrzej ŻYŁAWSKI Warszawska Wyższa Szkoła Informatyki Marcin GODZIEMBA-MALISZEWSKI Instytut Technologii Eksploatacji

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p) 1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

A6: Wzmacniacze operacyjne w układach nieliniowych (diody) A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka

Bardziej szczegółowo

E104. Badanie charakterystyk diod i tranzystorów

E104. Badanie charakterystyk diod i tranzystorów E104. Badanie charakterystyk diod i tranzystorów Cele: Wyznaczenie charakterystyk dla diod i tranzystorów. Dla diod określa się zależność I d =f(u d ) prądu od napięcia i napięcie progowe U p. Dla tranzystorów

Bardziej szczegółowo

Badanie własności fotodiody

Badanie własności fotodiody Badanie własności fotodiody Ryszard Kostecki 13 maja 22 Wstęp Celem tego doświadczenia było wykonanie charakterystyki prądowo-napięciowej fotodiody dla różnych wartości natężenia padającego światła, a

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Ciało Doskonale Czarne

Ciało Doskonale Czarne Marcin Bieda Ciało Doskonale Czarne (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL)

Bardziej szczegółowo

Przegląd urządzeń pomiarowych do lamp UV

Przegląd urządzeń pomiarowych do lamp UV Przegląd urządzeń pomiarowych do lamp 1. Integratory Dysk A002400 A003371 () A004346 () A003909 () A002915 (-Vis) A004192 (-LED) pełny zakres pomiar dawki y pomiarowe: Dysk Pełny zakres : 250 410 nm (standardowo)

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+)

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+) Autor: Piotr Fabijański Koreferent: Paweł Fabijański Zadanie Obliczyć napięcie na stykach wyłącznika S zaraz po jego otwarciu, w chwili t = (0 + ) i w stanie ustalonym, gdy t. Do obliczeń przyjąć następujące

Bardziej szczegółowo

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW Laboratorium Podstaw Miernictwa Wiaczesław Szamow Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW opr. tech. Mirosław Maś Uniwersytet Przyrodniczo - Humanistyczny Siedlce 2011 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

2.1 Cechowanie termopary i termistora(c1)

2.1 Cechowanie termopary i termistora(c1) 76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Nowoczesne sieci komputerowe

Nowoczesne sieci komputerowe WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 1 Dąbrowa Górnicza, 2010

Bardziej szczegółowo

E-II. Dyfrakcja na falach na wodzie związanych z napięciem powierzchniowym Wstęp

E-II. Dyfrakcja na falach na wodzie związanych z napięciem powierzchniowym Wstęp Str. 1 z 6 Dyfrakcja na falach na wodzie związanych z napięciem powierzchniowym Wstęp Powstawanie i propagacja fal na powierzchni cieczy to ważne i dobrze zbadane zjawiska. Dla tych fal siłami zawracającymi

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

TEMAT: WYZNACZANIE CIEPŁA WŁAŚCIWEGO WODY ZA POMOCĄ CZAJNIKA ELEKTRYCZNEGO LUB GRZAŁKI O ZNANEJ MOCY (PRZY ZAŁOŻENIU BRAKU STRAT)

TEMAT: WYZNACZANIE CIEPŁA WŁAŚCIWEGO WODY ZA POMOCĄ CZAJNIKA ELEKTRYCZNEGO LUB GRZAŁKI O ZNANEJ MOCY (PRZY ZAŁOŻENIU BRAKU STRAT) TEMAT: WYZNACZANIE CIEPŁA WŁAŚCIWEGO WODY ZA POMOCĄ CZAJNIKA ELEKTRYCZNEGO LUB GRZAŁKI O ZNANEJ MOCY (PRZY ZAŁOŻENIU BRAKU STRAT) Autor: Tomasz Kocur Podstawa programowa, III etap edukacyjny Cele kształcenia

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

LVII Olimpiada Fizyczna (2007/2008)

LVII Olimpiada Fizyczna (2007/2008) LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

E107. Bezpromieniste sprzężenie obwodów RLC

E107. Bezpromieniste sprzężenie obwodów RLC E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie

Bardziej szczegółowo

PRZENOŚNY MIERNIK MOCY RF-1000

PRZENOŚNY MIERNIK MOCY RF-1000 PRZENOŚNY MIERNIK MOCY RF-1000 1. Dane techniczne Zakresy pomiarowe: Dynamika: Rozdzielczość: Dokładność pomiaru mocy: 0.5 3000 MHz, gniazdo N 60 db (-50dBm do +10dBm) dla zakresu 0.5 3000 MHz 0.1 dbm

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

PANEL SŁONECZNY NXT. Rozpocznij

PANEL SŁONECZNY NXT. Rozpocznij Panel Słoneczny NXT Panel Słoneczny NXT Opis Zadanie polega na badaniu możliwości generowania prądu przez panel słoneczny poprzez analizę mocy wyjściowej urządzenia [W]. Eksperymentalnie sprawdzony zostanie

Bardziej szczegółowo

WYZNACZANIE KĄTA BREWSTERA 72

WYZNACZANIE KĄTA BREWSTERA 72 WYZNACZANIE KĄTA BREWSTERA 72 I. ZAGADNIENIA TEORETYCZNE Polaryzacja światła. Zjawisko polaryzacji światła przy odbiciu od powierzchni dielektrycznej kąt Brewstera. Prawa odbicia i załamania światła na

Bardziej szczegółowo

AP Automatyka: Sonda do pomiaru wilgotności i temperatury HygroClip2-S

AP Automatyka: Sonda do pomiaru wilgotności i temperatury HygroClip2-S AP Automatyka: Sonda do pomiaru wilgotności i temperatury HygroClip2-S Do aplikacji związanych z kontrolą wilgotności względnej i temperatury powietrza, w których liczy się dokładność pomiarów, proponujemy

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 UKŁADY UZALEŻNIEŃ CZASOWYCH Białystok 2014

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika Przystawka oscyloskopowa z analizatorem stanów logicznych Seria DSO-29xxA&B Skrócona instrukcja użytkownika Zawartość zestawu: Przystawka DSO-29XXA lub DSO-29XXB Moduł analizatora stanów logicznych Sondy

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Rejestrator temperatury i wilgotności AX-DT100. Instrukcja obsługi

Rejestrator temperatury i wilgotności AX-DT100. Instrukcja obsługi Rejestrator temperatury i wilgotności AX-DT100 Instrukcja obsługi Wstęp Rejestrator temperatury i wilgotności wyposażony jest w bardzo dokładny czujnik temperatury i wilgotności. Głównymi zaletami rejestratora

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Badanie diody półprzewodnikowej Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Wyznaczanie charakterystyki statycznej diody spolaryzowanej w kierunku przewodzenia Rysunek nr 1. Układ do wyznaczania

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Ziemskie pole magnetyczne

Ziemskie pole magnetyczne Ćwiczenie nr 27 Ćwiczenie nr 08 (27). Pomiar natężenia pola magnetycznego ziemskiego. Ziemskie pole magnetyczne Cel ćwiczenia. Wyznaczenie indukcji magnetycznej ziemskiego pola magnetycznego. Zagadnienia

Bardziej szczegółowo

EKG (Elektrokardiogram zapis czasowych zmian potencjału mięśnia sercowego)

EKG (Elektrokardiogram zapis czasowych zmian potencjału mięśnia sercowego) 6COACH 26 EKG (Elektrokardiogram zapis czasowych zmian potencjału mięśnia sercowego) Program: Coach 6 Projekt: na ZMN060c CMA Coach Projects\PTSN Coach 6\EKG\EKG_zestaw.cma Przykład wyników: EKG_wyniki.cma

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

Załącznik D1. Instrukcja realizacji pomiarów z wykorzystaniem zestawów FWD

Załącznik D1. Instrukcja realizacji pomiarów z wykorzystaniem zestawów FWD Załącznik D1. Instrukcja realizacji pomiarów z wykorzystaniem zestawów FWD 1. Wprowadzenie Zespół pomiarowy. Zaleca się, aby zespół pomiarowy zestawu FWD składał się z kierowcy oraz operatora sprzętu.

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 3 A

Instrukcja do ćwiczenia laboratoryjnego nr 3 A Instrkcja do ćwiczenia laboratoryjnego nr 3 A Temat: Pomiar rezystancji dynamicznej wybranych diod Cel ćwiczenia. Celem ćwiczenia jest poznanie metod wyznaczania oraz pomiar rezystancji dynamicznej (róŝniczkowej)

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki) Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA

SPECYFIKACJA TECHNICZNA Załącznik Nr 10 SPECYFIKACJA TECHNICZNA Zakup, dostawa i instalacją dwóch sztuk zestawów elektrochemicznych, stanowiących wyposażenie laboratoryjne dla potrzeb Katolickiego Uniwersytetu Lubelskiego w Stalowej

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Wzorcowanie mierników temperatur Błędy pomiaru temperatury

Wzorcowanie mierników temperatur Błędy pomiaru temperatury Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo Energetyczne laboratorium Wzorcowanie mierników temperatur Błędy pomiaru temperatury Instrukcja do ćwiczenia nr 3 Opracował: dr

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

- Porównanie reflektometrów optycznych - IDEAL OTDR & Noyes M200 - Kolorowy wyświetlacz dotykowy

- Porównanie reflektometrów optycznych - IDEAL OTDR & Noyes M200 - Kolorowy wyświetlacz dotykowy - Porównanie reflektometrów optycznych - IDEAL & Noyes - Specyfikacja ogólna Wyświetlacz IDEAL Quad & MM rozdzielczości Kolorowy wyświetlacz dotykowy Wymiary 250 x 125 x 75 mm 230 x 110 x 70 mm Waga z

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię

Bardziej szczegółowo

Research & Development Ultrasonic Technology / Fingerprint recognition DATA SHEETS. Opis karty OPCONZ. http://www.optel.pl email: optel@optel.

Research & Development Ultrasonic Technology / Fingerprint recognition DATA SHEETS. Opis karty OPCONZ. http://www.optel.pl email: optel@optel. Research & Development ltrasonic Technology / Fingerprint recognition DATA SHEETS & Opis karty OPCONZ http://www.optel.pl email: optel@optel.pl Przedsiębiorstwo Badawczo-Produkcyjne OPTEL Spółka z o.o.

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Czujniki podczerwieni do bezkontaktowego pomiaru temperatury. Czujniki stacjonarne.

Czujniki podczerwieni do bezkontaktowego pomiaru temperatury. Czujniki stacjonarne. Czujniki podczerwieni do bezkontaktowego pomiaru temperatury Niemiecka firma Micro-Epsilon, której WObit jest wyłącznym przedstawicielem w Polsce, uzupełniła swoją ofertę sensorów o czujniki podczerwieni

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

Pomiar napięcia w zakresie V z dokładnością +_2% możliwy jest pomiar napięcia stałego jak i zmiennego w niskim zakresie.

Pomiar napięcia w zakresie V z dokładnością +_2% możliwy jest pomiar napięcia stałego jak i zmiennego w niskim zakresie. SenseDisc Basic Full SenseDisc Basic jest głównie stosowany do początkowych badań naukowych. Wyposażony w łącze bezprzewodowe wiele małych czujników modułowych. Wszystko co jest potrzebne aby rozpocząć

Bardziej szczegółowo

Miernik i regulator temperatury

Miernik i regulator temperatury Miernik i regulator temperatury Model M-10 do Dydaktycznego Systemu Mikroprocesorowego DSM-51 Instrukcja uŝytkowania Copyright 2007 by MicroMade All rights reserved Wszelkie prawa zastrzeŝone MicroMade

Bardziej szczegółowo

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu.

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Efekt Dopplera Cel ćwiczenia Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Wstęp Fale dźwiękowe Na czym

Bardziej szczegółowo

Układ RC ładowanie kondensatora

Układ RC ładowanie kondensatora Układ C ładowanie kondensatora Cele Zbadanie procesu ładowania kondensatora w szeregowym obwodzie C. Wyznaczenie stałej czasowej obwodu i obliczenie ładunku zgromadzonego w kondensatorze. Opis zjawiska

Bardziej szczegółowo

Wyznaczanie cieplnego współczynnika oporności właściwej metali

Wyznaczanie cieplnego współczynnika oporności właściwej metali Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 5 V 2009 Nr. ćwiczenia: 303 Temat ćwiczenia: Wyznaczanie cieplnego współczynnika oporności właściwej metali

Bardziej szczegółowo

MEOMSy - laboratorium

MEOMSy - laboratorium MEOMSy - laboratorium Ćwiczenie nr 2 Optyczny światłowodowy miernik odległości jako precyzyjne narzędzie do pomiaru ugięcia membrany krzemowej Cel i zakres ćwiczenia: Pomiar ugięcia membrany krzemowej

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA

LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA 1. Lutowanie lutowania ołowiowe i bezołowiowe, przebieg lutowania automatycznego (strefy grzania i przebiegi temperatur), narzędzia

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 1 Temat: PRZYRZĄDY POMIAROWE Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Wprowadzenie

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawo Ohma. Ćwiczenie wirtualne. Marcin Zaremba 2014-03-31

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawo Ohma. Ćwiczenie wirtualne. Marcin Zaremba 2014-03-31 Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawo Ohma Ćwiczenie wirtualne Marcin Zaremba 2014-03-31 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

Kalorymetr wyznaczanie ciepła właściwego i ciepła topnienia

Kalorymetr wyznaczanie ciepła właściwego i ciepła topnienia Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Kalorymetr wyznaczanie ciepła właściwego i ciepła topnienia Ćwiczenie wirtualne Marcin Zaremba 2015-03-31 Projekt

Bardziej szczegółowo

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/5 Stabilizator liniowy Zadaniem jest budowa i przebadanie działania bardzo prostego stabilizatora liniowego. 1. W ćwiczeniu wykorzystywany

Bardziej szczegółowo

Kamera termowizyjna MobIR M8. Dane Techniczne

Kamera termowizyjna MobIR M8. Dane Techniczne Kamera termowizyjna MobIR M8 Dane Techniczne Termowizyjny Typ detektora: Zakres spektralny: Czułość sensora: Pole widzenia/ Ogniskowa: Ostrzenie obrazu: Zbliżenie elektroniczne: Obraz Niechłodzony FPA

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów LABORATORIM ELEKTRONIKI Spis treści Ćwiczenie - 4 Podstawowe układy pracy tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe układy pracy tranzystora........................ 2 2.2 Wzmacniacz

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo