Wyznaczanie współczynnika logp i Kd jako podstawowych parametrów fizykochemicznych służących do oceny losu środowiskowego substancji chemicznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie współczynnika logp i Kd jako podstawowych parametrów fizykochemicznych służących do oceny losu środowiskowego substancji chemicznych"

Transkrypt

1 Ćwiczenie 2 Wyznaczanie współczynnika logp i Kd jako podstawowych parametrów fizykochemicznych służących do oceny losu środowiskowego substancji chemicznych PRACOWNIA DYPLOMOWA III ROK AGROCHEMII Zakład Analizy Środowiska, Wydział Chemii, Uniwersytet Gdański 1

2 1. Współczynnik podziału n-oktanol-woda Potencjał rozprzestrzeniania się związku chemicznego w środowisku oraz jego aktywność biologiczna wiąże się w sposób bezpośredni z jego cechami fizykochemicznymi (tj. właściwości elektronowe, steryczne, potencjał tworzenia wiązań wodorowych i inne). Jednak najbardziej użytecznym parametrem w przewidywaniu rozprzestrzeniania się potencjalnego zanieczyszczenia w środowisku, a także prognozowania jego aktywności toksycznej jest lipofilowość - parametr będący wypadkową kilku takich cech. Lipofilowość charakteryzuje powinowactwo związku chemicznego do fazy lipidowej i wodnej, a jej miarą jest stosunek równowagowych stężeń rozpuszczonej substancji w układzie dwufazowym, składającym się z dwóch niemieszających się rozpuszczalników. Zgodnie z prawem Nernsta, w warunkach równowagi termodynamicznej, w stałej temperaturze i przy stałym ciśnieniu, stosunek stężeń (a dokładniej aktywności) rozpuszczonej substancji w obu takich rozpuszczalnikach jest wielkością stałą, zwaną współczynnikiem podziału. Należy zaznaczyć, iż wartość współczynnika podziału nie zależy od aktywności substancji rozpuszczonej, jest natomiast cechą charakterystyczną dla danego układu dwóch rozpuszczalników i jednej substancji rozpuszczonej, zależną od temperatury i ciśnienia. Praktyczne znaczenie lipofilowości polega na możliwości przewidywania, w jakim stopniu dany związek będzie miał tendencję do gromadzenia się w tkankach organizmów żywych. Im bardziej substancja jest lipofilowa, tym większa jest tendencja do jej gromadzenia w organizmie ( bioakumulacji) i przenoszenia się wzdłuż łańcuchów pokarmowych (biomagnifikacji ). Przyjęto, że rozpuszczalnikami najlepiej odwzorowującymi układ faz polarnych i niepolarnych w ustroju biologicznym oraz środowisku naturalnym są n-oktanol i woda. Rozpuszczalniki te po zmieszaniu tworzą dwie rozseparowane fazy, przy czym ze względu na wzajemną częściową rozpuszczalność jest to układ zawierający oktanol nasycony wodą (2,3 mol/l) oraz wodę nasyconą oktanolem (4,5 x10-3 wyrażany ilorazem dwóch stężeń substancji rozpuszczonej: P =!"#$!" mol/l). Współczynnik podziału P jest gdzie: C okt (mol/l) stężenie molowe substancji w oktanolu a C w (mol/l) stężenie molowe substancji w wodzie. Współczynnik taki mierzy się w 25 o C, przy stężeniu substancji badanej nie wyższym niż 0,01 mol/l. W takim układzie, jeżeli większa ilość cząsteczek badanego związku chemicznego znajdzie się w fazie oktanolowej, to mamy do czynienia ze związkiem (1) 2

3 lipofilowym (hydrofobowym). Jeżeli zaś większość pozostanie w fazie wodnej, będzie to związek lipofobowy (hydrofilowy). W fazie oktanolowej, dominującymi staną się oddziaływania dyspersyjne pomiędzy hydrofobowymi fragmentami cząsteczki rozpuszczonego związku a łańcuchem alkilowym noktanolu, podczas gdy nieco mniejsze znaczenie odgrywać tu będą oddziaływania dipol-dipol czy wiązania wodorowe z grupą hydroksylową alkoholu. Wynika stąd jednak, iż n-oktanol posiada zarówno właściwości lipojak i hydrofilowe, a cechę taką nazywa się amfifilowością. Zjawisko to przedstawiono schematycznie na rysunku 1, gdzie uwidoczniono cząsteczkę rozpuszczonego benzenu w n- oktanolu (oddziaływania dyspersyjne), w którym równocześnie rozpuszczona jest woda (oddziaływania dipol-dipol i wiązania wodorowe). W fazie wodnej z kolei, występować będą niemal wyłącznie wiązania wodorowe oraz oddziaływania dipol-dipol pomiędzy polarnymi fragmentami cząsteczki związku rozpuszczonego a wodą. Rysunek 1. Oddziaływania międzycząsteczkowe substancji rozpuszczonych w n-oktanolu. Wartość współczynnika podziału zależy zarówno od budowy chemicznej cząsteczki rozpuszczonego związku (liczba i rodzaj różnych grup funkcyjnych, udział miejsc nienasyconych, fragmentów alkilowych, wartość momentu dipolowego i in.) jak i, w dużej mierze, od jej wielkości. Współczynnik podziału oktanol woda zmierzony dla typowych zanieczyszczeń środowiska mieści się w bardzo szerokim zakresie od 0,01 dla związków o wysokiej polarności do dla substancji wysoce hydrofobowych. Tak rozpięty zakres wartości współczynnika spowodował, że przyjęto wyrażać się go w formie logarytmicznej: 3

4 logp = logc okt logc w (2) Dla tak obliczonego współczynnika podziału przyjmuje się, iż związki których log P jest mniejsze od jedności, mogą być charakteryzowane jako hydrofilowe, a więc takie, które nie ulegają bioakumulacji. Związki dla których 1 < log P < 3, charakteryzują się średnią lipofilowością i mogą ulegać częściowej bioakumulacji. Natomiast związki, których log P > 3, charakteryzują się wysoką lipofilowością i wysokim potencjałem bioakumulacji. Jest to typowa wartość współczynnika podziału dla większości tzw. trwałych zanieczyszczeń organicznych (chlorowane węglowodory, PCB, WWA, polichlorowane dibenzodioksyny i furany). Przykładowo, wartość log P dla metanolu wynosi -0,82; dla kwasu mrówkowego - 0,41; zaś dla 2,2',4,4',5-pentachlorobifenylu 6,41. Tak jak przedstawiono wcześniej, oddziaływania międzycząsteczkowe zachodzące pomiędzy substancją rozpuszczoną a n-oktanolem i wodą zależą od jej budowy chemicznej i wielkości ale też od obecności ugrupowań kwaśnych bądź zasadowych. Mając do czynienia z kwasami bądź zasadami organicznymi, kolejnym bardzo ważnym czynnikiem wpływającym na podział staje się również wartość ph układu, która determinuje stopień zjonizowania substancji rozpuszczonej. W przypadku kwasów i zasad podziałowi pomiędzy fazy ulegają nie tylko związki neutralne, ale również formy zjonizowane oraz formy zasocjowane tych związków. Dodatkowo, występowanie związku w formie zjonizowanej może stać się poważnym ograniczeniem technicznym w wyznaczeniu współczynnika podziału. Jeżeli związek taki w swojej strukturze zawierał by także obszerny fragment hydrofobowy (np. kilku- lub kilkunastowęglowy łańcuch alkilowy), to swoją budową przypominałby substancję powierzchniowo czynną. Na Rysunku 2 przedstawiono przykład podziału kwasu octowego pomiędzy oktanol i wodę z uwzględnieniem wszystkich możliwych form występowania. Rysunek 2. Formy występowania kwasu octowego w układzie n- oktanol woda. W fazie wodnej kwas występować będzie zarówno w formie zjonizowanej jak i obojętnej. Im większy będzie udział formy zjonizowanej, tym większa ilość cząsteczek kwasu 4

5 znajdzie się w tej właśnie fazie. Oczywiście, jeżeli ph układu uległoby obniżeniu, to przeważałaby forma obojętna, a poniżej wartości 4,8 (wartość pk a dla kwasu octowego) byłaby formą dominującą. W miarę protonowania grupy karboksylowej część cząsteczek kwasu przechodzić będzie do fazy oktanolowej. Oprócz formy obojętnej w fazie n-oktanolu utworzyć się mogą także dimery kwasu octowego powstałe w wyniku asocjacji. Asocjacja ma miejsce w niepolarnych rozpuszczalnikach i określą ją stałą równowagi reakcji asocjacji. Polega ona na tworzeniu cząstek zawierających dwie lub więcej cząsteczek związanych wiązaniami wodorowymi. Strukturę dimeru kwasu octowego przedstawiono na Rysunku 3. Rysunek 3. Asocjat dwóch cząsteczek kwasu octowego. Jeżeli kwas asocjuje w fazie oktanolowej, to jego współczynnik podziału pomiędzy fazę oktanolową i wodną przyjmuje następującą postać:! P =!"#$!" gdzie n to liczba asocjujących cząsteczek. Zlogarytmowana postać tego równania to: (3) logp =! logcokt logcw (4)! Po przekształceniu uzyskujemy równanie liniowe, gdzie log P jest punktem przecięcia prostej z osią y przy x = 0, a 1/n jest współczynnikiem kierunkowym prostej: logcw =! log Cokt logp (5)! Równanie to pozwala na podstawie wykresu wyznaczyć współczynnik podziału P oraz liczbę cząsteczek n tworzących asocjaty w fazie oktanolowej. Do obliczenia log P należy analitycznie określić aktywność substancji rozpuszczonej w obydwóch fazach, co w przypadku roztworów rozcieńczonych sprowadza się do wyznaczenia stężenia. W tym celu stosuje się szereg metod np. miareczkowanie, oznaczanie kolorymetrycznie, chromatografię cieczową lub gazową. UWAGA! Studenci pracować będą w dwóch grupach, a każda grupa wykonana oba ćwiczenia (1.1 oraz 2.2). 5

6 1.1. WYKONANIE ĆWICZENIA 1. Do odpowiednio oznakowanych rozdzielaczy, znajdujących się na statywie, należy kolejno wprowadzić po 25 cm 3 roztworów kwasów o stężeniu: 1 M; 0,75 M; 0,5 M; 0,25 M i dodać za pomocą cylindra miarowego po 25 cm 3 n-oktanolu. Tak przygotowane mieszaniny wytrząsa się w ciągu około 30 minut. 2. Podczas wytrząsania oznaczyć dokładne stężenie czterech przygotowanych przez prowadzącego roztworów kwasu octowego. Oznaczanie przeprowadza się poprzez miareczkowanie za pomocą mianowanego (0,1 M) roztworu NaOH w obecności fenoloftaleiny jako wskaźnika. W tym celu należy pobrać za pomocą pipety 2 cm 3 roztworu do miareczkowania do kolby stożkowej o pojemności 100 cm 3 i dodać 4 krople wskaźnika (używając czystej pipety). Miareczkowanie przeprowadza się do uzyskania malinowego zabarwienia wskaźnika. Miareczkowanie wykonać dwukrotnie dla każdego roztworu. 3. Po zakończeniu wytrząsania, roztwory pozostawia się w rozdzielaczach do całkowitego rozdzielenia się warstw. Po rozdzieleniu należy wprowadzić warstwę wodną do kolb stożkowych o pojemności 50 cm 3. Następnie oznacza się stężenie kwasu octowego w warstwie wodnej poprzez miareczkowanie postępując analogicznie jak w punkcie OPRACOWANIE WYNIKÓW 1. Obliczyć rzeczywiste stężenie roztworów kwasu octowego c p 2. Obliczyć stężenia kwasu octowego w roztworach wodnych po wytrząsaniu z n- oktanolem c w. 3. Obliczyć stężenie kwasu c okt w n-oktanolu c okt = c p - c w 4. Wyniki umieścić w tabeli: Roztwór V p [cm 3 ] V k [cm 3 ] Cp [mol/dm 3 ] Cw [mol/dm 3 ] Cokt [mol/dm 3 ] log c w log c okt 1 M 0,75 M 0,5 M 0,25 M V p objętość NaOH zużyta do zmiareczkowania kwasu octowego przed wytrząsaniem V k objętość NaOH zużyta do zmiareczkowania kwasu octowego po wytrząsaniu c p rzeczywiste stężenie kwasu octowego w wyjściowych roztworach 6

7 c w stężenie kwasu octowego w roztworach wodnych po wytrząsaniu c okt Stężenie kwasu octowego w n- oktanolu 5. Narysować graficzną zależność: logc w = f(logc okt ). Na podstawie wykresu, z nachylenia prostej odczytać wartość 1/n. Obliczyć n (czyli liczbę cząsteczek kwasu asocjujących w n-oktanolu). Obliczyć wartość współczynnika podziału. 6. Obliczyć współczynnik ekstrakcji D, jako stosunek stężenia kwasu octowego w n- oktanolu do stężenia kwasu octowego w warstwie wodnej dla poszczególnych roztworów. 7. Obliczyć ile procent kwasu octowego wyekstrahowało się do n-oktanolu (c okt /c p ) SZKŁO I ODCZYNNIKI pipeta jednomiarowa 25 cm 3 1 szt. pipeta wielomiarowa 25 cm 3 1 szt. pipeta 1 cm 3 2 szt. pipeta 2 cm 3 1 szt. cylinder miarowy 25 cm 3 1 szt. kolba stożkowa z korkiem 100 cm 3 4 szt. kolba stożkowa z korkiem 50 cm 3 4 szt. rozdzielacz 100 cm 3 4 szt. zlewka 250 cm 3 2 szt. zlewka 100 cm 3 1 szt. lejek mały 1 szt. biureta 25 cm 3 1 szt. pompka do pipet mianowany NaOH 0,1 M 500 cm 3 n-oktanol 100 cm 3 kwas octowy 2M 200 cm 3 fenoloftaleina (0,1 % w 70 % EtOH) tryskawka z wodą destylowaną rękawice ochronne ręcznik papierowy 1.4. LITERATURA Kłoczko E., Metody eksperymentalne w chemii, PWN, Warszawa 1978 Pigoń K., Chemia fizyczna, Tom I, PWN, Warszawa 2005 Minczewski J., Marczenko Z., Chemia analityczna. Chemiczne metody analizy ilościowej, PWN, Warszawa

8 2. Wyznaczanie równowagowego współczynnika adsorpcji Kd substancji chemicznej do gleb 2.1.Podstawy teoretyczne procesów sorpcji Proces, w wyniku którego związki chemiczne zostają związane z fazą stałą, nosi ogólną nazwę sorpcji. Z adsorpcją mamy do czynienia gdy pochłanianie substancji występuje na powierzchni, podczas gdy absorpcja ma miejsce, gdy substancja pochłaniana jest w całej objętości fazy stałej. Te procesy mogą dotyczyć zarówno substancji lotnych jak i cząsteczek rozpuszczonych w środowisku ciekłym, które ulegają asocjacji z drobinami fazy stałej. Cząsteczki i atomy mogą przyłączać się do powierzchni na dwa sposoby. W procesie adsorpcji fizycznej pomiędzy adsorbatem i adsorbentem istnieją oddziaływania van der Waalsa (np. siły dyspersyjne lub oddziaływania dipolowe). W procesie adsorpcji chemicznej (chemisorpcji) cząsteczki (lub atomy) łączą się z powierzchnią, tworząc wiązania chemiczne (najczęściej kowalencyjne), dążąc przy tym do największej liczby koordynacyjnej na powierzchni. Należy wziąć pod uwagę fakt, że te same związki mogą zachowywać się w zróżnicowany sposób, gdy: (a) są w fazie gazowej lub (b) otoczone są cząsteczkami wody i innymi jonami lub (c) są zaadsorbowane na powierzchni fazy stałej lub (d) są inkorporowane do struktury matrycy stałej (Rysunek 4). Dlatego też zjawisko sorpcji może w znaczący sposób wpływać na szybkość rozprzestrzeniania się, losy oraz oddziaływanie związków chemicznych w środowisku.transport ksenobiotyków w środowisku wodnym różni się znacząco od rozprzestrzeniania się tych samych związków w stałych materiałach porowatych (gleba, osady, warstwy wodonośne i in.). Co więcej, transport danego związku w tych matrycach, jest silnie uzależniony od możliwości wiązania się z różnymi komponentami fazy stałej. Dodatkowo, tylko rozpuszczone cząsteczki mają możliwość oddziaływań z powierzchniami międzyfazowymi, co może prowadzić do ich przenikania do innych komponentów środowiska (np. atmosfera). Również biodostępność danego związku, a tym samym możliwość jego biotransformacji i jego właściwości toksykologiczne, są silnie zależne od intensywności sorpcji. Silne związanie z matrycą porowatą w dużym stopniu może ograniczać dostępność danej substancji dla organizmów żywych, a tym samym możliwość jej biodegradacji. Oprócz degradacji przez organizmy żywe, ksenobiotyki poprzez związanie z matrycą porowatą często są chronione przed wpływem światła, co powoduje, że nie ulegają procesom np. fotodegradacji czy degradacji termicznej. Co więcej, kiedy związki chemiczne znajdują się w strukturze matrycy, możliwe jest, iż nigdy nie wejdą w reakcję z czynnikami 8

9 utleniającymi, takimi jak np. rodniki ( OH), które znajdują się w roztworze. Podsumowując można powiedzieć, że ze względu na występujące różnice (np. ph, warunki redoks) między fazami środowiskowymi (stałą i wodną), pojawiające się reakcje chemiczne (np. hydroliza) mogą mieć inny zasięg i nasilenie. Dlatego tak istotne jest zrozumienie procesów wymiany zachodzących na granicy ciecz ciało stałe czy gaz ciało stałe, zanim będzie można przystąpić do badania wpływu innych czynników na los i rozprzestrzenianie się związków chemicznych w środowisku. Rysunek 4. Ilustracja różnych procesów jakim ulegają cząsteczki rozpuszczone w wodzie i związane ze stałą materią. (a) Rozpuszczony związek może brać udział w bezpośredniej wymianie na granicy woda i atmosfera, podczas gdy związek zabsorbowany będzie ulegał sedymentacji; (b) Forma rozpuszczona może ulegać różnym reakcjom w środowisku z wieloma jego składnikami, natomiast dostęp do formy związanej jest mocno ograniczony. Niemniej, kiedy mamy do czynienia ze środowiskiem naturalnym, procesy sorpcji są bardzo często nie tylko wymianą między homogenicznym roztworem/fazą gazową a pojedynczym rodzajem fazy stałej. Bardziej rozpowszechnionym przykładem jest sytuacja, w której w danym systemie, pewne kombinacje oddziaływań mogą prowadzić do asocjacji badanej cząsteczki (zwanej sorbatem) z pojedynczym typem lub mieszaniną faz stałych (zwanej sorbentem). W przypadku nie zjonizowanych cząsteczek istnieje możliwość opuszczania roztworu wodnego, poprzez penetrację (podział) w głąb naturalnej materii organicznej, obecnej w układzie. Ponadto, taka niezjonizowana forma może w pewnym stopniu zastępować cząsteczki wody tuż przy powierzchni mineralnej. Dominują przy tym oddziaływania dyspersyjne i polarne. W przypadku formy kationowej, najważniejszym mechanizmem sorpcji są oddziaływania elektrostatyczne. Na powierzchni gleby znajdują się centra o ujemnym ładunku, pochodzące głównie od grup hydroksylowych 9

10 minerałów ilastych, a także od grup karboksylowych i fenolowych w materii organicznej, które przyciągają kationy. Oddziaływania kulombowskie należą do bardzo silnych wiązań ( kj/mol), a tym samym wiązanie kationów do ujemnie naładowanej powierzchni może być bardzo trwałe i często nieodwracalne. Generalnie uznaje się, iż te dwa typy oddziaływań (z formą jonową i niezjonizowaną) są prawdziwe w przypadku większości związków organicznych oraz dla większości naturalnych powierzchni. Oczywiście, inne typy oddziaływań (np. między grupą karbonylową sorbentu a grupą aminową w sorbacie) także mogą występować w trakcie wiązania cząsteczek na powierzchni. Powoduje to, że procesy sorpcji składają się z szeregu mechanizmów, które działają w tym samym czasie i z różną intensywnością. Intensywność ta zależy od właściwości związku chemicznego jaki i rodzaju sorbatu. Aby określić, w jakim stopniu związek chemiczny łączy się z fazą stałą w stanie równowagi, w danym układzie, należy znać stosunek całkowitej ilości związku na sorbencie do ilości pozostałej w roztworze. Stosunek ten nazwany jest równowagowym współczynnikiem podziału (sorpcji), K d, ciało stałe roztwór wodny (wyrażony w jednostkach np.: l x kg -1 sorbentu): Kd =!"!" (6) gdzie: C s to całkowita ilość zaadsorbowanej substancji chemicznej na jednostkę sorbentu (np. mol kg -1 ), C w to ilość związku pozostająca w roztworze wodnym w stanie równowagi (np. mol l -1 ). Wartość równowagowego współczynnika sorpcji pozwala nam na przewidzenie podziału związku chemicznego do różnych gleb, o różnych parametrach fizykochemicznych (np. zawartość węgla organicznego, zawartość frakcji ilastych, struktura gleby czy ph). Mówiąc o równowagowym podziale substancji chemicznej między ciecz a ciało stałe, należy zastanowić się w jaki sposób całkowita pojemność sorbatu, C s, wpływa na stężenie związku chemicznego w roztworze, C w. Powiązanie między tymi dwoma wartościami często zwane jest izotermą sorpcji. Termin izoterma wskazuje, że ta zależność pojawia się tylko w warunkach stałej temperatury. Eksperymentalnie dowiedziono, że izotermy sorpcji mogą przyjmować bardzo różny kształt, w zależności od oddziaływań między sorbatem a sorbentem (Rysunek 5). W najprostszym przypadku (2.a) zależność stężenia sorbatu od sorbentu jest taka sama w całym zakresie stężeń. Jest to tak zwana izoterma liniowa. Odnosi się do sytuacji kiedy dominującym 10

11 oddziaływaniem jest podział do homogenicznej fazy stałej i/ lub kiedy, nie następuje całkowite wysycenie centrów adsorpcji (np. w niskich stężeniach). Rysunek 5. Różne typy izoterm. Drugi typ izotermy (2.b i c) występuje, gdy w coraz wyższych stężeniach sorbatu, jest coraz mniej dostępnych miejsc oddziaływań. Dzieje się tak albo na skutek całkowitego wysycenia centrów aktywnych, albo gdy pozostałe centra nie są wystarczająco uprzywilejowane. W granicznych przypadkach (2.c), powyżej pewnej wartości C s, wszystkie miejsca aktywne zostają wysycone i nie jest już możliwa dalsza sorpcja. Izotermy typu 2.b i c są charakterystyczne za równo dla adsorpcji na powierzchniach organicznych (np.: węgiel aktywny) jak i mineralnych (minerały ilaste). Oczywiście, w przypadku gleb lub osadów może występować na raz więcej niż jeden rodzaj aktywnej powierzchni. Dlatego też, ogólna izoterma sorpcji odzwierciedla "nałożenie się" poszczególnych mechanizmów i przybierać zróżnicowane kształty. Najczęstszą próbą opisu matematycznego danych eksperymentalnych jest posłużenie się empiryczną zależnością, zwaną izotermą Freundlicha: C s = K F. C w 1/n (7) 11

12 gdzie K F to stała Freundlicha lub współczynnik pojemnościowy; a 1/n to wykładnik potęgowy Freundlicha. Zależność z równania 7 zakłada, że równocześnie oddziałują różne typy miejsc aktywnych i są one zróżnicowane zarówno pod względem ilości, jak i entalpii swobodnej. Dodatkowo model ten zakłada, że może występować wielowarstwowa sorpcja. Wykładnik potęgowy jest wskaźnikiem zróżnicowania entalpii swobodnych powiązanych z sorpcją z roztworu przez różne składniki heterogenicznego sorbentu. Gdy 1/n = 1, izoterma jest liniowa i można wnioskować, że entalpia swobodna procesu jest stała w całym zakresie stężeń; kiedy 1/n < 1, izoterma jest wypukła co wskazuje, iż dodawany sorbat jest wiązany z centrami o coraz mniejszej entalpii swobodnej; w końcu, gdy 1/n > 1, izoterma ma przebieg wklęsły rosnący, z czego można wnioskować, że większa ilość cząsteczek na powierzchni zwiększa entalpię swobodną, a tym samym potęguje dalszą sorpcję. Parametry K F oraz 1/n mogą zostać wyznaczone z danych eksperymentalnych poprzez przekształcenie równania 1 do postaci logarytmicznej: log C s = 1/n log C w + log K F (8) W przypadku gdy dana izoterma nie może być opisana przez równanie 8, wówczas mamy do czynienia z pewnymi ograniczeniami leżącymi u podstaw koncepcji istnieniu zróżnicowanych centrów oddziaływań. Na przykład, jeśli istnieje ograniczona liczba miejsc aktywnych, które zostaną wysycone (2.c), wówczas C s nie może rosnąć w nieskończoność wraz ze wzrostem C w. W takim przypadku lepiej sprawdza się model zwany izotermą Langmuira. Model ten zakłada, że na powierzchni sorbentu istnieje określona liczba jednakowych centrów sorpcji (adsorpcji), z których każde jest zdolne do zaadsorbowania tylko jednej cząsteczki adsorbatu (proces ten nazywany też jest adsorpcją zlokalizowaną). Model Freundlicha jest zwykle stosowany do opisu zachowań cząsteczek chemicznych na zróżnicowanych powierzchniach porowatych, a więc takich jak np.: gleba czy osad denny. Natomiast model Langmuira bardzo dobrze ilustruje koncepcje tworzenia monowarstwy adsorpcyjnej na powierzchni porowatej a także procesy chemisorpcji, jednakże dużo rzadziej ma zastosowanie do układów spotykanych w środowisku naturalnym. 12

13 2.2.WYKONANIE ĆWICZENIA Ćwiczenie przeprowadzone zostanie dla modelowego związku naftalenu, zaliczanego do grupy wielopierścieniowych węglowodorów aromatycznych (WWA), stanowiących liczbą grupę związków zaliczanych do podstawowych zanieczyszczeń środowiska. Najistotniejszym ze zdrowotnego punktu widzenia skutkiem oddziaływania wielopierścieniowych węglowodorów aromatycznych na organizm człowieka jest zdolność niektórych z nich do wywoływania zmian nowotworowych. Liczne badania dostarczyły dostatecznej ilości danych, aby zakwalifikować niektóre WWA, jak np. benzo(a)piren, dibenzo(a,h)antracen, benzo(a)antracen, benzo(b)fluoranten czy dibenzo(a,e)piren, do substancji rakotwórczych. WWA do środowiska glebowego dostają się różnymi dragami. Są wymywane z powierzchni dróg, gdzie znajdują się duże ilości tych związków pochodzące ze spalin samochodowych, ze ścierania opon gumowych i z samego asfaltu bogatego w różne węglowodory naftenowe w tym WWA. Dodatkowo WWA przedostają się do gleb ze ścieków przemysłowych, miejsc składowania odpadów odlewniczych i materiałów stosowanych w budownictwie. 1. Odważyć po 1 gramie gleby do 6 probówek. 2. Przygotować 5 stężeń naftalenu o objętości 12 ml. Roztwór wyjściowy WWA o stężeniu 500 mg/dm 3 należy rozcieńczyć w 50% (v/v) metanolu według następującego schematu: Próbka Naftalen 1 2 x 2 3 x 3 5 x 4 10 x 5 20 x 3. Następnie dodać po 5 ml przygotowanych roztworów, do probówek z uprzednio naważoną glebą. Do szóstej probówki z glebą dodać taką samą objętość 50% roztworu metanolu (ślepa próba). Probówki układamy na wytrząsarce i nastawiamy na 60 min na 180 rpm. W czasie wytrząsania wykonujemy krzywą kalibracyjną dla naftalenu zgodnie z punktem Zdejmujemy próbki z wytrząsarki i wkładamy je do wirówki na 10 minut na 4000 obrotów. 13

14 Po odwirowaniu próbki przefiltrowujemy przez sączki uprzednio zwilżone 50% metanolem 5. Po przefiltrowaniu przystępujemy do analizy WWA za pomocą wysokosprawnej chromatografii cieczowej (HPLC), włączając w to ślepą próbę. 6. Przygotowanie krzywej kalibracyjnej: W trakcie wytrząsania roztworów WWA z glebą wykonujemy krzywą kalibracyjną dla zadanych stężeń naftalenu. Pomiary wykonujemy za pomocą techniki HPLC-UV. oktadecylowa faza stacjonarna C18 detektor UV, długość fali 254 nm faza ruchoma - metanol:woda (90:10, w/w) prędkość przepływu podana przez prowadzącego nastrzyk - 20 µl Wykonać po jednym nastrzyku dla każdego stężenia WWA 2.3.OPRACOWANIE WYNIKÓW 1. Z uzyskanych wartości należy wykreślić krzywą kalibracyjną jako funkcję pola powierzchni od stężenia WWA oraz podać równanie prostej. 2. Z krzywej kalibracyjnej odczytujemy wartości stężeń naftalenu w badanych próbkach w mg/ml. Dane wpisujemy do tabeli (pozycja D): A B C D E F G H C int [mg/ml] Pole Pole pow. pow. C C W init C W początkowa [ mg/ml ] [mg] Masa Masa C S masa w zaadsorbowana na glebie [mg/g] roztworze K d 3. Obliczamy masę początkową (pozycja E), uwzględniając ilość ml branych do eksperymentu, oraz masę w roztworze w stanie równowagi (C W pozycja F). Z różnicy E- F, obliczamy masę zaadsorbowaną na jednostkę gleby, w naszym przypadku na 1 gram (pozycja G). Następnie należy wykonać wykres masy zaadsorbowanej od stężenia w roztworze. Z równania prostej odczytujemy współczynnik K d, jako C s = K d C W. 14

15 4. Aby wyznaczyć izotermę Freundlicha należy równie C s = K. 1/n F C w przedstawić w formie liniowej log C s = 1/n log C w + log K F. W tym celu należy opracować wykres log C S od log C W i z równania prostej odczytać wartości K F oraz 1/n. 5. Wartości K d i K F porównać z danymi literaturowymi i określić czy w danej glebie naftalen jest silnie czy słabo sorbowany. 2.4.SZKŁO I ODCZYNNIKI Metanol, woda destylowana Roztwór naftalenu o stężeniu 500 mg dm -3 Probówki plastikowe z nakrętkami 8 szt. Kolby stożkowe 250 ml 2 szt. Zlewka 100 ml 1 szt. Pipeta 1 ml 1 szt. Pipeta 5 ml 1 szt. Pipeta 10 ml 2 szt. Pompka do pipet 2 szt. Łopatka metalowa 1 szt. Łyżka plastikowa 1 szt. Lejki małe 6 szt. Sączki Tryskawka z 50% metanolem Strzykawka do HPLC 2.5.LITERATURA Calvet R., Evaluation of adsorption coefficents and prediction of the mobilities of pesticides in soils, W: Methodoliogical aspects of the study of pesticide behaviour in soil, INRA, Paryż 1989 Schwarzenbach R.P., Gschwend P.M., Imboden D.M., Environmental Organic Chemistry, 2nd Ed., Wiley & Sons Inc, 2002 Atkins P.W., Chemia fizyczna, PWN, Warszawa 2001 Pigoń K., Ruziewicz Z., Chemia fizyczna, PWN, Warszawa 1986 ZAKRES WYMAGANYCH WIADOMOŚCI Podstawowe pojęcia z wysokosprawnej chromatografii cieczowej oraz analizy miareczkowej. 15

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU n-oktanol/woda DLA KWASU OCTOWEGO

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 4 WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU n-oktanol/woda DLA KWASU OCTOWEGO

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 WYZNACZANIE RÓWNOWAGOWEGO WSPÓŁCZYNNIKA ADSORPCJI DO GLEB DLA WIELOPIERŚCIENIOWYCH

Bardziej szczegółowo

Ekstrakcja: WYZNACZANIE WSPÄŁCZYNNIKA PODZIAŁU Pentan-1-ol/WODA DLA KWASU OCTOWEGO

Ekstrakcja: WYZNACZANIE WSPÄŁCZYNNIKA PODZIAŁU Pentan-1-ol/WODA DLA KWASU OCTOWEGO Ekstrakcja: WYZNACZANIE WSPÄŁCZYNNIKA PODZIAŁU Pentan-1-ol/WODA DLA KWASU OCTOWEGO 1. CZĘŚĆ TEORETYCZNA Ekstrakcja jest operacją służącą do rozdzielenia mieszanin ciał stałych i ciekłych. Rozdział następuje

Bardziej szczegółowo

Ekstrakcja: WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU Pentan-1-ol/WODA DLA KWASU OCTOWEGO

Ekstrakcja: WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU Pentan-1-ol/WODA DLA KWASU OCTOWEGO Ekstrakcja: WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU Pentan-1-ol/WODA DLA KWASU OCTOWEGO 1. CZĘŚĆ TEORETYCZNA Ekstrakcja jest operacją słuŝącą do rozdzielenia mieszanin ciał stałych i ciekłych. Rozdział następuje

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 OKREŚLANIE WARTOŚCI WSPÓŁCZYNNIKA PODZIAŁU OKTANOL-WODA METODAMI KLASYCZNYMI:

Bardziej szczegółowo

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM CEL ĆWICZENIA Celem ćwiczenia jest analiza procesu adsorpcji paracetamolu na węglu aktywnym. Zadanie praktyczne polega na spektrofotometrycznym oznaczeniu stężenia

Bardziej szczegółowo

Laboratorium Podstaw Biofizyki

Laboratorium Podstaw Biofizyki CEL ĆWICZENIA Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu oraz wyznaczenie równania izotermy Freundlicha. ZAKRES WYMAGANYCH WIADOMOŚCI I UMIEJĘTNOŚCI: widmo absorpcyjne, prawo Lamberta-Beera,

Bardziej szczegółowo

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu Cel ćwiczenia Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu, wyznaczenie równania izotermy Freundlicha oraz wpływu

Bardziej szczegółowo

Zjawiska powierzchniowe

Zjawiska powierzchniowe Zjawiska powierzchniowe Adsorpcja Model Langmuira Model BET 1 Zjawiska powierzchniowe Adsorpcja Proces gromadzenia się substancji z wnętrza fazy na granicy międzyfazowej; Wynika z tego, że w obszarze powierzchniowym

Bardziej szczegółowo

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH 8 RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH CEL ĆWICZENIA Wyznaczenie gramorównoważników chemicznych w procesach redoks na przykładzie KMnO 4 w środowisku kwaśnym, obojętnym i zasadowym z zastosowaniem

Bardziej szczegółowo

MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ

MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ 4 MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ CEL ĆWICZENIA Poznanie podstawowego sprzętu stosowanego w miareczkowaniu, sposoby przygotowywania

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU OKTANOL/WODA SUBSTANCJI TOKSYCZNYCH TECHNIKĄ HPLC

WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU OKTANOL/WODA SUBSTANCJI TOKSYCZNYCH TECHNIKĄ HPLC WYZNACZANIE WSPÓŁCZYNNIKA PODZIAŁU OKTANOL/WODA SUBSTANCJI TOKSYCZNYCH TECHNIKĄ HPLC WPROWADZENIE Aktywność biologiczna związku chemicznego wiąże się w sposób bezpośredni z jego cechami fizykochemicznymi.

Bardziej szczegółowo

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną. Zakres wymaganych

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wpływ stężenia kwasu na szybkość hydrolizy estru ćwiczenie nr 25 opracowała dr B. Nowicka, aktualizacja D. Waliszewski Zakres zagadnień obowiązujących do

Bardziej szczegółowo

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ WARTOŚĆ ph ROZTWORÓW WODNYCH WSTĘP 1. Wartość ph wody i roztworów Woda dysocjuje na jon wodorowy i wodorotlenowy: H 2 O H + + OH (1) Stała równowagi tej reakcji, K D : wyraża się wzorem: K D = + [ Η ][

Bardziej szczegółowo

Trójkąt Gibbsa Równowagi układów z ograniczoną mieszalnością składników Prawo podziału Nernsta

Trójkąt Gibbsa Równowagi układów z ograniczoną mieszalnością składników Prawo podziału Nernsta Termodynamiczny opis równowag w układach trójskładnikowych 3.4.1. Trójkąt Gibbsa 3.4.2. Równowagi układów z ograniczoną mieszalnością składników 3.4.3. Prawo podziału Nernsta Układy trójskładnikowe Liczba

Bardziej szczegółowo

KINETYKA INWERSJI SACHAROZY

KINETYKA INWERSJI SACHAROZY Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO

WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO 10 WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO CEL ĆWICZENIA Poznanie podstawowych zagadnień teorii dysocjacji elektrolitycznej i problemów związanych z właściwościami kwasów i zasad oraz

Bardziej szczegółowo

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY).

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). Wprowadzenie: Wielopierścieniowe węglowodory aromatyczne (WWA) to grupa związków zawierających

Bardziej szczegółowo

Inżynieria Środowiska

Inżynieria Środowiska ROZTWORY BUFOROWE Roztworami buforowymi nazywamy takie roztwory, w których stężenie jonów wodorowych nie ulega większym zmianom ani pod wpływem rozcieńczania wodą, ani pod wpływem dodatku nieznacznych

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

Materiały polimerowe laboratorium

Materiały polimerowe laboratorium Materiały polimerowe laboratorium Wydział Chemiczny, Studia Stacjonarne II stopnia (magisterskie), rok 1, semestr 2 kierunek: INŻYNIERIA CHEMICZNA I PROCESOWA specjalność: Inżynieria procesów chemicznych

Bardziej szczegółowo

K02 Instrukcja wykonania ćwiczenia

K02 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K2 Instrukcja wykonania ćwiczenia Wyznaczanie krytycznego stężenia micelizacji (CMC) z pomiarów napięcia powierzchniowego Zakres zagadnień obowiązujących

Bardziej szczegółowo

ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA. DZIAŁ: Alkacymetria

ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA. DZIAŁ: Alkacymetria ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA DZIAŁ: Alkacymetria ZAGADNIENIA Prawo zachowania masy i prawo działania mas. Stała równowagi reakcji. Stała dysocjacji, stopień dysocjacji

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA KIiChŚ PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH Ćwiczenie nr 2 WYMIANA JONOWA Cel ćwiczenia Celem ćwiczenia jest określenie roboczej zdolności wymiennej jonitu na podstawie eksperymentalnie wyznaczonej

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

ĆWICZENIE 2 KONDUKTOMETRIA

ĆWICZENIE 2 KONDUKTOMETRIA ĆWICZENIE 2 KONDUKTOMETRIA 1. Oznaczanie słabych kwasów w sokach i syropach owocowych metodą miareczkowania konduktometrycznego Celem ćwiczenia jest ilościowe oznaczenie zawartości słabych kwasów w sokach

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ Ćwiczenia laboratoryjne CHEMIA I TECHNOLOGIA MATERIAŁÓW BARWNYCH USUWANIE BARWNIKÓW ZE ŚCIEKÓW PRZEMYSŁU TEKSTYLNEGO Z WYKORZYSTANIEM

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 ZASTOSOWANIE SPEKTROFOTOMETRII W NADFIOLECIE I ŚWIETLE WIDZIALNYM

Bardziej szczegółowo

Modelowanie w ochronie środowiska

Modelowanie w ochronie środowiska Modelowanie w ochronie środowiska PARAMETRY FIZYKO-CHEMICZNE WPŁYWAJĄCE NA TRWAŁOŚĆ I ROZPRZESTRZENIANIE SIĘ ZWIĄZKÓW CHEMICZNYCH W ŚRODOWISKU NATURALNYM KOMPOENTY ŚRODOWISKA TRWAŁOŚĆ! CZAS PRZEBYWANIA

Bardziej szczegółowo

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE WPROWADZENIE Przyswajalność pierwiastków przez rośliny zależy od procesów zachodzących między fazą stałą i ciekłą gleby oraz korzeniami roślin. Pod względem stopnia

Bardziej szczegółowo

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI 6 KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI CEL ĆWICZENIA Zapoznanie studenta z zagadnieniami katalizy homogenicznej i wykorzystanie reakcji tego typu do oznaczania śladowych ilości jonów Cu 2+. Zakres obowiązującego

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie chlorków metodą spektrofotometryczną z tiocyjanianem rtęci(ii)

Bardziej szczegółowo

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Dysocjacja elektrolitów W drugiej połowie XIX wieku szwedzki chemik S.A. Arrhenius doświadczalnie udowodnił, że substancje

Bardziej szczegółowo

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej W analizie ilościowej z zastosowaniem techniki HPLC wykorzystuje się dwa możliwe schematy postępowania: kalibracja zewnętrzna sporządzenie

Bardziej szczegółowo

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej WPROWADZENIE Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną techniką analityczną, stosowaną

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Roztwory elekreolitów

Roztwory elekreolitów Imię i nazwisko:... Roztwory elekreolitów Zadanie 1. (2pkt) W teorii Brönsteda sprzężoną parą kwas-zasada nazywa się układ złożony z kwasu oraz zasady, która powstaje z tego kwasu przez odłączenie protonu.

Bardziej szczegółowo

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. Projekt zrealizowany w ramach Mazowieckiego programu stypendialnego dla uczniów szczególnie uzdolnionych

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Izoterma rozpuszczalności w układzie trójskładnikowym ćwiczenie nr 28 Zakres zagadnień obowiązujących do ćwiczenia 1. Stan równowagi układu i rodzaje równowag

Bardziej szczegółowo

HYDROLIZA SOLI. ROZTWORY BUFOROWE

HYDROLIZA SOLI. ROZTWORY BUFOROWE Ćwiczenie 9 semestr 2 HYDROLIZA SOLI. ROZTWORY BUFOROWE Obowiązujące zagadnienia: Hydroliza soli-anionowa, kationowa, teoria jonowa Arrheniusa, moc kwasów i zasad, równania hydrolizy soli, hydroliza wieloetapowa,

Bardziej szczegółowo

Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej

Politechnika Gdańska Wydział Chemiczny. Katedra Technologii Chemicznej Politechnika Gdańska Wydział Chemiczny Katedra Technologii Chemicznej Bezpieczeństwo środowiskowe Sorpcyjne właściwości gleb Przygotował: dr inż. Andrzej P. Nowak Gleba, czyli pedosfera, jest naturalnym

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Adsorpcja kwasu octowego na węglu aktywnym. opracowała dr hab. Małgorzata Jóźwiak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Adsorpcja kwasu octowego na węglu aktywnym. opracowała dr hab. Małgorzata Jóźwiak Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Adsorpcja kwasu octowego na węglu aktywnym opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr Zakres zagadnień obowiązujących do ćwiczenia 1. Charakterystyka

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru 1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków

Bardziej szczegółowo

EFEKT SOLNY BRÖNSTEDA

EFEKT SOLNY BRÖNSTEDA EFEKT SLNY RÖNSTED Pojęcie eektu solnego zostało wprowadzone przez rönsteda w celu wytłumaczenia wpływu obojętnego elektrolitu na szybkość reakcji zachodzących między jonami. Założył on, że reakcja pomiędzy

Bardziej szczegółowo

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej Metoda: Spektrofotometria UV-Vis Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studenta z fotometryczną metodą badania stanów równowagi

Bardziej szczegółowo

RÓWNOWAGI REAKCJI KOMPLEKSOWANIA

RÓWNOWAGI REAKCJI KOMPLEKSOWANIA POLITECHNIK POZNŃSK ZKŁD CHEMII FIZYCZNEJ ĆWICZENI PRCOWNI CHEMII FIZYCZNEJ RÓWNOWGI REKCJI KOMPLEKSOWNI WSTĘP Ważną grupę reakcji chemicznych wykorzystywanych w chemii fizycznej i analitycznej stanowią

Bardziej szczegółowo

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017 IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 2 maja 217 Im. Jana Kasprowicza INOWROCŁAW XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY

Bardziej szczegółowo

PRACOWNIA ANALIZY ILOŚCIOWEJ. Analiza substancji biologicznie aktywnej w preparacie farmaceutycznym kwas acetylosalicylowy

PRACOWNIA ANALIZY ILOŚCIOWEJ. Analiza substancji biologicznie aktywnej w preparacie farmaceutycznym kwas acetylosalicylowy PRACOWNIA ANALIZY ILOŚCIOWEJ Analiza substancji biologicznie aktywnej w preparacie farmaceutycznym kwas acetylosalicylowy Ćwiczenie obejmuje: 1. Oznaczenie jakościowe kwasu acetylosalicylowego 2. Przygotowanie

Bardziej szczegółowo

Termodynamika fazy powierzchniowej Zjawisko sorpcji Adsorpcja fizyczna: izoterma Langmuira oraz BET Zjawiska przylegania

Termodynamika fazy powierzchniowej Zjawisko sorpcji Adsorpcja fizyczna: izoterma Langmuira oraz BET Zjawiska przylegania ermodynamika zjawisk powierzchniowych 3.6.1. ermodynamika fazy powierzchniowej 3.6.2. Zjawisko sorpcji 3.6.3. Adsorpcja fizyczna: izoterma Langmuira oraz BE 3.6.4. Zjawiska przylegania ZJAWISKA PWIERZCHNIWE

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 OPTYMALIZACJA ROZDZIELANIA MIESZANINY WYBRANYCH FARMACEUTYKÓW METODĄ

Bardziej szczegółowo

DEZYNFEKCJA WODY CHLOROWANIE DO PUNKTU

DEZYNFEKCJA WODY CHLOROWANIE DO PUNKTU DEZYNFEKCJA WODY CHLOROWANIE DO PUNKTU PRZEŁAMANIA WPROWADZENIE Ostatnim etapem uzdatniania wody w procesie technologicznym dla potrzeb ludności i przemysłu jest dezynfekcja. Proces ten jest niezbędny

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Oznaczanie SO 2 w powietrzu atmosferycznym

Oznaczanie SO 2 w powietrzu atmosferycznym Ćwiczenie 6 Oznaczanie SO w powietrzu atmosferycznym Dwutlenek siarki bezwodnik kwasu siarkowego jest najbardziej rozpowszechnionym zanieczyszczeniem gazowym, występującym w powietrzu atmosferycznym. Głównym

Bardziej szczegółowo

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE PROGRAM ĆWICZEŃ LABORATORYJNYCH Z CHEMII (SEMESTR ZIMOWY) ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE Ćwiczenie 1 (Karty pracy laboratoryjnej: 1a, 1b, 1d, 1e) 1. Organizacja ćwiczeń.

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Oznaczanie benzoesanu denatonium w skażonym alkoholu etylowym metodą wysokosprawnej

Bardziej szczegółowo

Ć W I C Z E N I E 4. Reekstrakcja miedzi z roztworu ciekłego wymieniacza jonowego do roztworów H 2 SO 4

Ć W I C Z E N I E 4. Reekstrakcja miedzi z roztworu ciekłego wymieniacza jonowego do roztworów H 2 SO 4 HYDROMETALURGIA METALI NIEŻELAZNYCH 1 Ć W I C Z E N I E 4 Reekstrakcja miedzi z roztworu ciekłego wymieniacza jonowego do roztworów WPROWADZENIE Ekstrakcja rozpuszczalnikowa wykorzystuje zjawisko nierównomiernego

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 6 listopada 2002 r. w sprawie metodyk referencyjnych badania stopnia biodegradacji substancji powierzchniowoczynnych zawartych w produktach, których stosowanie

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści Anna Kulaszewicz Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy lp. Dział Temat Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania i wymaganiami edukacyjnymi z

Bardziej szczegółowo

Sporządzanie roztworów buforowych i badanie ich właściwości

Sporządzanie roztworów buforowych i badanie ich właściwości Sporządzanie roztworów buforowych i badanie ich właściwości (opracowanie: Barbara Krajewska) Celem ćwiczenia jest zbadanie właściwości roztworów buforowych. Przygotujemy dwa roztwory buforowe: octanowy

Bardziej szczegółowo

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II Ćwiczenie 1 Przygotowanie próbek do oznaczania ilościowego analitów metodami wzorca wewnętrznego, dodatku wzorca i krzywej kalibracyjnej 1. Wykonanie

Bardziej szczegółowo

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT. Ćwiczenie 12, 13. Kinetyka chemiczna. Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. Szybkość reakcji chemicznej jest związana

Bardziej szczegółowo

ANALIZA OBJĘTOŚCIOWA

ANALIZA OBJĘTOŚCIOWA Metoda Mohra Kolba miarowa Na Substancja podstawowa: (Na), M = 58,5 g mol 1 Pipeta Naczyńko wagowe c Na M m Na Na kolby ETAPY OZNACZENIA ARGENTOMETRYCZNEGO 1. Przygotowanie roztworu substancji podstawowej

Bardziej szczegółowo

( liczba oddanych elektronów)

( liczba oddanych elektronów) Reakcje utleniania i redukcji (redoks) (Miareczkowanie manganometryczne) Spis treści 1 Wstęp 1.1 Definicje reakcji redoks 1.2 Przykłady reakcji redoks 1.2.1 Reakcje utleniania 1.2.2 Reakcje redukcji 1.3

Bardziej szczegółowo

ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych

ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych ĆWICZEIE B: znaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości rozpuszczalnego w wodzie chromu (VI) w próbce cementu korzystając

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

Opracował dr inż. Tadeusz Janiak

Opracował dr inż. Tadeusz Janiak Opracował dr inż. Tadeusz Janiak 1 Uwagi dla wykonujących ilościowe oznaczanie metodami spektrofotometrycznymi 3. 3.1. Ilościowe oznaczanie w metodach spektrofotometrycznych Ilościowe określenie zawartości

Bardziej szczegółowo

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych 1. Równanie kinetyczne, szybkość reakcji, rząd i cząsteczkowość reakcji. Zmiana szybkości reakcji na skutek zmiany

Bardziej szczegółowo

GOSPODARKA ODPADAMI. Oznaczanie metodą kolumnową wskaźników zanieczyszczeń wymywanych z odpadów

GOSPODARKA ODPADAMI. Oznaczanie metodą kolumnową wskaźników zanieczyszczeń wymywanych z odpadów GOSPODARKA ODPADAMI Ćwiczenie nr 5 Oznaczanie metodą kolumnową wskaźników zanieczyszczeń wymywanych z odpadów I. WPROWADZENIE Nieodpowiednie składowanie odpadków na wysypiskach stwarza możliwość wymywania

Bardziej szczegółowo

III A. Roztwory i reakcje zachodzące w roztworach wodnych

III A. Roztwory i reakcje zachodzące w roztworach wodnych III A. Roztwory i reakcje zachodzące w roztworach wodnych III-A Przygotowywanie roztworów o różnym stężeniu III-A.1. Przygotowanie naważki substancji III-A.2. Przygotowanie 70 g 10% roztworu NaCl III-A.3.

Bardziej szczegółowo

WYZNACZANIE NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ STALAGMOMETRYCZNĄ

WYZNACZANIE NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ STALAGMOMETRYCZNĄ Ćwiczenie nr 11 WYZNACZANIE NAPIĘCIA POWIERZCHNIOWEGO CIECZY METODĄ STALAGMOMETRYCZNĄ Zalecana literatura: 1. Atkins P. W.: Chemia fizyczna, PWN, Warszawa 2001, s. 145 146. 2. Pigoń K., Ruziewicz Z.: Chemia

Bardziej szczegółowo

Kwas HA i odpowiadająca mu zasada A stanowią sprzężoną parę (podobnie zasada B i kwas BH + ):

Kwas HA i odpowiadająca mu zasada A stanowią sprzężoną parę (podobnie zasada B i kwas BH + ): Spis treści 1 Kwasy i zasady 2 Rola rozpuszczalnika 3 Dysocjacja wody 4 Słabe kwasy i zasady 5 Skala ph 6 Oblicznie ph słabego kwasu 7 Obliczanie ph słabej zasady 8 Przykłady obliczeń 81 Zadanie 1 811

Bardziej szczegółowo

Ćwiczenie 1. Sporządzanie roztworów, rozcieńczanie i określanie stężeń

Ćwiczenie 1. Sporządzanie roztworów, rozcieńczanie i określanie stężeń Ćwiczenie 1 Sporządzanie roztworów, rozcieńczanie i określanie stężeń Stężenie roztworu określa ilość substancji (wyrażoną w jednostkach masy lub objętości) zawartą w określonej jednostce objętości lub

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA Układ graficzny CKE 2016 EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Nazwa kwalifikacji: Przygotowywanie

Bardziej szczegółowo

A4.05 Instrukcja wykonania ćwiczenia

A4.05 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.05 nstrukcja wykonania ćwiczenia Wyznaczanie współczynników aktywności soli trudno rozpuszczalnej metodą pomiaru rozpuszczalności Zakres zagadnień obowiązujących

Bardziej szczegółowo

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH 1 Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny. Chemiczna stabilność leków jest ważnym terapeutycznym problemem W przypadku chemicznej niestabilności

Bardziej szczegółowo

GOSPODARKA ODPADAMI. Oznaczanie metodą kolumnową wskaźników zanieczyszczeń wymywanych z odpadów

GOSPODARKA ODPADAMI. Oznaczanie metodą kolumnową wskaźników zanieczyszczeń wymywanych z odpadów GOSPODARKA ODPADAMI Ćwiczenie nr 5 Oznaczanie metodą kolumnową wskaźników zanieczyszczeń wymywanych z odpadów I. WPROWADZENIE: Nieodpowiednie składowanie odpadków na wysypiskach stwarza możliwość wymywania

Bardziej szczegółowo

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu ĆWICZENIE 4 Oczyszczanie ścieków ze związków fosforu 1. Wprowadzenie Zbyt wysokie stężenia fosforu w wodach powierzchniowych stojących, spiętrzonych lub wolno płynących prowadzą do zwiększonego przyrostu

Bardziej szczegółowo

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od: KONDUKTOMETRIA Konduktometria Metoda elektroanalityczna oparta na pomiarze przewodnictwa elektrolitycznego, którego wartość ulega zmianie wraz ze zmianą stęŝenia jonów zawartych w roztworze. Przewodnictwo

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA Układ graficzny CKE 2016 EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 ZASADY OCENIANIA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Nazwa kwalifikacji: Przygotowywanie

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

3. Badanie kinetyki enzymów

3. Badanie kinetyki enzymów 3. Badanie kinetyki enzymów Przy stałym stężeniu enzymu, a przy zmieniającym się początkowym stężeniu substratu, zmiany szybkości reakcji katalizy, wyrażonej jako liczba moli substratu przetworzonego w

Bardziej szczegółowo

KRYTYCZNE STĘŻENIE MICELIZACJI SURFAKTANTU

KRYTYCZNE STĘŻENIE MICELIZACJI SURFAKTANTU KRYTYCZNE STĘŻENIE MICELIZACJI SURFAKTANTU Celem ćwiczenia jest wyznaczenie krytycznego stężenia micelizacji (KSM) surfaktantu kationowego metodą konduktometryczną. Podstawy teoretyczne Zdolność surfaktantów

Bardziej szczegółowo

PRZYKŁADOWE ROZWIĄZANIA ZADAŃ

PRZYKŁADOWE ROZWIĄZANIA ZADAŃ PRZYKŁADOWE ROZWIĄZANIA ZADAŃ 1. Odważono 1.0 g mieszaniny zawierającej NaOH, Na 2 CO 3 oraz substancje obojętną i rozpuszczono w kolbie miarowej o pojemności 250 ml. Na zmiareczkowanie próbki o objętości

Bardziej szczegółowo

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7 CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ Ćwiczenie 7 Wykorzystanie metod jodometrycznych do miedzi (II) oraz substancji biologicznie aktywnych kwas askorbinowy, woda utleniona.

Bardziej szczegółowo

II. ODŻELAZIANIE LITERATURA. Zakres wiadomości obowiązujących do zaliczenia przed przystąpieniem do wykonania. ćwiczenia:

II. ODŻELAZIANIE LITERATURA. Zakres wiadomości obowiązujących do zaliczenia przed przystąpieniem do wykonania. ćwiczenia: II. ODŻELAZIANIE LITERATURA 1. Akty prawne: Aktualne rozporządzenie dotyczące jakości wody do picia i na potrzeby gospodarcze. 2. Chojnacki A.: Technologia wody i ścieków. PWN, Warszawa 1972. 3. Hermanowicz

Bardziej szczegółowo

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej opracowanie: dr Jadwiga Zawada Cel ćwiczenia: poznanie podstaw teoretycznych i praktycznych metody

Bardziej szczegółowo

Badanie właściwości związków powierzchniowo czynnych

Badanie właściwości związków powierzchniowo czynnych POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ ORGANICZNEJ I PETROCHEMII INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: Badanie właściwości związków powierzchniowo czynnych Laboratorium z

Bardziej szczegółowo

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie dwóch kationów obok siebie metodą miareczkowania spektrofotometrycznego (bez maskowania) jest możliwe, gdy spełnione są

Bardziej szczegółowo

KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wstęp teoretyczny Kataliza homo- i heterogeniczna Zwiększenie

Bardziej szczegółowo

K05 Instrukcja wykonania ćwiczenia

K05 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy

Bardziej szczegółowo