ZASTOSOWANIA UKŁADÓW MIKROKOGENERACJI GAZOWEJ W BUDYNKACH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIA UKŁADÓW MIKROKOGENERACJI GAZOWEJ W BUDYNKACH"

Transkrypt

1 Str. 58 Rynek Energii r 3(112) ZASTOSOWAIA UKŁADÓW MIKROKOGEERACJI GAZOWEJ W BUDYKACH Janusz Skorek Słowa kluczowe: mikrokogeneracja, paliwa gazowe, efektywność energetyczna i ekonomiczna Streszczenie. W pracy przedstawiono podstawowe uwarunkowania budowy gazowych układów mikrokogeneracyjnych (tzw. CHP) o mocach elektrycznych od około 20 kw do 1 MW w budynkach. Skupiono się na układach opartych o silniki tłokowe i mikroturbiny gazowe zasilanych gazem ziemnym. Omówiono specyfikę zapotrzebowania na nośniki energii w różnych rodzajach budynków. Przedstawiono eksploatacyjne uwarunkowania doboru układu CHP pod kątem optymalizacji efektu energetycznego (maksymalizacja wskaźnika PES i sprawności ogólnej EUF) oraz efektu ekonomicznego (np. maksymalizacja wskaźnika PV). Wskazano parametry techniczne, eksploatacyjne i cenowe które mają największy wpływ na wskaźniki energetyczne i wskaźniki opłacalności. 1. WSTĘP Budynki są jednymi z większych konsumentów nośników energii. Szacuje się, że udział sektora budynków w całkowitym zużyciu energii pierwotnej w świecie jest rzędu 40%, przy czym zdecydowana większość zużywanej energii pierwotnej dotyczy paliw kopalnych. Jedną z możliwości poprawy efektywności zaopatrzenia budynków w nośniki energii jest (oprócz zmniejszenia zapotrzebowania na te nośniki) zasilanie ze źródeł kogeneracyjnych wbudowanych w strukturę budynku lub ich grupy. Z uwagi na fakt, że są to źródła o stosunkowo małej mocy elektrycznej (zazwyczaj poniżej 1 MW) źródła te nazywane są mikrokogeneracyjnymi - CHP. Takie przyjęcie górnej granicy mocy modułu CHP jest na przykład adekwatne do obowiązującego w Polsce stanu prawnego [[4]]. Za minimalny poziom mocy układu CHP można przyjąć moc najmniejszych urządzeń dostępnych w ofertach handlowych producentów, tzn. około 20 kw el w przypadku gazowych silników tłokowych i mikroturbin gazowych. Układy CHP mogą być również budowane w oparciu o silniki Stirlinga czy ogniwa paliwowe (zwłaszcza w przypadku układów o bardzo małych mocach, np. poniżej 20 kw el ), ale oferta handlowa i doświadczenia eksploatacyjne są tu jeszcze ograniczone. Podstawowym paliwem układów CHP są paliwa gazowe. 2. UWARUKOWAIA STOSOWAIA MIKROKOGEERACJI W BUDYKACH Dobór właściwego schematu technologicznego oraz mocy elektrycznej i cieplnej układu CHP jest zazwyczaj zadaniem dość złożonym. Do ważniejszych etapów części technicznej całego studium wykonalności budowy układu CHP należy zaliczyć: określenie parametrów nośników energii oraz przebieg zapotrzebowania na nośniki energii (energia elektryczna, gorąca woda c.o oraz c.w.u., chłód), określenie konfiguracji układu CHP względem zasilanego obiektu oraz zewnętrznych dostawców nośników energii. W aspekcie zaopatrywania w nośniki energii małych odbiorców wydzielonych kluczowe znaczenie ma zazwyczaj problem wyprowadzenia generowanej mocy elektrycznej. Z punktu widzenia efektu ekonomicznego stosowania mikrokogeneracji celowe jest zastąpienie jak największej ilości energii elektrycznej kupowanej z sieci przez produkcję z modułu CHP. W praktyce może występować jednak brak zbilansowania mocy produkowanej przez moduł CHP i zapotrzebowania na moc elektryczną u odbiorcy. Zbilansowanie mocy można przeprowadzić poprzez wyprowadzenia nadwyżek mocy elektrycznej (najczęściej zmiennych w czasie) z modułu CHP do sieci lub przez zmiany obciążenia elektrycznego modułu CHP. U małych odbiorców (głównie typu komunalnego) zmiany w czasie zapotrzebowania na moc elektryczną są na tyle duże, że żaden z wymienionych sposobów pracy modułu CHP nie jest stosowany (choć teoretycznie możliwy do realizacji technicznej). Praktycznie dopuszczalne są więc jedynie następujące rozwiązania: cała moc elektryczna generowana przez moduł CHP jest zużywana przez odbiorcę końcowego (nie ma wyprowadzania mocy elektrycznej do sieci), cała moc elektryczna generowana przez moduł CHP jest wyprowadzana do sieci poprzez wydzielone przyłącze.

2 r 3(112) Rynek Energii Str. 59 Ogólny schemat układu zasilania wydzielonego odbiorcy ze źródła CHP przedstawia Rys Rys. 1. Schemat topologiczny układu zasilania budynku ze źródła CHP W przyjętym do rozważań zakresie mocy elektrycznej modułów CHP można stosować zarówno gazowe silniki tłokowe jak i mikroturbiny gazowe. Przy analogicznym poziomie mocy elektrycznej urządzenia te różnią się jednak dość wyraźnie nominalnymi wskaźnikami energetycznymi, a więc głównie sprawnością elektryczną η el i cieplną η Q. ominalną moc elektryczną i cieplną modułu CHP wiąże ze sobą tzw. wskaźnik skojarzenia : Q el. (1) CHP Z punktu widzenia efektów kogeneracji wskazane jest, aby nominalny wskaźnik skojarzenia przyjmował jak największą wartość. Wtedy bowiem przy danym strumieniu energii chemicznej paliwa moduł CHP ma większą moc elektryczną i większą produkcję energii elektrycznej. W praktyce im większa jest sprawność wytwarzania energii elektrycznej w module CHP, tym większy jest także nominalny wskaźnik skojarzenia. Przy porównywalnej mocy elektrycznej modułów CHP z silnikami tłokowymi i mikroturbinami gazowymi relacje pomiędzy wskaźnikami technicznymi są następujące: sprawność wytwarzania energii elektrycznej jest większa dla silników tłokowych, wskaźnik skojarzenia jest podobny dla modułów o najmniejszej mocy a wyraźnie większy dla gazowych silników tłokowych w przypadku większych mocy. 3. SPECYFIKA ZAPOTRZEBOWAIA A OŚIKI EERGII W BUDYKACH Podstawowe specyficzne cechy przebiegu zapotrzebowania na nośniki energii w budynkach to: bardzo duża dobowa zmienność zapotrzebowania na moc elektryczną oraz na moc w ciepłej wodzie użytkowej c.w.u., występujące tylko sezonowo zapotrzebowanie na moc cieplną do celów grzewczych, stosunkowo niskie zapotrzebowanie średnie zarówno na moc elektryczna jak i cieplną. W celu doboru rodzaju i mocy nominalnej modułu CHP niezbędne jest określenie przebiegu zapotrzebowania na nośniki energii w skali całego roku. Bardzo istotne znaczenie ma tu przebieg dobowej zmienności zapotrzebowania na moc elektryczną. Miarą tej zmienności może być stosunek maksymalnego i minimalnego dobowego zapotrzebowania na moc el,max, (2) el,min na moc elektryczną w budynku wielorodzinnym (40 mieszkań) przedstawiono na rys. 2 [1]. Zapotrzebowanie na moc elektryczną zmienia się w zakresie od około 1,9 kw do 6,3 kw ( = 3,3). na moc elektryczną w budynku o większym zapotrzebowaniu na moc elektryczną, tzn. w budynku biurowym przedstawiono na rys. 3. Zapotrzebowanie na moc elektryczną zmienia się w zakresie od około 30 kw do 120 kw ( = 4). Z przedstawionych przebiegów zapotrzebowania na moc elektryczną wynika, że im mniejsze jest średnie zapotrzebowanie na moc elektryczną w obiekcie, tym większe jest dobowe zróżnicowanie zapotrzebowania na moc elektryczną, liczone jako stosunek maksymalnego i minimalnego zapotrzebowania na moc elektryczną. Dla budynków wielorodzinnych, grup budynków, budynków biurowych, kompleksów edukacyjnych itd. jest to zazwyczaj <4. W przypadku pojedynczego budynku jednorodzinnego może to być jednak nawet > 50! W przypadku zaopatrzenia budynków w ciepło zmienność w czasie zapotrzebowania mocy cieplnej ma zazwyczaj dwojaki i przeciwstawny charakter, zależnie od rodzaju zużywanego ciepła. W przypadku ciepła grzewczego występuje mała zmienność dobowa i duża zmienność sezonowa (sezon grzewczy i poza sezonem grzewczym) a dla ciepłej wody użytkowej mamy dużą zmienność dobową i małą zmienność sezonową.

3 Str. 60 Rynek Energii r 3(112) Rys. 2. Dobowy przebieg zapotrzebowanie na moc elektryczną w budynku [1] na moc cieplną w budynku biurowym przedstawiono na rys. 5 (wykres sporządzony poprzez uśrednienie miesięcznego zużycia ciepła w budynku). Zapotrzebowanie na średnią moc cieplną zmienia się w zakresie od około 8 kw (miesiące letnie; tylko ciepła woda użytkowa) do około 145 kw. Tak niskie zapotrzebowanie na moc w c.w.u. wynika stąd, że większość ciepłej wody w budynku jest wytwarzana w oparciu o autonomiczne podgrzewacze elektryczne. Rys. 3. Wyniki pomiarów mocy czynnej w budynku biurowym dla 4 dni tygodnia (2 dni robocze i weekend) na moc cieplną w budynku wielorodzinnym (113 mieszkańców) przedstawiono na rys. 4 [5]. Maksymalne chwilowe (obliczeniowe) zapotrzebowanie na moc do celów grzewczych wynosi około 160 kw [5] i jest ponad dwukrotnie większe od maksymalnego, miesięcznego średniego zapotrzebowania wynoszącego około 56 kw w styczniu. Średnie zapotrzebowanie na moc do celów grzewczych w sezonie grzewczym (227 dni) wynosi około 35,2 kw i jest około 4,5 razy mniejsze od maksymalnego, obliczeniowego zapotrzebowania wynoszącego około 160 kw. Średnie (wyznaczone obliczeniowo) zapotrzebowanie na moc cieplną w ciepłej wodzie użytkowej c.w.u. wynosi około 11,8 kw, co stanowi około 7,3 % maksymalnego, tzn. obliczeniowego zapotrzebowania na moc grzewczą (160 kw) i 33,5% średniego zapotrzebowania na moc do celów grzewczych w sezonie grzewczym (35,2 kw). Ciekawie przedstawia się roczne zużycie ciepła grzewczego, tzn. c.o. oraz ciepła w cieplej wodzie użytkowej: ogrzewanie: 690,7 GJ (65% całkowitego zużycia ciepła), ciepła woda użytkowa: 373,4 GJ (35% całkowitego zużycia ciepła), łącznie c.o. oraz c.w.u.: 1064,1 GJ (100%). Oznacza to, że zapotrzebowanie na ciepłą wodę użytkową ma bardzo znaczący udział w bilansie potrzeb cieplnych budynku (ponad 30% zużycia ciepła!). Zużycie ciepła, GJ Rys. 4. Przebieg średniego zapotrzebowania na moc cieplną w budynku w ciągu roku 160,0 140,0 120,0 100,0 80,0 60,0 40,0 20,0 0,0 styczeń luty marzec kwiecień maj czerwiec lipiec sierpień wrzesień październik listopad grudzień Rys. 5. Przebieg średniego zapotrzebowania na moc cieplną w budynku biurowym w ciągu roku 4. DOBÓR UKŁADU CHP W BUDYKACH Określenie przebiegu zapotrzebowania na nośniki energii jest pierwszym etapem procedury doboru układu CHP. W drugim etapie konieczne jest określenie rodzaju (silnik tłokowy lub mikroturbina gazowa) i parametrów nominalnych modułu CHP. Dobór urządzenia wytwórczego i jego parametrów nominalnych (moc elektryczna, moc cieplna) ma ogromny wpływ na wskaźniki eksploatacyjne całego układu CHP (zarówno energetyczne jak i ekonomiczne). W zależności bowiem od poziomu nominalnej mocy cieplnej modułu CHP i przebiegu zapotrzebowania na moc cieplną u odbiorców zmieniają się ilości (udziały) poszczególnych strumieni ciepła

4 r 3(112) Rynek Energii Str. 61 w całkowitym bilansie układu CHP: ciepła użytkowego dostarczanego z modułu CHP, ciepła traconego do otoczenia i ciepła użytkowego wytwarzanego w kotłach rezerwowo-szczytowych. a optymalny dobór urządzenia wytwórczego (rodzaj, parametry) ma też wpływ podstawowy cel jaki zamierza się osiągnąć poprzez budowę źródła CHP. W praktyce najczęściej jest to: maksymalizacja efektu energetycznego (np. maksymalizacja wskaźnika oszczędności energii pierwotnej PES); maksymalizacja efektu ekonomicznego (np. maksymalizacja wartości PV). Oszczędność (względna) zużycia energii chemicznej paliw pierwotnych, tzn. wskaźnik PES, wyraża różnicę pomiędzy zużyciem w gospodarce rozdzielonej E ch, r i w kogeneracji E ch, CHP. Maksymalizacja wskaźnika PES jest ściśle związana z jednoczesną maksymalizacją sprawności całkowitej (ogólnej) układu kogeneracyjnego η CHP, a spełnienie kryterium maksymalizacji efektu energetycznego (PES max) sprowadza się w praktyce do takiego doboru nominalnej mocy cieplnej modułu CHP, aby była ona na poziomie zbliżonym do minimalnego zapotrzebowania na moc cieplną u odbiorców w przeciągu całego roku. Taki sposób doboru mocy nominalnej modułu CHP przedstawiono na rys. 6 dla przypadku zaopatrzenia w ciepło grzewcze i ciepłą wodę użytkową odbiorcy komunalnego. ależy zwrócić uwagę, że ten sposób doboru mocy skutkuje doborem urządzenia o stosunkowo niskiej nominalnej mocy cieplnej i elektrycznej. Moc cieplna, kw Moc cieplna C.O. + C.W.U. Moc cieplna C.W.U. Moc nominalna modułu CHP Czas, h Rys. 6. Dobór nominalnej mocy cieplnej modułu CHP (PES max) ależy wyraźnie zaznaczyć, że maksymalizacja efektu energetycznego (PES i EUF max) wcale nie musi być równoznaczna z osiągnięciem najkorzystniejszego efektu ekonomicznego. Taki bowiem dobór mocy nominalnej pociąga za sobą skutki o charakterze zarówno pozytywnym (np. maksymalizacja efektywności wykorzystania paliwa i minimalizacja strat ciepła do otoczenia) jak i negatywnym (np. zwiększenie zużycia paliwa w kotłach rezerwowoszczytowych i zmniejszona produkcja energii elektrycznej). Większość układów kogeneracyjnych jest budowana na zasadach komercyjnych. Stąd też najczęściej stosowanym kryterium optymalizacji układów CHP jest maksymalizacja funkcji celu w postaci określonego przez inwestora wskaźnika opłacalności jak na przykład PV czy IRR [2]. Jak wykazują analizy rodzaj i parametry nominalne modułu CHP dobrane ze względu na maksymalizację wskaźnika opłacalności (np. PV), wcale nie muszą pokrywać się z parametrami dobranymi ze względu na maksymalizację efektu energetycznego (PES max) [2, 3]. Analizując zależności określające wartości składników przepływów finansowych można wydzielić te parametry, które mają najistotniejszy wpływ na wskaźniki opłacalności gazowego układu CHP [3]: sprawność elektryczna modułu kogeneracyjnego, el rzeczywisty wskaźnik skojarzenia, cena zakupu energii chemicznej paliwa c chf, cena energii elektrycznej c el (sprzedaż lub uniknięty zakup) i cena świadectw pochodzenia c śp (o ile działa system wsparcia kogeneracji). Możliwy optymalny poziom mocy nominalnej modułu CHP w celu uzyskania maksymalnej wartości wskaźnika PV lub IRR dla przypadku zaopatrzenia w ciepło grzewcze i ciepłą wodę użytkową odbiorcy komunalnego przedstawiono np. na rys 7. W porównaniu do sytuacji przedstawionej na rys. 6 nominalna moc cieplna (i zarazem elektryczna) modułu CHP jest większa. W warunkach eksploatacyjnych oznacza to: większe całkowite zużycie paliwa (moduł CHP o większej mocy nominalnej), większa produkcja energii elektrycznej, zmniejszenie zużycia paliwa w kotłach rezerwowo-szczytowych, większe straty ciepła do otoczenia (i większy udział tych strat w bilansie ciepła), zmniejszenie procentowego udziału energii elektrycznej wytwarzanej w wysokosprawnej kogeneracji. W efekcie końcowym, pomimo zmniejszenia efektywności energetycznej (mniejsze wartości wskaźnika PES i sprawności ogólnej CHP), możliwe jest uzyskanie korzystniejszego efektu ekonomicznego.

5 Str. 62 Rynek Energii r 3(112) Moc cieplna, kw Moc cieplna C.O. + C.W.U. Moc nominalna modułu CHP Moc cieplna C.W.U Czas, h Rys. 7. Możliwy optymalny poziom mocy nominalnej modułu CHP w celu uzyskania maksymalnej wartości wskaźnika PV ależy podkreślić, że moduły CHP oparte o gazowe silniki tłokowe lub mikroturbiny gazowe osiągają najkorzystniejsze wskaźniki eksploatacyjne, a przede wszystkim jednostkowe zużycie paliwa i sprawność przy pracy pod nominalnym obciążeniem elektrycznym. Praca pod niepełnym obciążeniem elektrycznym prowadzi do zmniejszenia chwilowej sprawności i zwiększenia jednostkowego zużycia paliwa. Poprawę efektywności energetycznej (a także ekonomicznej) układu CHP można uzyskać poprzez stosowanie akumulacji ciepła (najczęściej w zasobnikach gorącej wody). Umożliwia to wyrównanie produkcji i zapotrzebowania na moc cieplną w skali dobowej (zwłaszcza mocy w ciepłej wodzie użytkowej). Dalszą poprawę wskaźników pracy układu CHP można też uzyskać, jeżeli w obiekcie występuje również LITERATURA zapotrzebowanie na chłód (zwłaszcza poza sezonem grzewczym). 5. PODSUMOWAIE Instalowanie układów CHP w budynkach jednorodzinnych jest w chwili obecnej mało uzasadnione z punktu widzenia uzyskania korzyści energetycznych i ekonomicznych. Podstawowym powodem jest zbyt niskie średnie zapotrzebowania na moc cieplną w stosunku do minimalnych mocy cieplnych dostępnych na rynku modułów CHP (tzn. około 40 kw). Instalowanie układów CHP w budynkach wielorodzinnych jest technicznie uzasadnione, a efekty energetyczne stosowania kogeneracji mogą być na odpowiednim poziomie. Z uwagi na bardzo niski poziom zapotrzebowania mocy elektrycznej ( w stosunku do poziomu mocy cieplnej) i jej bardzo dużą zmienność konieczne jest zazwyczaj wyprowadzanie całej mocy elektrycznej na zewnątrz (np. do sieci). Instalowanie układów CHP w budynkach biurowych, kompleksach mieszkalno-biurowych, kompleksach edukacyjnych itp. cechujących się podwyższonym minimalnym zapotrzebowaniem na moc elektryczną jest technicznie (i najczęściej ekonomicznie) uzasadnione. Unika się w ten sposób zakupów części drogiej energii elektrycznej z sieci. [1] Jarnut M.: Pomiary zapotrzebowania mocy elektrycznej w budynku testowym. Informacja własna, grudzień [2] Skorek J., Kalina J.: Gazowe układy kogeneracyjne. WT, Warszawa [3] Skorek J.: Technical and economical analysis of exploitation of gas fired small scale CHP systems in Poland. Archiwum Energetyki, Tom XLII(2012) nr. 2; s [4] Ustawa prawo energetyczne. stan prawny na dzień 3 maja [5] Wyniki obliczeń zapotrzebowania mocy cieplnej do ogrzewania budynków zasilanych z mikrosieci cieplnej. Informacja własna, Uniwersytet Zielonogórski, grudzień APPLICATIOS OF GAS SUPPLIED MICROCOGEERATIO SYSTEMS I BUILDIGS Key words: microcogeneration, gaseous fuels, energy and economical effectiveness Summary. The paper presents basic circumstances of installation gas supplied microcogeneration systems CHP in buildings. Microcogeneration system based on IC engines and microturbines of nominal electric power from 20 kw up to 1 MW are considered. Specific features of heat and electricity demand in buildings are discussed. Exploitation aspects of CHP sizing to obtain optimal technical indices (primary energy savings PES, total efficiency EUF) or to maximize economic effects (e.g. maximization of PV value) are then presented. Basic technical, operational and financial parameters which influence energy and economic effects are pointed out and discussed. Janusz Skorek, prof. dr hab. inż. jest pracownikiem Instytutu Techniki Cieplnej Politechniki Śląskiej, Gliwice, ul. Konarskiego

ANALIZA UWARUNKOWAŃ TECHNICZNO-EKONOMICZNYCH BUDOWY GAZOWYCH UKŁADÓW KOGENERACYJNYCH MAŁEJ MOCY W POLSCE. Janusz SKOREK

ANALIZA UWARUNKOWAŃ TECHNICZNO-EKONOMICZNYCH BUDOWY GAZOWYCH UKŁADÓW KOGENERACYJNYCH MAŁEJ MOCY W POLSCE. Janusz SKOREK Seminarium Naukowo-Techniczne WSPÓŁCZSN PROBLMY ROZWOJU TCHNOLOGII GAZU ANALIZA UWARUNKOWAŃ TCHNICZNO-KONOMICZNYCH BUDOWY GAZOWYCH UKŁADÓW KOGNRACYJNYCH MAŁJ MOCY W POLSC Janusz SKORK Instytut Techniki

Bardziej szczegółowo

13.1. Definicje Wsparcie kogeneracji Realizacja wsparcia kogeneracji Oszczędność energii pierwotnej Obowiązek zakupu energii

13.1. Definicje Wsparcie kogeneracji Realizacja wsparcia kogeneracji Oszczędność energii pierwotnej Obowiązek zakupu energii 13.1. Definicje 13.2. Wsparcie kogeneracji 13.3. Realizacja wsparcia kogeneracji 13.4. Oszczędność energii pierwotnej 13.5. Obowiązek zakupu energii elektrycznej wytwarzanej w skojarzeniu. 13.6. Straty

Bardziej szczegółowo

Ź ródła ciepła i energii elektrycznej

Ź ródła ciepła i energii elektrycznej Ź ródła ciepła i energii elektrycznej Techniczno-ekonomiczna analiza porównawcza budowy gazowych układów kogeneracyjnych małej mocy z silnikiem tłokowym lub turbiną gazową Technical and economical analysis

Bardziej szczegółowo

Efektywność ekonomiczna elektrociepłowni opalanych gazem ziemnym

Efektywność ekonomiczna elektrociepłowni opalanych gazem ziemnym Efektywność ekonomiczna elektrociepłowni opalanych gazem ziemnym Autor: dr hab. inŝ. Bolesław Zaporowski ( Rynek Energii 3/2) 1. WPROWADZENIE Jednym z waŝnych celów rozwoju technologii wytwarzania energii

Bardziej szczegółowo

ANALIZA EFEKTYWNOŚCI EKONOMICZNEJ ELEKTROCIEPŁOWNI OPALANYCH GAZEM ZIEMNYM PO WPROWADZENIU ŚWIADECTW POCHODZENIA Z WYSOKOSPRAWNEJ KOGENERACJI

ANALIZA EFEKTYWNOŚCI EKONOMICZNEJ ELEKTROCIEPŁOWNI OPALANYCH GAZEM ZIEMNYM PO WPROWADZENIU ŚWIADECTW POCHODZENIA Z WYSOKOSPRAWNEJ KOGENERACJI ANALIZA EFEKTYWNOŚCI EKONOMICZNEJ ELEKTROCIEPŁOWNI OPALANYCH GAZEM ZIEMNYM PO WPROWADZENIU ŚWIADECTW POCHODZENIA Z WYSOKOSPRAWNEJ KOGENERACJI Autor: Bolesław Zaporowski ( Rynek Energii nr 6/2007) Słowa

Bardziej szczegółowo

Zwiększenie efektywności energetycznej i ekonomicznej skojarzonego wytwarzania ciepła i energii elektrycznej przez zastosowanie zasobnika ciepła

Zwiększenie efektywności energetycznej i ekonomicznej skojarzonego wytwarzania ciepła i energii elektrycznej przez zastosowanie zasobnika ciepła Zwiększenie efektywności energetycznej i ekonomicznej skojarzonego wytwarzania ciepła i energii elektrycznej przez zastosowanie zasobnika ciepła Wojciech KOSTOWSKI, Jacek KALINA, Janusz SKOREK Zakład Termodynamiki

Bardziej szczegółowo

Wpływ sposobu ogrzewania na efektywność energetyczną budynku

Wpływ sposobu ogrzewania na efektywność energetyczną budynku Wpływ sposobu ogrzewania na efektywność energetyczną budynku dr inż. Adrian Trząski MURATOR 2015, JAKOŚĆ BUDYNKU: ENERGIA * KLIMAT * KOMFORT Warszawa 4-5 Listopada 2015 Charakterystyka energetyczna budynku

Bardziej szczegółowo

KOGENERACJA Rozwiązanie podnoszące efektywność energetyczną. 1 2013-01-29 Prezentacja TÜV Rheinland

KOGENERACJA Rozwiązanie podnoszące efektywność energetyczną. 1 2013-01-29 Prezentacja TÜV Rheinland Rozwiązanie podnoszące efektywność energetyczną 1 2013-01-29 Prezentacja TÜV Rheinland Rozwiązanie podnoszące efektywność energetyczną Usługi dla energetyki Opinie i ekspertyzy dotyczące spełniania wymagań

Bardziej szczegółowo

Wypieranie CO 2 z obszaru energetyki WEK za pomocą technologii OZE/URE. Paweł Kucharczyk Pawel.Kucharczyk@polsl.pl. Gliwice, 28 czerwca 2011 r.

Wypieranie CO 2 z obszaru energetyki WEK za pomocą technologii OZE/URE. Paweł Kucharczyk Pawel.Kucharczyk@polsl.pl. Gliwice, 28 czerwca 2011 r. Politechnika Śląska Instytut Elektroenergetyki i Sterowania Układów Wypieranie CO 2 z obszaru energetyki WEK za pomocą technologii OZE/URE Paweł Kucharczyk Pawel.Kucharczyk@polsl.pl Gliwice, 28 czerwca

Bardziej szczegółowo

Technologia gazowej mikrokogeneracji MCHP 6-20 kwe

Technologia gazowej mikrokogeneracji MCHP 6-20 kwe dr inż. Tomasz Wałek GHP Poland Sp. z o.o. Technologia gazowej mikrokogeneracji MCHP 6-20 kwe ENERGYREGION - Efektywny rozwój rozproszonej energetyki odnawialnej w połączeniu z konwencjonalną w regionach.

Bardziej szczegółowo

Element budowy bezpieczeństwa energetycznego Elbląga i rozwoju rozproszonej Kogeneracji na ziemi elbląskiej

Element budowy bezpieczeństwa energetycznego Elbląga i rozwoju rozproszonej Kogeneracji na ziemi elbląskiej Mgr inŝ. Witold Płatek Stowarzyszenie NiezaleŜnych Wytwórców Energii Skojarzonej / Centrum Elektroniki Stosowanej CES Sp. z o.o. Element budowy bezpieczeństwa energetycznego Elbląga i rozwoju rozproszonej

Bardziej szczegółowo

KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI

KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI KOGENERACJA ENERGII CIEPLNEJ I ELEKTRYCZNEJ W INSTALACJACH ŚREDNIEJ WIELKOŚCI Autor: Opiekun referatu: Hankus Marcin dr inŝ. T. Pająk Kogeneracja czyli wytwarzanie energii elektrycznej i ciepła w skojarzeniu

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU CAŁOŚĆ/CZĘŚĆ BUDYNKU Użyteczności publicznej Całość budynku ADRES BUDYNKU Warszawa, ul. Gen. Kazimierza Sonskowskiego 3 NAZWA PROJEKTU

Bardziej szczegółowo

Audytoenerg Maciej Mierzejewski ul. 3 Maja 18, 43-400 Cieszyn. mgr inż. Maciej Mierzejewski, ul. 3 Maja 18, 43-400 Cieszyn

Audytoenerg Maciej Mierzejewski ul. 3 Maja 18, 43-400 Cieszyn. mgr inż. Maciej Mierzejewski, ul. 3 Maja 18, 43-400 Cieszyn Analiza możliwości racjonalnego wykorzystania, wysokoefektywnych systemów alternatywnych zaopatrzenia w energię i ciepło w budynku mieszkalnym jednorodzinnym Mieszkalny Rodzaj budynku jednorodzinny Właściciel/Inwestor

Bardziej szczegółowo

Seminarium organizowane jest w ramach projektu Opolska Strefa Zeroemisyjna model synergii przedsiębiorstw (POKL.08.02.01-16-032/11) Projekt

Seminarium organizowane jest w ramach projektu Opolska Strefa Zeroemisyjna model synergii przedsiębiorstw (POKL.08.02.01-16-032/11) Projekt Seminarium organizowane jest w ramach projektu Opolska Strefa Zeroemisyjna model synergii przedsiębiorstw (POKL.08.02.01-16-032/11) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ Dwie grupy technologii: układy kogeneracyjne do jednoczesnego wytwarzania energii elektrycznej i ciepła wykorzystujące silniki tłokowe, turbiny gazowe,

Bardziej szczegółowo

EKRAN 15. Zużycie ciepłej wody użytkowej

EKRAN 15. Zużycie ciepłej wody użytkowej Ciepła woda użytkowa Obliczenie ilości energii na potrzeby ciepłej wody wymaga określenia następujących danych: - zużycie wody na użytkownika, - czas użytkowania, - liczba użytkowników, - sprawność instalacji

Bardziej szczegółowo

Analiza efektywności zastosowania alternatywnych źródeł energii w budynkach

Analiza efektywności zastosowania alternatywnych źródeł energii w budynkach Analiza efektywności zastosowania alternatywnych źródeł energii w budynkach Podstawy prawne Dyrektywa 2002/91/EC Parlamentu Europejskiego i Rady z dnia 16 grudnia 2002 r. w sprawie charakterystyki energetycznej

Bardziej szczegółowo

Obliczanie zapotrzebowania na paliwo Mizielińska K., Olszak J. Gazowe i olejowe źródła ciepła małej mocy

Obliczanie zapotrzebowania na paliwo Mizielińska K., Olszak J. Gazowe i olejowe źródła ciepła małej mocy Obliczanie zapotrzebowania na paliwo Mizielińska K., Olszak J. Gazowe i olejowe źródła ciepła małej mocy Roczne zapotrzebowanie na paliwo należy ustalić w odniesieniu do potrzeb takich jak: centralne ogrzewanie,

Bardziej szczegółowo

EKRAN 5. Zyski ciepła wg rozporządzenia [1]

EKRAN 5. Zyski ciepła wg rozporządzenia [1] Zyski ciepła Wprowadzone zyski ciepła na poziomie całego budynku mogą być takie same dla lokali, jednak najczęściej tak nie jest. Czasami występuje konieczność określania zysków ciepła na poziomie lokalu,

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU Mieszkalny CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU Tarnów, ul. Sportowa dz. nr 10/104 obr 274 NAZWA PROJEKTU Budynek mieszkalny

Bardziej szczegółowo

Układ trójgeneracjigazowej dla zespołu biurowo-usługowo-mieszkalnego przy ulicy Kruczkowskiego 2 w Warszawie. Baltic Business Forum 2011

Układ trójgeneracjigazowej dla zespołu biurowo-usługowo-mieszkalnego przy ulicy Kruczkowskiego 2 w Warszawie. Baltic Business Forum 2011 Układ trójgeneracjigazowej dla zespołu biurowo-usługowo-mieszkalnego przy ulicy Kruczkowskiego 2 w Warszawie Baltic Business Forum 2011 Projekt Kruczkowskiego 2 Powiśle Park Sp. z o.o. - spółka specjalnego

Bardziej szczegółowo

EFEKTYWNOŚĆ WYTWARZANIA ENERGII. I Międzynarodowe Forum Efektywności Energetycznej. Marian Babiuch Prezes Zarządu PTEZ. Warszawa, 27 października 2009

EFEKTYWNOŚĆ WYTWARZANIA ENERGII. I Międzynarodowe Forum Efektywności Energetycznej. Marian Babiuch Prezes Zarządu PTEZ. Warszawa, 27 października 2009 EFEKTYWNOŚĆ WYTWARZANIA ENERGII I Międzynarodowe Forum Efektywności Energetycznej Warszawa, 27 października 2009 Marian Babiuch Prezes Zarządu PTEZ Czarna skrzynka Energetyka Energia pierwotna Dobro ogólnoludzkie?

Bardziej szczegółowo

Ekologiczny park energetyczny

Ekologiczny park energetyczny Janusz SKOREK, Jacek KALINA Zakład Termodynamiki i Energetyki Gazowej, Instytut Techniki Cieplnej, Politechnika Śląska, Gliwice Grzegorz SKOREK, Instytut Maszyn i Urządzeń Energetycznych, Politechnika

Bardziej szczegółowo

Powierzchnia - sposób ogrzewania Zapotrzebowanie na moc cieplną Roczne zużycie ciepła. ciepłowniczych indywidualne z systemów

Powierzchnia - sposób ogrzewania Zapotrzebowanie na moc cieplną Roczne zużycie ciepła. ciepłowniczych indywidualne z systemów - stan istniejący () energię elektryczną i paliwa gazowe w Gminie Str. 1/5 Gmina liczba mieszkańców: 16,1 tys. - sposób ogrzewania Roczne zużycie ciepła ogrzewanie pomieszczeń przygotowanie ciepłej wody

Bardziej szczegółowo

Kogeneracja gazowa kontenerowa 2,8 MWe i 2,9 MWt w Hrubieszowie

Kogeneracja gazowa kontenerowa 2,8 MWe i 2,9 MWt w Hrubieszowie Kogeneracja gazowa kontenerowa 2,8 MWe i 2,9 MWt w Hrubieszowie LOKALIZACJA CHP w postaci dwóch bloków kontenerowych będzie usytuowana we wschodniej części miasta Hrubieszów, na wydzielonej (dzierżawa)

Bardziej szczegółowo

Bilans potrzeb grzewczych

Bilans potrzeb grzewczych AKTUALIZACJA PROJEKTU ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA GMINY OPALENICA Część 04 Bilans potrzeb grzewczych W 854.04 2/9 SPIS TREŚCI 4.1 Bilans potrzeb grzewczych

Bardziej szczegółowo

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań

Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań Budowa układu wysokosprawnej kogeneracji w Opolu kontynuacją rozwoju kogeneracji w Grupie Kapitałowej ECO S.A. Poznań 24-25.04. 2012r EC oddział Opole Podstawowe dane Produkcja roczna energii cieplnej

Bardziej szczegółowo

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna. Projekt. Prezentacja r.

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna. Projekt. Prezentacja r. Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe miasta Kościerzyna Projekt Prezentacja 22.08.2012 r. Bałtycka Agencja Poszanowania Energii S.A. 1 Założenia do planu. Zgodność

Bardziej szczegółowo

Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole.

Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole. Techniczno-ekonomiczne aspekty modernizacji źródła ciepła z zastosowaniem kogeneracji węglowej i gazowej w ECO SA Opole. Rytro, 25 27 08.2015 System ciepłowniczy w Opolu moc zainstalowana w źródle 282

Bardziej szczegółowo

KOGENERACJA w aspekcie efektywności energetycznej. 1 2013-03-18 Prezentacja TÜV Rheinland

KOGENERACJA w aspekcie efektywności energetycznej. 1 2013-03-18 Prezentacja TÜV Rheinland w aspekcie efektywności energetycznej 1 2013-03-18 Prezentacja TÜV Rheinland TÜV Rheinland Group na świecie 140 przedstawicielstw 2 2013-03-18 Prezentacja TÜV Rheinland TÜV Rheinland w Polsce OLSZTYN TÜV

Bardziej szczegółowo

Dyrektywa. 2002/91/WE z dnia 16 grudnia 2002 r. w sprawie charakterystyki energetycznej budynków

Dyrektywa. 2002/91/WE z dnia 16 grudnia 2002 r. w sprawie charakterystyki energetycznej budynków DYREKTYWA 2004/8/WE z dnia 11 lutego 2004 r. w sprawie wspierania kogeneracji w oparciu o zapotrzebowanie na ciepło użytkowe na rynku wewnętrznym energii Andrzej Jurkiewicz Dyrektywa 2001/77/WE z dnia

Bardziej szczegółowo

Bałtyckie Forum Biogazu. Skojarzone systemy wytwarzania energii elektrycznej, ciepła, chłodu KOGENERACJA, TRIGENERACJA

Bałtyckie Forum Biogazu. Skojarzone systemy wytwarzania energii elektrycznej, ciepła, chłodu KOGENERACJA, TRIGENERACJA Bałtyckie Forum Biogazu Skojarzone systemy wytwarzania energii elektrycznej, ciepła, chłodu KOGENERACJA, TRIGENERACJA Gdańsk 17-18 wrzesień 2012 61% Straty Kominowe Paliwo 90% sprawności Silnik Prądnica

Bardziej szczegółowo

ANALIZA EFEKTYWNOŚCI TECHNICZNEJ I OPŁACALNOŚCI AGREGATÓW DO SKOJARZONEGO WYTWARZANIA CIEPŁA I PRĄDU Z BIOGAZU W OCZYSZCZALNI ŚCIEKÓW W OPOLU

ANALIZA EFEKTYWNOŚCI TECHNICZNEJ I OPŁACALNOŚCI AGREGATÓW DO SKOJARZONEGO WYTWARZANIA CIEPŁA I PRĄDU Z BIOGAZU W OCZYSZCZALNI ŚCIEKÓW W OPOLU Zeszyty Problemowe Maszyny Elektryczne Nr 78/27 25 Katarzyna Siejka, Politechnika Opolska, WiK Opole Sp. z o.o., Opole Mariusz Tańczuk, Politechnika Opolska, Opole ANALIZA EFEKTYWNOŚCI TECHNICZNEJ I OPŁACALNOŚCI

Bardziej szczegółowo

alność gospodarcza w zakresie wytwarzania energii elektrycznej w kogeneracji Koncesjonowana działalno

alność gospodarcza w zakresie wytwarzania energii elektrycznej w kogeneracji Koncesjonowana działalno Koncesjonowana działalno alność gospodarcza w zakresie wytwarzania energii elektrycznej w kogeneracji Waldemar Fiedorowicz ekspert, Rekons Sesja warsztatowa pt.: Zasady koncesjonowania działalno alności

Bardziej szczegółowo

VII Międzynarodowej Konferencji CIEPŁOWNICTWO 2010 Wrocław

VII Międzynarodowej Konferencji CIEPŁOWNICTWO 2010 Wrocław VII Międzynarodowej Konferencji CIEPŁOWNICTWO 2010 Wrocław Produkcja energii przez Fortum: 40% źródła odnawialne, 84% wolne od CO 2 Produkcja energii Produkcja ciepła Hydro power 37% Biomass fuels 25%

Bardziej szczegółowo

WDRAŻANIE BUDYNKÓW NIEMAL ZERO-ENERGETYCZNYCH W POLSCE

WDRAŻANIE BUDYNKÓW NIEMAL ZERO-ENERGETYCZNYCH W POLSCE WDRAŻANIE BUDYNKÓW NIEMAL ZERO-ENERGETYCZNYCH W POLSCE Prof. Edward Szczechowiak Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Styczeń 2013 Poznań, 31. stycznia 2013 1 Zakres Kierunki

Bardziej szczegółowo

Zagadnienia inŝynierskie i ekonomiczne związane z produkcją energii w układach kogeneracyjnych

Zagadnienia inŝynierskie i ekonomiczne związane z produkcją energii w układach kogeneracyjnych Tomasz Kamiński Pracownia Technologiczna Zagadnienia inŝynierskie i ekonomiczne związane z produkcją energii w układach kogeneracyjnych Prezentacja wykonana m.in. na podstawie materiałów przekazanych przez

Bardziej szczegółowo

Krok 1 Dane ogólne Rys. 1 Dane ogólne

Krok 1 Dane ogólne Rys. 1 Dane ogólne Poniższy przykład ilustruje w jaki sposób można przeprowadzić analizę technicznoekonomiczną zastosowania w budynku jednorodzinnym systemu grzewczego opartego o konwencjonalne źródło ciepła - kocioł gazowy

Bardziej szczegółowo

Koszty podgrzewania ciepłej wody użytkowej

Koszty podgrzewania ciepłej wody użytkowej Koszty podgrzewania ciepłej wody użytkowej Porównanie kosztów podgrzewania ciepłej wody użytkowej Udział kosztów podgrzewu CWU w zależności od typu budynku Instalacja solarna w porównaniu do innych źródeł

Bardziej szczegółowo

Innowacyjny układ trójgeneracji gazowej dla zespołu biurowo-usługowo-mieszkalnego przy ulicy Kruczkowskiego 2 w Warszawie GAZTERM 2014

Innowacyjny układ trójgeneracji gazowej dla zespołu biurowo-usługowo-mieszkalnego przy ulicy Kruczkowskiego 2 w Warszawie GAZTERM 2014 Innowacyjny układ trójgeneracji gazowej dla zespołu biurowo-usługowo-mieszkalnego przy ulicy Kruczkowskiego 2 w Warszawie GAZTERM 2014 Projekt Kruczkowskiego 2 Powiśle Park Sp. z o.o. - spółka specjalnego

Bardziej szczegółowo

TARYFA DLA CIEPŁA Zespołu Elektrociepłowni Wrocławskich KOGENERACJA S.A.

TARYFA DLA CIEPŁA Zespołu Elektrociepłowni Wrocławskich KOGENERACJA S.A. Załącznik do Decyzji Nr OWR-4210-27/2014/1276/XV-A/AŁ Prezesa Urzędu Regulacji Energetyki z dnia 5 września 2014 2014 r. r. TARYFA DLA CIEPŁA Zespołu Elektrociepłowni Wrocławskich KOGENERACJA S.A. 1. OBJAŚNIENIA

Bardziej szczegółowo

OPŁACALNOŚĆ ZASTOSOWANIA UKŁADU SKOJARZONEGO Z TURBINĄ GAZOWĄ I KOTŁEM ODZYSKNICOWYM W CIEPŁOWNI KOMUNALNEJ

OPŁACALNOŚĆ ZASTOSOWANIA UKŁADU SKOJARZONEGO Z TURBINĄ GAZOWĄ I KOTŁEM ODZYSKNICOWYM W CIEPŁOWNI KOMUNALNEJ Kogeneracja w energetyce przemysłowej i komunalnej Mariusz TAŃCZUK Katedra Techniki Cieplnej i Aparatury Przemysłowej Politechnika Opolska 45-233 Opole, ul. Mikołajczyka 5 e-mail: mtanczuk@ec.opole.pl

Bardziej szczegółowo

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia SPIS TREŚCI Przedmowa... 11 Podstawowe określenia... 13 Podstawowe oznaczenia... 18 1. WSTĘP... 23 1.1. Wprowadzenie... 23 1.2. Energia w obiektach budowlanych... 24 1.3. Obszary wpływu na zużycie energii

Bardziej szczegółowo

Nowe układy kogeneracyjne polska rzeczywistość i wyzwania przyszłości

Nowe układy kogeneracyjne polska rzeczywistość i wyzwania przyszłości Nowe układy kogeneracyjne polska rzeczywistość i wyzwania przyszłości Janusz Lewandowski Sulechów, 22 listopada 2013 Wybrane zapisy DYREKTYWY PARLAMENTU EUROPEJSKIEGO I RADY 2012/27/UE z dnia 25 października

Bardziej szczegółowo

Jerzy Żurawski Wrocław, ul. Pełczyńska 11, tel. 071-321-13-43,www.cieplej.pl

Jerzy Żurawski Wrocław, ul. Pełczyńska 11, tel. 071-321-13-43,www.cieplej.pl OCENA ENERGETYCZNA BUDYNKÓW Jerzy Żurawski Wrocław, ul. Pełczyńska 11, tel. 071-321-13-43,www.cieplej.pl SYSTEM GRZEWCZY A JAKOŚĆ ENERGETYCZNA BUDNKU Zapotrzebowanie na ciepło dla tego samego budynku ogrzewanego

Bardziej szczegółowo

Wstępny dobór źródła ciepła i energii elektrycznej dla obiektu przy znanym przebiegu zmienności obciążeń

Wstępny dobór źródła ciepła i energii elektrycznej dla obiektu przy znanym przebiegu zmienności obciążeń Wstępny dobór źródła ciepła i energii elektrycznej dla obiektu przy znanym przebiegu zmienności obciążeń Część l JACEK KALINA Zakład Termodynamiki i Energetyki Gazowej Instytut Techniki Cieplnej Politechniki

Bardziej szczegółowo

Produkcja ciepła i prądu z biogazu jako alternatywa dla lokalnych ciepłowni. mgr inż. Grzegorz Drabik

Produkcja ciepła i prądu z biogazu jako alternatywa dla lokalnych ciepłowni. mgr inż. Grzegorz Drabik Produkcja ciepła i prądu z biogazu jako alternatywa dla lokalnych ciepłowni mgr inż. Grzegorz Drabik Plan prezentacji O firmie Technologia Wybrane realizacje Ciepłownia gazowa a elektrociepłownia gazowa

Bardziej szczegółowo

P R Z E W I D Y W A N A C H A R A K T E R Y S T Y K A E K O N O M I C Z N O - E N E R G E T Y C Z N A Dla projektu budynku jednorodzinnego - "AGATKA"

P R Z E W I D Y W A N A C H A R A K T E R Y S T Y K A E K O N O M I C Z N O - E N E R G E T Y C Z N A Dla projektu budynku jednorodzinnego - AGATKA P R Z E W I D Y W A N A C H A R A K T E R Y S T Y K A E K O N O M I C Z N O - E N E R G E T Y C Z N A Dla projektu budynku jednorodzinnego - "AGATKA" Częśd 1. Obliczenia ekonomiczno-energetyczne dla zaprojektowanej

Bardziej szczegółowo

NUMER CHP-1 DATA 5.03.2012 Strona 1/5 TEMAT ZWIĘKSZENIE EFEKTYWNOŚCI GOSPODAROWANIA ENERGIĄ POPRZEZ ZASTOSOWANIE KOGENERACJI

NUMER CHP-1 DATA 5.03.2012 Strona 1/5 TEMAT ZWIĘKSZENIE EFEKTYWNOŚCI GOSPODAROWANIA ENERGIĄ POPRZEZ ZASTOSOWANIE KOGENERACJI NUMER CHP-1 DATA 5.03.2012 Strona 1/5 KOGENERACJA- to proces jednoczesnego wytwarzania ciepła i energii elektrycznej. Zastosowanie kogeneracji daje Państwu możliwość zredukowania obecnie ponoszonych kosztów

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY PP_BUDYNEK_OCENIANY RODZAJ BUDYNKU Budynek wolnostojący CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU 59-600 Lwówek Śląski, 59-600 Lwówek Śląski

Bardziej szczegółowo

Analiza zastosowania alternatywnych/odnawialnych źródeł energii

Analiza zastosowania alternatywnych/odnawialnych źródeł energii Analiza zastosowania alternatywnych/odnawialnych źródeł energii Artykuł 6 Dyrektywy KE/91/2002 o charakterystyce energetycznej budynków wprowadza obowiązek promowania przez kraje członkowskie rozwiązań

Bardziej szczegółowo

Specjalność na studiach I stopnia: Kierunek: Energetyka Źródła Odnawialne i Nowoczesne Technologie Energetyczne (ZONTE)

Specjalność na studiach I stopnia: Kierunek: Energetyka Źródła Odnawialne i Nowoczesne Technologie Energetyczne (ZONTE) Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Specjalność na studiach I stopnia: Kierunek: Energetyka Źródła Odnawialne i Nowoczesne Technologie Energetyczne (ZONTE) Opiekun

Bardziej szczegółowo

Ustawa o promocji kogeneracji

Ustawa o promocji kogeneracji Ustawa o promocji kogeneracji dr inż. Janusz Ryk New Energy User Friendly Warszawa, 16 czerwca 2011 Ustawa o promocji kogeneracji Cel Ustawy: Stworzenie narzędzi realizacji Polityki Energetycznej Polski

Bardziej szczegółowo

Audyt energetyczny klucz do optymalnej termomodernizacji budynków. Źródła finansowania przedsięwzięć termomodernizacyjnych i ekoenergetycznych

Audyt energetyczny klucz do optymalnej termomodernizacji budynków. Źródła finansowania przedsięwzięć termomodernizacyjnych i ekoenergetycznych Audyt energetyczny klucz do optymalnej termomodernizacji budynków Źródła finansowania przedsięwzięć termomodernizacyjnych i ekoenergetycznych Krzysztof Szczotka PRZEDSIĘWZIĘCIA DLA POPRAWY EFEKTYWNOŚCI

Bardziej szczegółowo

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe dla gminy Krzeszowice na lata

Założenia do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe dla gminy Krzeszowice na lata Str. 1/5 - stan istniejący () Gmina liczba mieszkańców: 31 948 osób Powierzchnia - sposób ogrzewania Zapotrzebowanie na moc cieplną Roczne zużycie ciepła ogólnie indywidualne ogólnie indywidualne ogrzewanie

Bardziej szczegółowo

Zastosowanie OZE i mikrokogeneracji. nzeb. dr inż. Adrian Trząski

Zastosowanie OZE i mikrokogeneracji. nzeb. dr inż. Adrian Trząski Zastosowanie OZE i mikrokogeneracji w budynkach nzeb dr inż. Adrian Trząski Kryterium - zapotrzebowanie na energię pierwotną Wymagania nzeb WT 2013 ogrzewanie i cwu Wymagania nzeb WT 2013 chłodzenie Wymagania

Bardziej szczegółowo

OPŁACALNOŚĆ ZASTOSOWANIA SILNIKÓW GAZOWYCH DO PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA

OPŁACALNOŚĆ ZASTOSOWANIA SILNIKÓW GAZOWYCH DO PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA OPŁACALNOŚĆ ZASTOSOWANIA SILNIKÓW GAZOWYCH DO PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Autor: Paweł Bućko ( Rynek Energii 4/2005) Słowa kluczowe: gospodarka skojarzona, lokalny rynek energii, źródła rozproszone,

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY RODZAJ BUDYNKU Zamieszkania zbiorowego CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU Piaseczno, ul. Chyliczkowska 20A, 05-500 Piaseczno NAZWA PROJEKTU

Bardziej szczegółowo

Ekonomiczna analiza optymalizacyjno-porównawcza

Ekonomiczna analiza optymalizacyjno-porównawcza 1 Ekonomiczna analiza optymalizacyjno-porównawcza Tytuł: Porównanie wykorzystania systemów zaopatrzenia w energię cieplną (CO i CWU) alternatywnych hybrydowych - kocioł gazowy kondensacyjny i pompa ciepła

Bardziej szczegółowo

Charakterystyka energetyczna budynku. LK&877

Charakterystyka energetyczna budynku. LK&877 Charakterystyka energetyczna budynku. LK&877 zgodnie z rozporządzeniem Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie

Bardziej szczegółowo

Termomodernizacja wybranych budynków oświatowych na terenie Miasta Stołecznego Warszawy

Termomodernizacja wybranych budynków oświatowych na terenie Miasta Stołecznego Warszawy Termomodernizacja wybranych budynków oświatowych na terenie Miasta Stołecznego Warszawy Efekt ekologiczny inwestycji [Październik 2010] 2 Podstawa prawna Niniejsze opracowanie zostało przygotowane w październiku

Bardziej szczegółowo

Informacja o pracy dyplomowej

Informacja o pracy dyplomowej Informacja o pracy dyplomowej 1. Nazwisko i Imię: Duda Dawid adres e-mail: Duda.Dawid1@wp.pl 2. Kierunek studiów: Mechanika I Budowa Maszyn 3. Rodzaj studiów: inżynierskie 4. Specjalnośd: Systemy, Maszyny

Bardziej szczegółowo

Rozdział 5. Kotłownie lokalne i przemysłowe

Rozdział 5. Kotłownie lokalne i przemysłowe ZZAAŁŁO ŻŻEENNIIAA DDO PPLLAANNUU ZZAAO PPAATTRRZZEENNIIAA W CCIIEEPPŁŁO,,, EENNEERRGIIĘĘ EELLEEKTTRRYYCCZZNNĄĄ II PPAALLIIWAA GAAZZOWEE MIIAASSTTAA ŻŻAAGAAŃŃ Rozdział 5 Kotłownie lokalne i przemysłowe

Bardziej szczegółowo

EFEKTYWNOŚĆ WYKORZYSTANIA ENERGII PIERWOTNEJ DO PRZYGOTOWANIA CIEPŁEJ WODY UŻYTKOWEJ W LOKALNEJ KOTŁOWNI OSIEDLOWEJ

EFEKTYWNOŚĆ WYKORZYSTANIA ENERGII PIERWOTNEJ DO PRZYGOTOWANIA CIEPŁEJ WODY UŻYTKOWEJ W LOKALNEJ KOTŁOWNI OSIEDLOWEJ Grzegorz BARTNICKI, Agnieszka CHMIELEWSKA* ciepła woda użytkowa, zmienność zużycia paliwa efektywność energetyczna EFEKTYWNOŚĆ WYKORZYSTANIA ENERGII PIERWOTNEJ DO PRZYGOTOWANIA CIEPŁEJ WODY UŻYTKOWEJ W

Bardziej szczegółowo

Rozwój kogeneracji wyzwania dla inwestora

Rozwój kogeneracji wyzwania dla inwestora REC 2013 Rozwój kogeneracji wyzwania dla inwestora PGE Górnictwo i Energetyka Konwencjonalna S.A. Departament Inwestycji Biuro ds. Energetyki Rozproszonej i Ciepłownictwa PGE Górnictwo i Energetyka Konwencjonalna

Bardziej szczegółowo

Inteligentny dom plus-energetyczny. Ryszard Mocha Marta Mastalerska Michał Zakrzewski

Inteligentny dom plus-energetyczny. Ryszard Mocha Marta Mastalerska Michał Zakrzewski Inteligentny dom plus-energetyczny Ryszard Mocha Marta Mastalerska Michał Zakrzewski Dyrektywa 2010/31/UE w sprawie charakterystyki energetycznej budynków 40% energii zużywanej w UE wykorzystywana jest

Bardziej szczegółowo

Powierzchnia - sposób ogrzewania Zapotrzebowanie na moc cieplną Roczne zużycie ciepła. ciepłowniczych indywidualne z systemów

Powierzchnia - sposób ogrzewania Zapotrzebowanie na moc cieplną Roczne zużycie ciepła. ciepłowniczych indywidualne z systemów - stan istniejący () Str. 1/5 liczba mieszkańców: 31,6 tys. - sposób ogrzewania Roczne zużycie ciepła ogrzewanie pomieszczeń przygotowanie ciepłej wody ciepło technologiczne i wentylacyjne SUMA BUDOWNICTWO

Bardziej szczegółowo

Powierzchnia - sposób ogrzewania Zapotrzebowanie na moc cieplną Roczne zużycie ciepła. ciepłowniczych indywidualne z systemów

Powierzchnia - sposób ogrzewania Zapotrzebowanie na moc cieplną Roczne zużycie ciepła. ciepłowniczych indywidualne z systemów - stan istniejący () Str. 1/5 liczba mieszkańców: 30,5 tys. - sposób ogrzewania Roczne zużycie ciepła ogrzewanie pomieszczeń przygotowanie ciepłej wody ciepło technologiczne i wentylacyjne SUMA BUDOWNICTWO

Bardziej szczegółowo

WYKORZYSTANIE SILNIKA STIRLINGA W MAŁYCH I ŚREDNICH AGREAGATACH TRIGENERACYJNYCH

WYKORZYSTANIE SILNIKA STIRLINGA W MAŁYCH I ŚREDNICH AGREAGATACH TRIGENERACYJNYCH INŻ. BARTOSZ SMÓŁKA, BEATA SZKOŁA WYKORZYSTANIE SILNIKA STIRLINGA W MAŁYCH I ŚREDNICH AGREAGATACH TRIGENERACYJNYCH S t r e s z c z e n i e W związku z wprowadzaniem kolejnych dyrektyw dotyczących oszczędzania

Bardziej szczegółowo

Modernizacje energetyczne w przedsiębiorstwach ze zwrotem nakładów inwestycyjnych z oszczędności energii

Modernizacje energetyczne w przedsiębiorstwach ze zwrotem nakładów inwestycyjnych z oszczędności energii Modernizacje energetyczne w przedsiębiorstwach ze zwrotem nakładów inwestycyjnych z oszczędności energii Zygmunt Jaczkowski Prezes Zarządu Izby Przemysłowo- Handlowej w Toruniu 1 Celem audytu w przedsiębiorstwach

Bardziej szczegółowo

Elektroenergetyka polska wybrane zagadnienia

Elektroenergetyka polska wybrane zagadnienia Polskie Towarzystwo Fizyczne Oddział Katowicki Konwersatorium Elektroenergetyka polska wybrane zagadnienia Maksymilian Przygrodzki Katowice, 18.03.2015 r Zakres tematyczny System elektroenergetyczny Zapotrzebowanie

Bardziej szczegółowo

Konferencja Podsumowująca projekt Energetyczny Portal Innowacyjny Cz-Pl (EPI)

Konferencja Podsumowująca projekt Energetyczny Portal Innowacyjny Cz-Pl (EPI) Konferencja Podsumowująca projekt Energetyczny Portal Innowacyjny Cz-Pl (EPI) Wrocław, 21 październik 2014 Podstawowe definicje System ogrzewczego na c.o. i c.w.u. to system lub systemy techniczne zapewniający

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego LK&942 Budynek oceniany: Nazwa obiektu Zdjęcie budynku Adres obiektu Całość/ część budynku Nazwa inwestora Adres inwestora Kod, miejscowość

Bardziej szczegółowo

Ryszard Tokarski Prezes Zarządu Spółki EKOPLUS Kraków. Kraków, 14 stycznia 2010

Ryszard Tokarski Prezes Zarządu Spółki EKOPLUS Kraków. Kraków, 14 stycznia 2010 Ryszard Tokarski Prezes Zarządu Spółki EKOPLUS Kraków Kraków, 14 stycznia 2010 3 Ciepło sieciowe z kogeneracji Efektywny energetycznie produkt spełniający oczekiwania klientów 4 Ekoplus Sp. z o.o. Naszym

Bardziej szczegółowo

Analiza możliwości racjonalnego wykorzystania systemów alternatywnych zaopatrzenia w energię i ciepło.

Analiza możliwości racjonalnego wykorzystania systemów alternatywnych zaopatrzenia w energię i ciepło. 1 Analiza możliwości racjonalnego wykorzystania systemów alternatywnych zaopatrzenia w energię i ciepło. 1. Zestawienie rocznego zapotrzebowania na energię użytkową 1.1. Zestawienie rocznego zapotrzebowania

Bardziej szczegółowo

Skojarzone układy Hewalex do podgrzewania ciepłej wody użytkowej i ogrzewania budynku

Skojarzone układy Hewalex do podgrzewania ciepłej wody użytkowej i ogrzewania budynku Skojarzone układy Hewalex do podgrzewania ciepłej wody użytkowej i ogrzewania budynku Układy grzewcze, gdzie konwencjonalne źródło ciepła jest wspomagane przez urządzenia korzystające z energii odnawialnej

Bardziej szczegółowo

Możliwości wykorzystania małych układów kogeneracyjnych w instalacjach prosumenckich

Możliwości wykorzystania małych układów kogeneracyjnych w instalacjach prosumenckich Możliwości wykorzystania małych układów kogeneracyjnych w instalacjach prosumenckich Autorzy: dr inż. Karol Sztekler, dr hab. inż. Jan Górski, prof. dr hab. inż. Wojciech Nowak, mgr inż. Tomasz Siwek,

Bardziej szczegółowo

DOFINANSOWANIE DZIAŁAŃ ZWIĄZANYCH

DOFINANSOWANIE DZIAŁAŃ ZWIĄZANYCH DOFINANSOWANIE DZIAŁAŃ ZWIĄZANYCH Z EFEKTYWNOŚCIĄ ENERGETYCZNĄ ZE ŚRODKÓW ZEWNĘTRZNYCH Poziom krajowy Program Operacyjny Infrastruktura i Środowisko (PO IiŚ) 1.2 Promowanie efektywności energetycznej i

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku siedziby placówki terenowej KRUS w Nowej Soli Nazwa obiektu Budynek biurowy- siedziba placówki terenowej KRUS Adres obiektu 67-100 Nowa Sól ul. Szkolna

Bardziej szczegółowo

OGRANICZENIE EMISJI, ZASTOSOWANIE OZE, MONITOROWANIE EFEKTÓW W JAKO NARZĘDZA

OGRANICZENIE EMISJI, ZASTOSOWANIE OZE, MONITOROWANIE EFEKTÓW W JAKO NARZĘDZA PRAKTYCZNE PRZYKŁADY OGRANICZENIE EMISJI, ZASTOSOWANIE OZE, MONITOROWANIE EFEKTÓW W JAKO NARZĘDZA DO OSIĄGANIA CELÓW W PLANU SEAP Piotr Kukla Warszawa 29.10.2012r. TERMOMODERNIZACJA ZESPOŁU U NR 4 W TYCHACH

Bardziej szczegółowo

Ankieta do opracowania "Planu Gospodarki Niskoemisyjnej na terenie Gminy Konstancin-Jeziorna"

Ankieta do opracowania Planu Gospodarki Niskoemisyjnej na terenie Gminy Konstancin-Jeziorna Ankieta do opracowania "Planu Gospodarki Niskoemisyjnej na terenie Gminy Konstancin-Jeziorna" I. CZĘŚĆ INFORMACYJNA Nazwa firmy Adres Rodzaj działalności Branża Osoba kontaktowa/telefon II. Budynki biurowe

Bardziej szczegółowo

Innowacyjna technika grzewcza

Innowacyjna technika grzewcza Innowacyjna technika grzewcza analiza ekonomiczna 2015 pompy ciepła mikrokogeneracja kondensacja instalacje solarne fotowoltaika ogniwa paliwowe Łukasz Sajewicz Viessmann sp. z o. o. 1. Struktura zużycia

Bardziej szczegółowo

Koszty jednostkowe energii cieplnej produkowanej na potrzeby ogrzewania w obecnej kotłowni węglowej budynku przy ul.

Koszty jednostkowe energii cieplnej produkowanej na potrzeby ogrzewania w obecnej kotłowni węglowej budynku przy ul. ZAŁĄCZNIK NR 1. Dane dotyczące cen i taryf 1. Ogrzewanie A) Stan istniejący przed modernizacją Koszty jednostkowe energii cieplnej produkowanej na potrzeby ogrzewania w obecnej kotłowni węglowej budynku

Bardziej szczegółowo

NAFTA-GAZ listopad 2009 ROK LXV

NAFTA-GAZ listopad 2009 ROK LXV NAFTA-GAZ listopad 2009 ROK LXV Robert Wojtowicz Instytut Nafty i Gazu, Kraków Wpływ świadectw pochodzenia energii elektrycznej na efektywność ekonomiczną urządzeń kogeneracyjnych zasilanych gazem ziemnym

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA ZUŻYCIA I KOSZTÓW ENERGII DLA BUDYNKU JEDNORODZINNEGO W SŁUBICACH I FRANKFURCIE NAD ODRĄ

ANALIZA PORÓWNAWCZA ZUŻYCIA I KOSZTÓW ENERGII DLA BUDYNKU JEDNORODZINNEGO W SŁUBICACH I FRANKFURCIE NAD ODRĄ HENRYK KWAPISZ *1 ANALIZA PORÓWNAWCZA ZUŻYCIA I KOSZTÓW ENERGII DLA BUDYNKU JEDNORODZINNEGO W SŁUBICACH I FRANKFURCIE NAD ODRĄ COMPARATIVE ANALYSIS OF ENERGY CONSUMPTION AND COSTS FOR SINGLE FAMILY HOUSE

Bardziej szczegółowo

Projekt inwestycyjny pod nazwą: Blok kogeneracyjny ciepła (6,8 MWt) i energii elektrycznej (1,225 MWe) opalany biomasą w Ciepłowni Łężańska w Krośnie

Projekt inwestycyjny pod nazwą: Blok kogeneracyjny ciepła (6,8 MWt) i energii elektrycznej (1,225 MWe) opalany biomasą w Ciepłowni Łężańska w Krośnie Projekt inwestycyjny pod nazwą: Blok kogeneracyjny ciepła (6,8 MWt) i energii elektrycznej (1,225 MWe) opalany biomasą w Ciepłowni Łężańska w Krośnie Projekt współfinansowany przez Unię Europejską ze środków

Bardziej szczegółowo

WSPÓŁPRACA UKŁADU SKOJARZONEGO Z TURBINĄ GAZOWĄ Z SYSTEMEM ELEKTROENERGETYCZNYM I SYSTEMEM CIEPŁOWNICZYM MIASTA OPOLA

WSPÓŁPRACA UKŁADU SKOJARZONEGO Z TURBINĄ GAZOWĄ Z SYSTEMEM ELEKTROENERGETYCZNYM I SYSTEMEM CIEPŁOWNICZYM MIASTA OPOLA WSPÓŁPRACA UKŁADU SKOJARZONEGO Z TURBINĄ GAZOWĄ Z SYSTEMEM ELEKTROENERGETYCZNYM I SYSTEMEM CIEPŁOWNICZYM MIASTA OPOLA MODERNIZACJE LIKWIDACJA DO 1998 ROKU PONAD 500 KOTŁOWNI LOKALNYCH BUDOWA NOWYCH I WYMIANA

Bardziej szczegółowo

ZASOBNIKI CIEPŁA W UKŁADACH KOGENERACYJNYCH ASPEKTY TECHNICZNE I EKONOMICZNE HEAT ACCUMULATORS AT COGENERATION PLANTS TECHNICAL AND ECONOMIC ASPECTS

ZASOBNIKI CIEPŁA W UKŁADACH KOGENERACYJNYCH ASPEKTY TECHNICZNE I EKONOMICZNE HEAT ACCUMULATORS AT COGENERATION PLANTS TECHNICAL AND ECONOMIC ASPECTS Kogeneracja w energetyce przemysłowej i komunalnej Janusz SKOREK, Wojciech KOSTOWSKI Zakład Termodynamiki i Energetyki Gazowej Instytut Techniki Cieplnej, Politechnika Śląska w Gliwicach 44-101 Gliwice,

Bardziej szczegółowo

Opracowanie charakterystyki energetycznej wg nowych wymagań prawnych

Opracowanie charakterystyki energetycznej wg nowych wymagań prawnych Opracowanie charakterystyki energetycznej wg nowych wymagań prawnych - wprowadzenie, najważniejsze zmiany Adam Ujma Wydział Budownictwa Politechnika Częstochowska 10. Dni Oszczędzania Energii Wrocław 21-22.10.2014

Bardziej szczegółowo

I. CZĘŚĆ INFORMACYJNA. Nazwa firmy. Adres. Rodzaj działalności

I. CZĘŚĆ INFORMACYJNA. Nazwa firmy. Adres. Rodzaj działalności Formularz danych dotyczących przedsiębiorstwa ciepłowniczego na potrzeby opracowania "Aktualizacji założeń do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe dla Miasta Żory" I. CZĘŚĆ

Bardziej szczegółowo

Rozwój kogeneracji w Polsce perspektywy, szanse, bariery

Rozwój kogeneracji w Polsce perspektywy, szanse, bariery ITC Rozwój kogeneracji w Polsce perspektywy, szanse, bariery Janusz Lewandowski Sulechów, listopad 2011 Ogólne uwarunkowania 1. Kogeneracja jest uznawana w Polsce za jedną z najefektywniejszych technologii

Bardziej szczegółowo

CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW DOMOWYCH

CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW DOMOWYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Ryszard FRĄCKOWIAK* Tomasz GAŁAN** CHARAKTERYSTYCZNE CECHY KRZYWYCH OBCIĄŻENIA ODBIORCÓW ZALICZANYCH DO GOSPODARSTW

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego LK&513 Budynek oceniany: Nazwa obiektu 513 Zdjęcie budynku Adres obiektu Całość/ część budynku Nazwa inwestora Adres inwestora Kod,

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU BUDYNEK OCENIANY PP_BUDYNEK_OCENIANY RODZAJ BUDYNKU Budynek wolnostojący CAŁOŚĆ/CZĘŚĆ BUDYNKU Całość budynku ADRES BUDYNKU 59-600 Lwówek Śląski, 59-600 Lwówek Śląski

Bardziej szczegółowo

PERSPEKTYWY WYKORZYSTANIA GAZU ZIEMNEGO DO PRODUKCJI ENERGII ELEKTRYCZNEJ W POLSCE

PERSPEKTYWY WYKORZYSTANIA GAZU ZIEMNEGO DO PRODUKCJI ENERGII ELEKTRYCZNEJ W POLSCE PERSPEKTYWY WYKORZYSTANIA GAZU ZIEMNEGO DO PRODUKCJI ENERGII ELEKTRYCZNEJ W POLSCE Paweł Bućko Konferencja Rynek Gazu 2015, Nałęczów, 22-24 czerwca 2015 r. Plan prezentacji KATEDRA ELEKTROENERGETYKI Stan

Bardziej szczegółowo

Wykorzystanie pojemności cieplnej dużych systemów dystrybucji energii

Wykorzystanie pojemności cieplnej dużych systemów dystrybucji energii Wykorzystanie pojemności cieplnej dużych systemów dystrybucji energii Leszek Pająk, Antoni Barbacki pajak.leszek@gmail.com AGH Akademia Górniczo-Hutnicza Wydział Geodezji Górniczej i Inżynierii Środowiska

Bardziej szczegółowo

Analiza możliwości racjonalnego wykorzystania systemów alternatywnych zaopatrzenia w energię i ciepło.

Analiza możliwości racjonalnego wykorzystania systemów alternatywnych zaopatrzenia w energię i ciepło. 1 Analiza możliwości racjonalnego wykorzystania systemów alternatywnych zaopatrzenia w energię i ciepło. 1. Zestawienie rocznego zapotrzebowania na energię użytkową 1.1. Zestawienie rocznego zapotrzebowania

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego LK&198 Budynek oceniany: Nazwa obiektu 198 Zdjęcie budynku Adres obiektu Całość/ część budynku Nazwa inwestora Adres inwestora Kod,

Bardziej szczegółowo

PRACA ZINTEGROWANEGO UKŁADU GRZEWCZO- CHŁODZĄCEGO W BUDYNKU ENERGOOSZCZĘDNYM I PASYWNYM

PRACA ZINTEGROWANEGO UKŁADU GRZEWCZO- CHŁODZĄCEGO W BUDYNKU ENERGOOSZCZĘDNYM I PASYWNYM Budynek energooszczędny, budynek pasywny, układ zintegrowany grzewczo- chłodzący Grzegorz KRZYŻANIAK* PRACA ZINTEGROWANEGO UKŁADU GRZEWCZO- CHŁODZĄCEGO W BUDYNKU ENERGOOSZCZĘDNYM I PASYWNYM Przedmiotem

Bardziej szczegółowo