Komputerowe dowodzenie twierdze ń matematycznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowe dowodzenie twierdze ń matematycznych"

Transkrypt

1 Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Komputerowe dowodzenie twierdze ń matematycznych Adam Naumowicz Instytut Informatyki Uniwersytet w Białymstoku 16 wrześ nia 1 Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

2 O czym będzie ten wykład? W jaki sposób komputery pomagają matematykom? Rodzaje komputerowych narzędzi matematycznych Matematyczne wyzwania w dobie komputerów Czy komputery mogą zastąpić matematyków? System weryfikacji dowodów matematycznych MIZAR Biblioteka komputerowo sprawdzonej wiedzy matematycznej MIZAR na Wydziale Matematyki i Informatyki Uniwersytetu w Białymstoku 2

3 Software dla matematyków Obliczenia numeryczne Liczby: komputer -> człowiek Algebra komputerowa Formuły: komputer -> człowiek Automatyczne dowodzenie twierdzeń Wyszukiwanie dowodów ( theorem provers ) Weryfikacja dowodów ( -checkers ) 3

4 Matematyczne wyzwania w dobie komputerów Twierdzenie Robbinsa Każda algebra Robbinsa jest algebrą Boole'a Prime Number Theorem Twierdzenie Jordana Hipoteza Kepplera 4

5 Automatyczne dowodzenie twierdzeń (Pre)historia początek lat 70-tych XX w. Automath (N. de Bruijn) LCF (R. Milner) MIZAR (A. Trybulec) Nqthm (R. Boyer, J. Moore) Evidence Algorithm (V. Glushkov) F. Wiedijk The seventeen provers of the world Provers / -checkers / assistants 5

6 System MIZAR w pigułce Język MIZAR powstał (i wciąż jest rozwijany!) aby jak najbliżej odpowiadał konstrukcjom używanym w nieformalnych pracach matematycznych Podstawą są klasyczna logika, dowody założeniowe oraz dedukcja naturalna Słowa kluczowe są zaczerpnięte z jęz. angielskiego System (weryfikator) sprawdza poprawność logiczną dowodów pisanych przez człowieka Strona WWW projektu: Dostępna wersja dla wielu platform 6 Dodatkowe serwisy wspomagające pracę autorów

7 Języki wzorowane na systemie MIZAR MIZAR mode for HOL (J. Harrison) Declare (D. Syme) Isabelle/Isar (M. Wenzel) Mizar-light for HOL-Light (F. Wiedijk) MMode/DPL Declarative Proof Language for Coq (P. Corbineau) 7

8 Podstawy języka MIZAR Podstawowe wyrażenia języka MIZAR do budowania formuł matematycznych: 8

9 Podstawy języka MIZAR strategie dowodzenia A implies B :: thesis = A implies B assume A; :: thesis = B thus B; :: thesis = {} A & B :: thesis = A & B thus A; :: thesis = B thus B; :: thesis = {} 9

10 Podstawy języka MIZAR strategie dowodzenia for x holds A(x) :: thesis = for x holds A(x) let a; :: thesis = A(a) thus A(a); :: thesis = {} ex x st A(x) :: thesis = ex x st A(x) take a; :: thesis = A(a) thus A(a); :: thesis = {} 10

11 Podstawy języka MIZAR strategie dowodzenia A & B implies C :: thesis = A & B implies C assume A; :: thesis = B implies C assume B; :: thesis = C thus C; :: thesis = {} A implies (B implies C):: thesis = A implies (B implies C) assume A; :: thesis = B implies C assume B; :: thesis = C thus C; :: thesis = {} 11

12 Podstawy języka MIZAR strategie dowodzenia A :: thesis = A assume not A; :: thesis = contradiction thus contradiction; :: thesis = {} :: thesis = 12 assume not thesis; :: thesis = contradiction thus contradiction; :: thesis = {}

13 MIZAR Mathematical Library (MML) A good system without a library is useless. A good library for a bad system is still very interesting So the library is what counts.'' F. Wiedijk, Estimating the Cost of a Standard Library for a Mathematical Proof Checker MML to obecnie największa na świecie baza komputerowo sprawdzonej wiedzy matematycznej Systematyczne budowanie bazy rozpoczęło się w 1989 r. Baza oparta na aksjomatyce Tarskiego-Grothendiecka 13

14 MIZAR Mathematical Library (MML) - statystyki Ponad twierdzeń i 700 schematów Ponad definicji Ponad 220 autorów z kilkunastu krajów: Polska Japonia Chiny Kanada Niemcy USA Włochy 14 Holandia

15 Nauka systemu MIZAR na UwB F. Wiedijk: assistants tend to resemble their implementation language Object Pascal: 29 symboli specjalnych, 65 słów zastrzeżonych + 39 dyrektyw MIZAR: 27 symboli specjalnych, 110 słów zastrzeżonych 10 wspólnych symboli 15 identycznych słów zastrzeżonych MIZAR to obiektywny nauczyciel Doskonale nadaje się do nauczania na odległość 15

16 Nauka systemu MIZAR na UwB przykład 1 reserve R,S,T for Relation; R is transitive implies R*R c= R assume a: R is transitive; let a,b; assume [a,b] in R*R; then consider c such that c: [a,c] in R & [c,b] in R by RELATION:def 7; thus [a,b] in R by c,a,relation:def 12; 16

17 Nauka systemu MIZAR na UwB przykład 2 ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T) reconsider R={[1,2],[1,3]} as Relation by RELATION:2; reconsider S={[2,1]},T={[3,1]} as Relation by RELATION:1; take R,S,T; b: [1,2] in R by ENUMSET:def 4; d: [2,1] in S by ENUMSET:def 3; [2,1] <> [3,1] by ENUMSET:2; then not [2,1] in T by ENUMSET:def 3; then [2,1] in S \ T by d,relation:def 6; then a: [1,1] in R*(S \ T) by b,relation:def 7; e: [1,3] in R by ENUMSET:def 4; [3,1] in T by ENUMSET:def 3; then [1,1] in R*T by e,relation:def 7; then not [1,1] in (R*S) \ (R*T) by RELATION:def 6; hence not R*(S \ T) c= (R*S) \ (R*T) by RELATION:def 9,a; 17

18 Nauka systemu MIZAR na UwB przykład 3 reserve i,j,k,l for natural number; 18 i+k = j+k implies i=j; defpred P[natural number] means i+$1 = j+$1 implies i=j; A1: P[0] assume B0: i+0 = j+0; B1: i+0 = i by INDUCT:3; j+0 = j by INDUCT:3; hence thesis by B0,B1; A2: for k st P[k] holds P[succ k] let l such that C1: P[l]; assume i+succ l=j+succ l; then succ(i+l) = j+succ l by INDUCT:4.= succ(j+l) by INDUCT:4; hence thesis by C1,INDUCT:2; for k holds P[k] from INDUCT:sch 1(A1,A2); hence thesis;

19 MIZAR jako -assistant 19 MIZAR jako -assistant MMLQuery Mizar mode for GNU Emacs MoMM interreduction and retrieval of matching theorems from MML MIZAR Proof Advisor On-line MIZAR Systemy do reprezentacji wiedzy matematycznej Formalized Mathematics XML-based hyper-linked articles Dodatkowe serisy Mizar-forum mailing list MIZAR Twiki MIZAR User Service

20 Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Dziękuj ę za uwagę 20 Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Ontologie, czyli o inteligentnych danych

Ontologie, czyli o inteligentnych danych 1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania

Bardziej szczegółowo

ś ó ś ń ś ś ś ó ś ś ś ś ś ś ś ś ó ń ś ś Ł ń ć ś ś ó ó ś ń ó ń ś ó Ń ś ó ś ć ó ó Ą ń ó Ń ś ó ś ś ś ś ś ś ś ś Ą ń ó ó ś śó ś ń ó ś ś Ł Ą Ć ó ś ś ś Ą śó ś ś ś ó Ń śó ś śó Ś ń ó ś ń ó ś ś ć ś ś ó ó śó ś ś

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

JĘZYK ANGIELSKI POZIOM ROZSZERZONY

JĘZYK ANGIELSKI POZIOM ROZSZERZONY EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 JĘZYK ANGIELSKI POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SHEMAT PUNKTOWANIA KWIEIEŃ 2014 Rozumienie ze słuchu Wymagania ogólne II. Rozumienie Uczeń rozumie proste,

Bardziej szczegółowo

INSTYTUT NAUK EKONOMICZNYCH I INFORMATYKI Rozkład zajęć, Semestr zimowy, Kierunek INFORMATYKA PONIEDZIAŁEK

INSTYTUT NAUK EKONOMICZNYCH I INFORMATYKI Rozkład zajęć, Semestr zimowy, Kierunek INFORMATYKA PONIEDZIAŁEK PONIEDZIAŁEK Automaty i języki formalne (W) informatycznym (W) Algebra liniowa z geometrią 1 (W) dr R. Kamocki Automaty i języki formalne Analiza matematyczna 2 (W) Analiza matematyczna 2 informatycznym

Bardziej szczegółowo

Wirtualna przestrzeń edukacyjna i jej zasoby

Wirtualna przestrzeń edukacyjna i jej zasoby Wirtualna przestrzeń edukacyjna i jej zasoby mgr Jagoda Rycharska Sekretarz Studencko-Doktoranckiego Koła Naukowego eprint, IINiB UMK I Ogólnopolska Studencko-Doktorancka Konferencja Naukowa Człowiek Nauka.

Bardziej szczegółowo

Człowiek najlepsza inwestycja. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Człowiek najlepsza inwestycja. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Projekt EUROBIOL pt. Rozszerzenie i udoskonalenie oferty edukacyjnej skierowanej do osób spoza uczelni oraz podwyższanie jakości nauczania i kompetencji kadry akademickiej nr POKL 04.01.01-00-178/09 Człowiek

Bardziej szczegółowo

Problemy studentów na I roku

Problemy studentów na I roku Poczatek studiów Problemy studentów na I roku Jacek Cichoń Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej VIII Konferencja Regionalna: 5 grudnia 2011 Poczatek studiów Program I roku

Bardziej szczegółowo

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A

Bardziej szczegółowo

Plan zajęć Szkoła Podstawowa

Plan zajęć Szkoła Podstawowa Plan zajęć Szkoła Podstawowa Klasa 1 a plastyczna techniczna Klasa 1 b edukcja techniczna plastyczna Klasa 1 c edukcja techniczna plastyczna Klasa 2 techniczna plastyczna Klasa 3 a techniczna Klasa 3 b

Bardziej szczegółowo

Programy Matematyki Przemysłowej

Programy Matematyki Przemysłowej Programy Matematyki Przemysłowej Andrzej Palczewski Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Programy Matematyki Przemysłowej p. 1 Co robia nasi absolwenci? Typowa struktura zatrudnienia

Bardziej szczegółowo

Opole 12.05.2011. Serdecznie witamy

Opole 12.05.2011. Serdecznie witamy Opole 12.05.2011 Serdecznie witamy Sonda rozpoczęła się 02.11.2010 a zakończyła się 30.04.2011 Wyniki badania mają pozwolić na zobrazowanie przyszłych zmian na rynku pracy związanych z otwarciem kolejnych

Bardziej szczegółowo

Tematy prac dyplomowych r. akad. 2014/2015

Tematy prac dyplomowych r. akad. 2014/2015 Instytut Informatyki 14.05.14 r. Tematy prac dyplomowych r. akad. 2014/2015 Tematy prac magisterskich Zakład Modelowania Materiałów dr hab. Marian Stanisław Uba 1. System wspomagający pracę telemarketera

Bardziej szczegółowo

Kandydaci powinni spełniać warunki określone w Ustawie z dnia 27 lipca 2005 r. Prawo o Szkolnictwie Wyższym ( Dz. U. z 2012 r. poz. 572).

Kandydaci powinni spełniać warunki określone w Ustawie z dnia 27 lipca 2005 r. Prawo o Szkolnictwie Wyższym ( Dz. U. z 2012 r. poz. 572). listy: relacyjne bazy danych Oracle, MS SQL, programowanie obiektowe (Java, C++), systemy operacyjne, sieci komputerowe, bezpieczeństwo systemów komputerowych i kryptografia, język XML i jego wykorzystanie

Bardziej szczegółowo

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia :Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Repetytorium z matematyki. 1 30 3 Środowisko programisty. 1 30 3 Komputerowy

Bardziej szczegółowo

Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą

Bardziej szczegółowo

ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć

Bardziej szczegółowo

ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź

Bardziej szczegółowo

Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś

Bardziej szczegółowo

Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć

Bardziej szczegółowo

Ą Ł Ą Ą ś ś ż Ż ś ś ś ść ś ś Ą ś Ż ś ć ż ś ś ż ś ż Ć Ł Ż ż Ź ć ĄĄ Ż Ą Ż Ą Ź Ż Ł Ł Ę ś ś ś ż Ą ś Ą ś Ą Ż Ą Ż Ą Ć Ż Ż ś Ż Ą Ć Ł Ł Ę ś ż Ż ć ś ś ś ś Ż Ć ż ż ś ś ż ś ś Ż Ż ś ś ś ś ś Ż ż Ż ś ś Ż Ę ż ś ż Ź Ę

Bardziej szczegółowo

Ż ź ź ź ź ź ć ć Ą Ą ć Ą ź ź ć Ż Ś ź ć ć Ę ć ź ź ć ź Ą ĄĄ Ń Ą Ń ć ć ć ć Ę ć Ń ć ć ć ć Ą ć ć ć ć ć Ń Ń ć ć ź ź ć Ę Ę ć Ą ć ć ć ć ć Ń Ę ć ć ć ć ć ć ć ć ć ź ć ź Ą ć ć ć Ń ć ć ć ć ź ć ć ć Ń Ń ć ź ź ć ź ź ć

Bardziej szczegółowo

Ę Ę Ę Ę Ę Ź Ą Ę Ą Ę Ą Ą Ę ć Ś ć Ę Ą ź Ą Ź ć Ę Ź Ę ć Ą Ę Ś Ę Ę Ź Ą Ę ć ź Ą Ź Ę ź Ę Ą Ś Ł Ą Ź Ę Ę Ę Ę ć Ę Ą Ę Ę Ą Ś Ą Ę ź ć Ę Ę Ę ź Ź ź Ą Ź Ę Ź ź Ź ć ć Ę Ę Ę Ą Ą Ą Ę ć Ę Ę ć Ę Ę Ą Ę Ą Ę Ę Ę Ą Ę Ś ć Ą ć ć

Bardziej szczegółowo

Ł Ą Ś Ą Ą ź ć ź Ł Ą ć ć ć ć ź Ś ć ć ć Ą Ł ć ź ć ć ć ć Ł ć ć ć ć ć Ł Ą ć Ś Ś Ż ć ź Ą ź ź ź ć ź ć ć ć ć ź ź ć ź ź ź Ś ź ź ć ć ć ć Ś ć ź ź ć ć Ą ź ź ź ź ź ć ć ć ć Ś ć ć ć Ś ć Ż Ł Ś Ł Ł Ł Ł Ż Ł Ś Ś ź ć Ą

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI. www.wmat.pwr.edu.pl

WYDZIAŁ MATEMATYKI. www.wmat.pwr.edu.pl WYDZIAŁ MATEMATYKI www.wmat.pwr.edu.pl MATEMATYKA Studenci kierunku Matematyka uzyskują wszechstronne i gruntowne wykształcenie matematyczne oraz zapoznają się z klasycznymi i nowoczesnymi zastosowaniami

Bardziej szczegółowo

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer. Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu

Bardziej szczegółowo

Wyk lad 8: Leniwe metody klasyfikacji

Wyk lad 8: Leniwe metody klasyfikacji Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:

Bardziej szczegółowo

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2 Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem

Bardziej szczegółowo

Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

TOK STUDIÓW Kierunek: informatyka rok studiów: I studia stacjonarne pierwszego stopnia, rok akademicki 2014/2015. Forma zaliczen ia. egz. lab.

TOK STUDIÓW Kierunek: informatyka rok studiów: I studia stacjonarne pierwszego stopnia, rok akademicki 2014/2015. Forma zaliczen ia. egz. lab. Lp TOK TUDIÓW rok studiów: I studia stacjonarne pierwszego stopnia, rok akademicki 2014/2015 w ć w ko n lab EC T 1 Podstawy prawno-etyczne 15 1 x 2 Podstawy ekonomii 15 1 x 3 Repetytorium z matematyki

Bardziej szczegółowo

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA STOSOANA PLAN STUDIÓ STACJONARNYCH PIERSZEGO STOPNIA semestr: 1. w grupach 14.4- -060 prowadzenie do psychologii 15 15 30 2 S-PP/OH 11.1- -810 stęp do logiki i teorii mnogości 30 30 60 1 8 P1

Bardziej szczegółowo

Informacja o Możliwości Jednoczesnego Studiowania Matematyki i Informatyki w Systemie Studiów Dwustopniowych.

Informacja o Możliwości Jednoczesnego Studiowania Matematyki i Informatyki w Systemie Studiów Dwustopniowych. Informacja o Możliwości Jednoczesnego Studiowania Matematyki i Informatyki w Systemie Studiów Dwustopniowych. Zasady ogólne Programy studiów matematycznych i informatycznych na Wydziale Matematyki i Informatyki

Bardziej szczegółowo

Bazy danych. Dr inż. Paweł Kasprowski

Bazy danych. Dr inż. Paweł Kasprowski Plan wykładu Bazy danych Podstawy relacyjnego modelu danych Dr inż. Paweł Kasprowski pawel@kasprowski.pl Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność

Bardziej szczegółowo

Język angielski. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą CZĘŚĆ I KRYTERIA OCENIANIA ODPOWIEDZI POZIOM ROZSZERZONY CZĘŚĆ I

Język angielski. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą CZĘŚĆ I KRYTERIA OCENIANIA ODPOWIEDZI POZIOM ROZSZERZONY CZĘŚĆ I Poziom rozszerzony Język angielski Język angielski. Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI POZIOM ROZSZERZONY CZĘŚĆ I W schemacie oceniania zadań otwartych są prezentowane przykładowe odpowiedzi.

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańka jerzy.nawrocki@put.poznan.pl Obliczenia i metody numeryczne = a 2 + b 2 a + (b/a) 2 =b + (a/b) 2 Metody numeryczne begin a:= 3e-25;

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Nowoczesne metody nauczania przedmiotów ścisłych

Nowoczesne metody nauczania przedmiotów ścisłych Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK

Bardziej szczegółowo

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna dr inż. Grzegorz ilcek & dr inż. Maciej Hojda Zakład Inteligentnych Systemów Wspomagania Decyzji, Instytut Informatyki, Politechnika Wrocławska

Bardziej szczegółowo

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS 148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem

Bardziej szczegółowo

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian 1 / 12 Content list / Spis Treści 1. Hardware and software requirements, preparing device to upgrade Wymagania sprzętowe i programowe, przygotowanie urządzenia do aktualizacji 2. Installing drivers needed

Bardziej szczegółowo

U3000/U3100 Mini (Dla Komputera Eee na systemie operacyjnym Linux) Krótka Instrukcja

U3000/U3100 Mini (Dla Komputera Eee na systemie operacyjnym Linux) Krótka Instrukcja U3000/U3100 Mini (Dla Komputera Eee na systemie operacyjnym Linux) Krótka Instrukcja ASUS_U3000_U3100_mini.indd 1 2/2/08 4:01:51 PM PL3656 Pierwsza edycja Styczeń 2008 Copyright 2008 ASUSTeK COMPUTER INC.

Bardziej szczegółowo

Percepcja wirtualnych interakcji z ludźmi i miejscami

Percepcja wirtualnych interakcji z ludźmi i miejscami Percepcja wirtualnych interakcji z ludźmi i miejscami Globalne badanie GfK Luty 2016 1 Globalne badanie GfK: Percepcja wirtualnych interakcji z ludźmi i miejscami 1 Metodologia 2 Wyniki globalne 3 Wyniki

Bardziej szczegółowo

Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki

Bardziej szczegółowo

Kierunek: Mechanika i budowa maszyn studia niestacjonarne inżynierskie 2013/2014 Rok I sem. I Zjazd 1 4-6.X.2013

Kierunek: Mechanika i budowa maszyn studia niestacjonarne inżynierskie 2013/2014 Rok I sem. I Zjazd 1 4-6.X.2013 Rok sem. jazd 1 4-6.X.2013 G01 ni adaptacyjne dla studentów roku st. i st. 26+ odbędą się w U budynku nr 5 przy ul. Chopina 52 w dniu 4 października br. godz. 16.00. ajęcia wyrównawcze z matematyki s.5

Bardziej szczegółowo

Inteligentne Multimedialne Systemy Uczące

Inteligentne Multimedialne Systemy Uczące Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr

Bardziej szczegółowo

Współczesna problematyka klasyfikacji Informatyki

Współczesna problematyka klasyfikacji Informatyki Współczesna problematyka klasyfikacji Informatyki Nazwa pojawiła się na przełomie lat 50-60-tych i przyjęła się na dobre w Europie Jedna z definicji (z Wikipedii): Informatyka dziedzina nauki i techniki

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 JĘZYK ANGIELSKI

EGZAMIN MATURALNY 2012 JĘZYK ANGIELSKI Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 JĘZYK ANGIELSKI POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi SIERPIEŃ 2012 ZADANIA ZAMKNIĘTE Zadanie 1. Egzamin maturalny z języka angielskiego

Bardziej szczegółowo

2013 Global report. Polska. w porównaniu ze światem. 2013 Global Report- Polska w porównaniu ze światem Public Ericsson 2013-10-09 Page 1

2013 Global report. Polska. w porównaniu ze światem. 2013 Global Report- Polska w porównaniu ze światem Public Ericsson 2013-10-09 Page 1 2013 Global report Polska w porównaniu ze światem 2013 Global Report- Polska w porównaniu ze światem Public Ericsson 2013-10-09 Page 1 Consumerlab Coroczne badania 100000 RESPONDENTÓW REPREZENTUJĄCYCH

Bardziej szczegółowo

Ó ź Ó ź Ź Ó Ź Ó Ó Ę Ź Ą Ć Ó Ó Ź Ś Ź ź Ę Ź ŚÓ Ś Ó ź Ó Ę Ź Ó Ó Ó ŚÓ Ź Ó ź ź Ź ź ź Ę Ś ź Ą Ś Ź ź Ę Ł Ś Ź Ś ź ź Ł Ś ź Ś Ś Ś Ę Ę Ł Ł Ą Ś Ę Ą Ę Ź Ę Ę Ó Ś Ę Ń Ś Ć Ś Ś Ó Ś Ę Ę Ł Ą Ę Ą Ś Ź Ć Ó Ł ź Ń Ź Ą ź Ę Ź Ź

Bardziej szczegółowo

Ś Ś Ś ż Ł Ą Ą Ń Ś ż Ś ż Ą ż ż Ó Ź Ź ć ć ż ć Ą ć ć Ś ć ŚÓ ć ć ć ż ź Ł ż Ś Ł Ą Ó ż Ź ż ć Ś Ą Ó ż ć ż ź ż ć Ś ć Ź ż Ń Ł Ł ż ż Ą Ś ź ż ć ć Ł Ą Ą Ś Ś ż ć Ó Ó Ś Ź ź ź ż Ą ż ż ć Ść Ó ż ć Ś ź Ś Ś Ł Ś Ł Ł Ł Ł Ł

Bardziej szczegółowo

ń ń ś Ś Ó Ó ń ń ść ś ś ś ś ś ś ś ś ć ś ść ś ś ć ś Ż ć ś ś ś ść ć ś ń ć Ź Ż ń ń ś Ż Ą ć ń ń ś śó Ż ś ć Ź ś Ó ś Ż ś Ź ś ś ś Ż ś ś ś Ź ś ń ś Ę ć ś ś ń ś ś ś ń Ż Ż ś ś ś ń ć ć Ż ś ń Ż ś ń Ą ś ś ć ś ś Ż ś ś

Bardziej szczegółowo

Ń ŚÓ Ź Ś ź Ś Ś ć Ą ć Ź ć ć Ś ć Ś ź ć Ś ź Ś ć ź ć Ś ź Ę ć ć Ś Ś Ą ź Ś Ś Ś Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ż ć Ś Ć ć ć ź ć Ś Ś Ś ŚĆ Ś ź Ś Ś ć ć ć Ś Ć ć ć Ć Ś Ś Ś ŚĆ Ś Ś Ś ć ć ź Ś Ż Ś Ś Ś Ś Ś Ś Ą Ż Ś Ś Ś Ś Ś ć ć Ó ź

Bardziej szczegółowo

ó ś ń Ś Ó Ó Ó Ó ś Ó ż Ó Ś Ę Ó ó Ó ó Ś Ó óó Ś ś Ó ć Ź Ó ś ś ż ó ó ś Ó Ó ń Ś ś Ó ń ż ś ś Ó Ę Ó Ó Ó ś ó ś Ó Ś Ó Ś ń ń Ó ó ń ż ś Ó Ó ż ń Ś ó ż ń Ó Ś ż ń Ś ść ż ó ń ż Ś ż Ś Ś Ś Ó ń ś Ś Ó ń Ó Ą Ó Ą ć ż Ą ś ń

Bardziej szczegółowo

Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl

Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semiotyka logiczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Dodatek 4 Jerzy Pogonowski (MEG) Semiotyka logiczna Dodatek 4 1 / 17 Wprowadzenie Plan na dziś Plan

Bardziej szczegółowo

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.

Bardziej szczegółowo

Teorioinformacyjne twierdzenie Gödla,

Teorioinformacyjne twierdzenie Gödla, Teorioinformacyjne twierdzenie Gödla, czyli co ma logika do statystyki? Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN Temat referatu Twierdzenie, o którym opowiem, jest pomysłem

Bardziej szczegółowo

ADMINISTRACJA ELEKTRONICZNA

ADMINISTRACJA ELEKTRONICZNA ADMINISTRACJA ELEKTRONICZNA SPOSOBEM NA PODWYŻSZENIE SKUTECZNOŚCI I EFEKTYWNOŚCI DZIAŁAŃ ORGANÓW ADMINISTRACJI PUBLICZNEJ mgr Justyna Matusiak Wydział Prawa i Administracji Uniwersytet im. Adama Mickiewicza

Bardziej szczegółowo

Język angielski. Gry i zabawy. Podróże dalekie i bliskie

Język angielski. Gry i zabawy. Podróże dalekie i bliskie Język angielski Gry i zabawy Podróże dalekie i bliskie Tytuł oryginału: 365 gier i zabaw dla całej rodziny. Język angielski Autorzy oryginału: Natalia Kertyczak, Ewa Mikołajska, Radosław Mikołajski, Małgorzata

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO Miejsce na naklejkę z kodem szkoły dysleksja MJA-R2A1P-062 EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY ARKUSZ III MAJ ROK 2006 Czas pracy 110 minut Instrukcja dla zdającego 1. Sprawdź, czy

Bardziej szczegółowo

PROGRAM NAUCZANIA NA STACJONARNYCH STUDIACH I STOPNIA NA KIERUNKU: MATEMATYKA SPECJALNOŚĆ: MATEMATYKA TEORETYCZNA dotyczy rekrutacji 2009/2010

PROGRAM NAUCZANIA NA STACJONARNYCH STUDIACH I STOPNIA NA KIERUNKU: MATEMATYKA SPECJALNOŚĆ: MATEMATYKA TEORETYCZNA dotyczy rekrutacji 2009/2010 PROGRAM NAUCZANIA NA STACJONARNYCH STUDIACH I STOPNIA NA KIERUNKU: MATEMATYKA SPECJALNOŚĆ: MATEMATYKA TEORETYCZNA dotyczy rekrutacji 2009/2010 I. WYMAGANIA OGÓLNE: Studia trwają 6 semestrów. Przewidziana

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Akademia Morska w Szczecinie. Wydział Mechaniczny

Akademia Morska w Szczecinie. Wydział Mechaniczny Akademia Morska w Szczecinie Wydział Mechaniczny ROZPRAWA DOKTORSKA mgr inż. Marcin Kołodziejski Analiza metody obsługiwania zarządzanego niezawodnością pędników azymutalnych platformy pływającej Promotor:

Bardziej szczegółowo

Błędy leksykalne są na ogół nietrudne do znalezienia.

Błędy leksykalne są na ogół nietrudne do znalezienia. Rodzaje błędów w programach Wykład9.UWAGIOGÓLNE,str.1 Błąd leksykalny pojedyncza jednostka leksykalna(operator, słowo kluczowe, liczba itp.), której nie przewiduje definicja języka. Mn:=1; Sygn. błędu

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo