Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg"

Transkrypt

1 INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA8b Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr inż. Jakub Możaryn Michał Bezler Warszawa 2015

2 Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg Celem ćwiczenia jest uruchomienie, badanie właściwości statycznych i dynamicznych, a następnie ocena jakości regulacji jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg. Jakość regulacji oceniana będzie na podstawie wartości wskaźników przebiegów przejściowych układu regulacji wywołanych skokową zmianą wartości zadanej oraz zakłóceń działających na obiekt regulacji. Celem badań będzie określenie wpływu algorytmu i parametrów (nastaw) regulatora na wskaźniki przebiegu przejściowego układu. Identyfikacja obiektu regulacji przeprowadzona w ćwiczeniu PA7b umożliwi dobór parametrów (nastaw) regulatora PID zaimplementowanego w sterowniku SIMATIC S zastosowanego w układzie. Analiza otrzymanych wskaźników pozwoli na ocenę dokładności kompensacji wpływu działających na obiekt zakłóceń oraz dokładności nadążania wielkości regulowanej PV za zmianą wartości zadanej SP. 1. WPROWADZENIE Układ regulacji jest szczególnym przypadkiem układu sterowania charakteryzującym się występującym ujemnym sprzężeniem zwrotnym. Układ taki przedstawia sobą zespół wzajemnie powiązanych elementów uporządkowany zgodnie z kierunkiem przekazywania sygnałów. Podstawowymi elementami tego układu to automatyzowany proces zwany obiektem regulacji i regulator / sterownik PLC sterujący tym obiektem wg algorytmu zapewniającego pożądany przebieg procesu. Przebieg procesu scharakteryzowany jest przez zmiany wielości regulowanej PV a jej pożądane zmiany określone są w zadaniu regulacji wielkością zadaną SP. Schemat struktury przyrządowej układu regulacji przedstawia rys. 1. Cienkie linie ze strzałkami reprezentują sygnały przekazywane między elementami układu, natomiast gruba linia reprezentuje przepływ strumieni materiałów lub energii dostarczanych do procesu. Przedstawiony schemat struktury przyrządowej pokazuje usytuowanie i wzajemne oddziaływanie obiektu i regulatora tworzącego układ regulacji a także dostarcza informacji o cechach funkcjonalnych tych urządzeń. Przemysłowy układ regulacji ma strukturę tzw. rozproszoną. Obiekt regulacji jako instalacja technologiczna wraz z przetwornikiem pomiarowym i zespołem wykonawczym przekazuje sygnały do regulatora zainstalowanego wraz z osprzętem w zdalnej sterowni. Budowa regulatora musi zapewniać realizację regulacji ręcznej (na pulpicie regulatora przycisk oznaczony Manual) oraz automatycznej (na pulpicie regulatora przycisk oznaczony Auto). Zmiana trybu pracy dokonywana jest przez operatora za pośrednictwem pulpitu operatorskiego lub przez nadrzędny układ sterujący. W trybie regulacji ręcznej przeprowadzany jest rozruch instalacji tzn. pierwsze jego uruchomienie oraz praca układu w przypadkach awarii. W trybie tym, operator za pomocą sygnału sterowania ręcznego z regulatora nastawia wartości sygnału sterującego CV steruje procesem tak aby doprowadzić do równości wielkości regulowanej i zadanej tzn. PV=SP. Wartość zadana SP w układach regulacji stałowartościowej ma wartość stałą i jest także z pulpitu operatorskiego za pomocą nastawnika SP nastawiana przez operatora jak również i nastawy regulatora. 2

3 Rys. 1. Schemat struktury przyrządowej układu automatycznej regulacji : x, y, wielkości wejściowa i regulowana procesu, SP, PV sygnały wielkości zadanej i zmiennej procesowej, e sygnał odchyłki regulacji, CV sygnał sterujący (sygnał wyjściowy regulatora), Manual regulacja ręczna, Auto- regulacja automatyczna, ZW zespół wykonawczy, PP przetwornik pomiarowy Dla celów analizy matematycznej układu regulacji, schemat struktury przyrządowej przekształca się do postaci uproszczonej, zredukowanej do jednego zakłócenia i jednej wielkości regulowanej i przedstawionej w postaci schematu blokowego jak na rys. 2. Przedstawiony na schemacie blokowym (rys.2) węzeł sumacyjny 1 nie reprezentuje żadnej fizycznie realizowanej operacji sumowania, ma on jedynie ułatwić i uprościć analizę oddziaływania na obiekt zakłóceń z i sygnału CV sterującego obiektem tak aby skompensować wpływ zakłóceń lub zapewnić nadążanie wielkości regulowanej za zadaną..w rzeczywistym układzie regulacji zakłócenia działają najczęściej w różnych miejscach układu a nie tylko na wejściu obiektu i mają one charakter przypadkowy, są niemierzalne, mają określoną dynamikę ale zawsze w efekcie ich działania zmienia się wielkość regulowana co przedstawione jest na schemacie blokowym na rys. 2. Kierunek działania zakłóceń może być dodatni jak i ujemny (stąd znak w węźle 1). Oddziaływanie zakłóceń i sygnału sterującego jest zawsze zintegrowane z obiektem. Sterowanie CV oddziałuje na obiekt przez zespół wykonawczy, który steruje przepływem strumieni materiałów lub energii do obiektu i zależnie od konstrukcji wewnętrznej tego zespołu wzrost sygnału sterującego może zwiększać (znak + w węźle 1, rys. 2b) lub zmniejszać (znak w węźle 1, rys. 2a) ilość dostarczanych materiałów/energii. To samo dotyczy węzła sumacyjnego 2. Jest on zintegrowany z regulatorem(sterownikiem) i stanowi jego część składową. W węźle tym porównywana jest wielkość regulowana PV z wielkością zadaną SP, a wynikiem porównania jest odchyłka 3

4 regulacji e. Aby zapewnić w układzie regulacji ujemne sprzężenie zwrotne sygnał wyjściowy CV regulatora wyliczany jest zgodnie z realizowanym algorytmem dla odchyłki +e (rys.2b) albo e(rys.2a). W przypadku rys. 2b regulator musi mieć działanie normalne (Normal) a w przypadku rys. 2a - działanie odwrotne (Rewers). a) b) Rys.2. Schemat blokowy układu regulacji z regulatorem o działaniu: a) normalnym, b) odwrotnym. Oznaczenia: z zakłócenie, G z, transmitancja zakłóceniowa obiektu, G ob transmitancja obiektu względem sterowania, G r transmitancja regulatora, e odchyłka regulacji. Pozostałe oznaczenia jak na rys.1. 4

5 2. OCENA JAKOŚCI REGULACJI Ćwiczenie PA8b Układ regulacji, oprócz stabilności, winien posiadać szereg innych właściwości dotyczących zarówno stanu ustalonego jak i procesu przejściowego. Stwierdzenie, że układ jest stabilny oznacza, że składowe przejściowe zanikają w miarę upływu czasu, ale to nie wystarcza w zastosowaniach praktycznych. W praktyce powstaje konieczność dokładniejszego sprecyzowania w jaki sposób przebiegi przejściowe zanikają oraz konieczność sprecyzowania warunków stawianych przebiegom przejściowym. Zadanie każdego układu regulacji polega na utrzymywaniu równości między wartościami wielkości regulowanej PV, a zadanej SP. Zadanie to może być wykonane z ograniczoną dokładnością. Jak wynika ze schematu blokowego (rys2) w pracy układu regulacji powstaje bowiem odchyłka regulacji e, stanowiąca różnicę między wielkością regulowaną a wartością zadaną wielkości regulowanej. Odchyłka ta zdefiniowana jako e( t) PV( t) SP( t) (1) niezależnie od kierunku działania regulatora czy zespołu wykonawczego (tzn. niezależnie od kierunku działania regulatora) przyjmowana jest jako wskaźnik jakości regulacji. Odchyłka oznaczona symbolem e z zwana odchyłką zakłóceniową wywołana jest zakłóceniami działającymi na obiekt i wywołującymi zmianę wielkości regulowanej a odchyłka oznaczona symbolem e w zwana odchyłką nadążania wywołana jest zmianą w czasie wielkości zadanej i regulator winien poprzez swoje działanie zapewnić nadążanie wielkości regulowanej za zadaną. Ocena poprawności i jakości działania układu regulacji sprowadza się do oceny jego dokładności statycznej i dynamicznej. Dokładność statyczną ocenia się na podstawie wartości odchyłki regulacji tzw. odchyłki statycznej oznaczonej symbolem e st w stanie ustalonym. Odchyłka ta jest wynikiem braku możliwości regulacyjnych układu do całkowitego skompensowania w stanie ustalonym wpływu działających na obiekt zakłóceń. Podstawową formą oceny właściwości dynamicznych układu regulacji jest ocena przebiegu zmian odchyłki regulacji spowodowanej skokową zmianą zakłócenia z lub skokową zmianą wartości zadanej SP. Przebiegi przejściowe w stabilnych układach regulacji mogą być zależnie od parametrów obiektu oraz regulatora aperiodyczne lub oscylacyjne. Dla oceny tych przebiegów stosuje się najczęściej następujące wskaźniki: e m. - maksymalna odchyłka dynamiczna, t r - czas regulacji określony jako czas od chwili wprowadzenia pobudzenia (z lub w) do chwili, gdy odchyłka regulacji e(t) osiąga wartości mieszczące się w strefie tolerancji. Wartość określa się jako = 0.05e m, - przeregulowanie określa w procentach stosunek amplitudy drugiego odchylenia e 2 do e amplitudy pierwszego odchylenia e 1 zgodnie ze wzorem 2 100%, e1 e st odchyłka statyczna, ogólnie, e z statyczna odchyłka zakłóceniowa, e w statyczna odchyłka nadążania. 5

6 a) b) Rys. 3. Sposób określania wskaźników oscylacyjnego przebiegu przejściowego układu regulacji dla zakłócenia skokowego z(t) = 1(t): a) przebiegi układu z odchyłką statyczną e st 0, b) z odchyłką statyczną e st =0 Sposób określania wymienionych wskaźników na podstawie odpowiedzi skokowej odchyłki regulacji dla wymuszenia skokowego wartości zadanej SP lub zakłócenia z działającego na obiekt pokazują rys. 3,.4., 5, 6. 6

7 a) b) Rys. 4. Sposób określania wskaźników aperiodycznego przebiegu przejściowego układu regulacji dla zakłócenia skokowego z(t) = 1(t): a) przebiegi układu z odchyłką statyczną e st 0, b) z odchyłką statyczną e st =0 a) b) Rys.5. Sposób określania wskaźników oscylacyjnego przebiegu przejściowego układu regulacji dla skokowej zmiany wartości zadanej SP(t) = SP 1(t) : a) przebiegi układu z odchyłką statyczną e st 0, b) z odchyłką statyczną e st =0 7

8 a) b) Rys. 6. Sposób określania wskaźników aperiodycznego przebiegu przejściowego układu regulacji dla skokowej zmiany wartości zadanej SP(t) = SP 1(t) : a) przebiegi układu z odchyłką statyczną e st 0, b) z odchyłką statyczną e st =0 Z punktu widzenia użytkownika poza wartościami odchyłek regulacji ważne są wartości wielkości regulowanej zarówno w stanach ustalonych jak i przejściowych. Szczególnie ważne są wartości bezwzględne wielkości regulowanej zarówno wartości minimalne jak i maksymalne, bo od tego zależy poprawna praca układu i warunki bezpieczeństwa. 8

9 3. DOBÓR NASTAW REGULATORÓW Ćwiczenie PA8b Stosowane w praktyce przemysłowej regulatory ciągłe są urządzeniami uniwersalnymi. Ich parametry (nastawy) można zmieniać (nastawiać) w szerokich granicach, dzięki czemu mogą one współpracować poprawnie z obiektami o zróżnicowanej dynamice. Zależnie od postawionych wymagań dotyczących jakości regulacji należy dokonać odpowiednich nastaw regulatora którymi są wartości: k p wzmocnienie,[wielkość niemianowana] T i czas zdwojenia,[sek] T d czas wyprzedzenia,[sek] dobierane zależnie od stawianych układowi wymagań jakości regulacji wg procedur nazywanych doborem nastaw. Na podstawie rozważań teoretycznych, badań modelowych i doświadczeń eksploatacyjnych opracowano wiele reguł nastawiania regulatorów PID zależnych od określonego modelu obiektu regulacji, rodzaju i miejsca oddziaływania zakłóceń, przyjętego kryterium jakości regulacji a także algorytmu regulacji. Najbardziej rozpowszechnionym przyjętym kryterium jakości regulacji są cechy przebiegu przejściowego układu regulacji. Wyróżnia się przy tym najczęściej następujące rodzaje przebiegów: a) przebieg aperiodyczny z przeregulowaniem 0 5% i minimum czasu regulacji t r, zapewnia minimum całki e( t) dt, jest to kryterium oznaczane IAE (ang. Integral of the 0 Absolute value of Error) b) przebieg oscylacyjny z przeregulowaniem około 20% i minimum t r, zapewnia minimum całki t e( t) dt ; jest to kryterium oznaczane ITAE (ang. Integral of the Time weighted 0 Absolute Error), c) przebieg z minimum całki z kwadratu odchyłki regulacji tzn. e 2 ( t) dt min, zapewnia 0 przeregulowanie 45% ; jest to kryterium oznaczane ISE (Integral of Square of the Error). Przy doborze nastaw dla obiektów statycznych ważnym parametrem jest stosunek czasu opóźnienia do zastępczej stałej czasowej T 0 /T z charakteryzujący podatność obiektu na regulację. Gdy stosunek ten przekracza wartość 0.3 jakość sterowania z nawet najlepiej dobranymi nastawami regulatora PID znacznie się pogarsza. W ćwiczeniu zastosowane zostaną następujące metody doboru nastaw : a) metoda tabelarycznego doboru nastaw po doświadczalnej identyfikacji obiektu, b) metoda doświadczalna Zieglera Nicholsa. 9

10 Zmiana wartości zadanej SP Z(t)=1(t) Ćwiczenie PA8b 3.1. Metoda tabelarycznego doboru nastaw Metoda ta wymaga znajomości parametrów obiektu. Dla obiektu statycznego są to k ob, T 0, T z. Jeżeli nie dysponujemy teoretycznym zapisem modelu obiektu, korzystanie z tablic czy nomogramów wymaga wcześniejszej identyfikacji obiektu np. metodą odpowiedzi skokowej na podstawie której można wyznaczyć wymagane parametry modelu. Znając te parametry określa się nastawy regulatora zapewniające wymaganą jakość regulacji np. wymaganie oscylacyjnego lub aperiodycznego charakteru przebiegów przejściowych układu regulacji. W tablicy 1 zestawiono wzory określające nastawy regulatorów dla obiektów statycznych. Wzory te uwzględniają miejsce wprowadzenia zakłócenia. Inne muszą być nastawy regulatora w przypadku regulacji stałowartościowej zapewniając możliwie szybkie kompensowanie zakłóceń z, a inne gdy ten sam układ ma pracować jako układ nadążny zapewniając wierne odtwarzanie zmian wartości zadanej SP. e st0 Tablica 1. Zestawienie wzorów dla nastaw regulatorów do obiektu G ob( s) k ob T z s 1 Rodzaj przebiegu Typ regulatora k ob k p T 0 /T z T i / T 0 T d / T 0 = 0 % min t r = 20 % min t r = 0 % min t r = 20 % min t r P PI T z /T 0 - PID P PI T z /T 0 - PID P PI T z /T 0 - PID 0.6 T z /T P PI 0.6 T z /T 0 - PID T z /T Metoda doświadczalna Zieglera-Nicholsa Metoda doboru nastaw regulatorów opracowana w 1942 r przez Zieglera i Nicholsa jest jedną z najczęściej stosowanych i rozpowszechnionych metod doświadczalnych doboru nastaw regulatorów o algorytmach PID. Metoda ta stosowana jest wówczas gdy regulator i inne elementy rzeczywistego układu regulacji są już zainstalowane, ich funkcjonowanie jest sprawdzone (w trybie regulacji ręcznej) i należy tylko dobrać nastawy regulatora. Metoda Zieglera Nicholsa (skrótowo Z-N) spotykana jest w dwóch wariantach: 1) nastawy regulatora dobierane są na podstawie parametrów zamkniętego układu regulacji doprowadzonego do granicy stabilności (metoda wzbudzenia układu), 2) nastawy regulatora dobierane są na podstawie parametrów określonych z charakterystyki skokowej obiektu regulacji (tylko statycznego). 10

11 W badanym w ćwiczeniu układzie zostanie zastosowana metoda Z-N wzbudzania układu. Stosując ta metodę: dobór nastaw przeprowadza się wykonując następujące czynności: 1. W trybie sterowania ręcznego (tryb Manual), zmieniając CV, doprowadzić wielkość regulowaną PV do stanu, w którym sygnał wyjściowy obiektu PV zrówna się z wymaganą wartością zadaną SP. 2. Ustawić regulator zainstalowany na obiekcie na działanie proporcjonalne, tzn., że jeżeli zainstalowany regulator ma działanie PID, to należy wyłączyć akcję całkującą i różniczkującą, ustawić punkt pracy u regulatora równy nastawionej w ramach p czynności 1 wartości CV oraz nastawić początkową wartość wzmocnienia regulatora k 0. p 3. Przełączyć układ na sterowanie automatyczne (tryb Auto) i jeżeli układ zachowuje stan równowagi, zadajnikiem SP wytworzyć impulsową zmianę wartości zadanej o amplitudzie i czasie trwania impulsu zależnym od spodziewanej dynamiki procesu; obserwować lub rejestrować zmiany PV. Praktycy zalecają amplitudę impulsu o wartości 10% zakresu zmian sygnału PV i czas trwania impulsu t imp równy około 10 % szacowanej wartości zastępczej stałej czasowej obiektu. 4. Jeżeli zmiany PV są wystarczająco rozróżnialne, uznajemy próbę jako poprawną i oceniamy charakter przebiegu. Jeżeli zmiany są gasnące (rys. 7a), to znaczy że kp k pkryt. Należy ponawiać czynności 1 4, ustawiając coraz to większe wartości k p aż do wystąpienia w układzie stałych niegasnących oscylacji, jak to przedstawia rys. 7c. 5. Jeżeli zmiany PV są oscylacyjne o narastającej amplitudzie (rys. 7b), to znaczy że kp k pkryt i w kolejnych próbach należy zmniejszać wartość k p. 6. Z zarejestrowanego przebiegu o niegasnącej amplitudzie, odpowiadającego krytycznej wartości wzmocnienia k pkryt, należy odczytać okres oscylacji T osc. W trakcie eksperymentów należy kontrolować czy sygnał sterujący CV nie osiąga wartości granicznych. Jeżeli wystąpią takie objawy, należy zmniejszyć parametry impulsu SP. Poszukiwane nastawy regulatora oblicza się na podstawie wzory podane w tablicy 2. k pkryt i T osc, stosując a) b) c) Rys. 7. Przebiegi zmian wielkości regulowanej PV uzyskiwane w trakcie eksperymentu Zieglera Nicholsa 11

12 Idea tej metody jest zaimplementowana w nowoczesnych regulatorach mikroprocesorowych lub sterownikach PLC jako tzw. procedura samostrojenia (ang.autotuning). Tablica 2. Nastawy regulatorów PID wg metody Zieglera Nicholsa Algorytm regulatora Metoda Z- N stałych oscylacji układu (układ zamknięty) k p T i T d P 0.5 k pkryt - - PI 0,45 k pkryt 0.85T osc - PID 0.6 k pkryt 0.5 T osc 0.12 T osc 4. OPIS INSTALACJI Schemat badanego jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg przedstawiono na rys.8 Rys. 8. Schemat połączeń elementów układu regulacji temperatury powietrza 12

13 Stanowisko do badania jednoobwodowego układu regulacji (Rys.3.1) składa się ze sterownika PLC (1), panelu HMI (2), komputera PC (3) - połączonych w sieć ethernetową (4), rurociągu (5) i zasilacza (6). Wyjścia analogowe sterownika połączone jest z wejściem sterującym obrotami wentylatora S (AO1) i mocą grzałki G (AO2) zainstalowanych w rurociągu. Do wejść cyfrowych sterownika, poprzez zasilacz, doprowadzone są sygnały informujące o położeniu przesłony (DI1) i o zmianie rezystancji grzałki (DI2). W sterowniku zaimplementowano regulator PID. Jego zadaniem jest utrzymanie zadanej temperatury powietrza przepływającego przez rurociąg, poprzez sterowanie mocą grzałki. Panel HMI umożliwia konfigurowanie i monitorowanie parametrów regulatora, natomiast symulacja na monitorze komputera umożliwia rejestrowanie przebiegów wymuszeń, odpowiedzi obiektu i sterowania regulatora. Z jej poziomu możliwe jest także sterowanie obrotami wentylatora. Przed przystąpieniem do przystąpieniem należy wprowadzić do programu konfigurację stanowiska (badany obiekt oraz strukturę) na ekranie startowym (Rys. 9). Rys. 9. Ekran startowy 13

14 Po zatwierdzeniu konfiguracji przyciskiem Start przechodzimy do ekranu przedstawiającego ogólną strukturę badanego układu (Rys. 10) Rys. 10. Struktura układu Ikony pod symbolem regulatora oznaczają aktualny tryb pracy (Auto/Manual, Normal/Rewers, sygnał błędu). Po naciśnięciu przycisku można przejść do ekranu sterującego regulatorem (Rys. 11). Rys. 11. Ekran sterujący regulatorem 14

15 Monitor ten pozwala na zmianę: - Algorytmu regulatora poprzez wpisanie odpowiednich nastaw lub wybranie odpowiedniego trybu w polu Typ regulatora - Przełączanie trybów Auto/Manual -Sterowanie kierunkiem działania regulatora Normal/Rewers -Rozpoczęcie procedury AutoTuningu -Zresetowanie regulatora W prawej części ekranu wyświetlane są kontrolki informujące o stanie regulatora. Jeśli kontrolka Error jest zapalona, regulator jest w stanie nieaktywnym. Najczęstszą przyczyną błędu jest chwilowe rozwarcie w torze pomiarowym. W takim przypadku wystarczy zresetować regulator przyciskiem Reset. Wizualizację przebiegów zmian wielkości wejściowych i wyjściowych zrealizowano na komputerze stacjonarnym wykorzystując oprogramowanie TIA PORTAL. Wygląd ekranu startowego przedstawia rys. 9. Rys. 9. Ekran startowy Ekran zawiera informację o wprowadzonej strukturze. Po naciśnięciu przycisku,,regulator główny przechodzimy do monitora z przebiegami wielkości wejściowych i wyjściowych (Rys. 10). 15

16 Rys. 10. Ekran z przebiegami wartości wyjściowych i wejściowych Ponad przebiegami jest wykres obrazujący aktywne zakłócenia w postaci wykresu słupkowego: - Kolor czerwony przesłona - Kolor pomarańczowy zmiana rezystancji - Kolor zielony - Skok SP - Kolor niebieski skok obrotów wentylatora wywołany przyciskiem Zmiana obrotów Przycisk Start/Stop pozwala na zatrzymanie lub wznowienie monitorowania przebiegów Przyciski Zwiększ przedział czasu i Zmniejsz przedział czasu pozwalają na modyfikowanie aktualnie wyświetlanego przedziału czasu w zakresie od 15sek do 16min Pola pod polem tekstowym Oś pozwalają na wyskalowanie osi Y wykresu. Zwiększanie zakresu wykonuje się od razu. W przypadku zmniejszania skala zmieni się dopiero po pewnym czasie. Przycisk Skok SP pozwala na wygenerowanie zakłócenia w postaci skoku wartości zadanej wraz z monitorowaniem go na górnym wykresie Przycisk Zmiana obrotów pozwala na wygenerowania zakłócenia w postaci skoku sterowania na wyjściu analogowym sterującym wentylatorem Przycisk Cofnij resetuje zakłócenie wywołane przyciskiem Skok SP i Zmiana obrotów. W celu wydrukowania wykresu, należy zatrzymać przebieg przyciskiem START/STOP, wcisnąć na klawiaturze komputera przycisk prtsc, wkleić zapamiętany ekran do edytora graficznego i wybrać opcję drukowania. 16

17 5. PRZEBIEG ĆWICZENIA Ćwiczenie PA8b W badanym w ćwiczeniu układzie regulacji, wielkością regulowaną jest temperatura T powietrza przepływającego przez rurociąg (wielkość reprezentowana przez sygnał PV), sterowaniem jest sygnał prądowy CV z zakresu [4-20]mA generowany przez sterownik SIMATIC S firmy Siemens podawany na grzałkę G, zakłóceniami są : skokowa zmiana przekroju wlotowego powietrza (przez przestawienie pozycji przesłony P z zamknięte /otwarte co oznacza zmianę przekroju z 389 na 1661 mm 2 ), skokowa zmiana mocy grzejnej grzałki G przez dołączenie lub odłączenie dodatkowej rezystancji ( pozycja przełącznika 0 lub 1 );powoduje to zmianę oporności grzałki z 100 na 75. skokowa zmiana prędkości obrotowej silnika wentylatora realizowana przez skokową zmianę sygnału Y W podawanego do układu sterowania silnikiem S wentylatora dla przypadku sterowania obiektu mocą grzejną Y G. Właściwości obiektu regulacji zostały określone w ćwiczeniu PA7b. Aby poprawnie działał układ regulacji należy dobrać w zależności od wymagań jakości regulacji, parametry regulatora PID zaimplementowanego w sterowniku zgodnie z procedurą doboru nastaw Dobór nastaw regulatora metodą tabelaryczną Bazując na wynikach identyfikacji obiektu przeprowadzonej w ćwiczeniu PA7b podać parametry obiektu określone z metody stycznej lub siecznej (wg. polecenia prowadzącego): k ob =..., T 0 =..., T z =... Korzystając z tablicy 1 obliczyć nastawy regulatorów P/PI/PID dla przebiegów z przeregulowaniem 0 % lub 20 % ( zgodnie z poleceniem prowadzącego) i wstawić je do tablicy 3. Tablica 3 Typ = 0 % = 20 % regulatora k p T i [s] T d [s] k p T i [s] T d [s] P PI PID 5.2. Rozruch instalacji Rozruch rzeczywistych instalacji układów regulacji przeprowadza się zwykle w sposób ręczny. Zainstalowany regulator przełączany jest przez operatora na tryb sterowania ręcznego MANUAL. Operator ustawia w regulatorze projektowy algorytm działania, wstępne nastawy oraz projektowaną dla danej instalacji wartość zadaną SP, następnie zmieniając sygnał sterowania ręcznego regulatora, steruje procesem tak długo aż wielkość regulowana PV osiągnie trwały stan ustalony na poziomie odpowiadającym żądanej wartości zadanej SP. Jeżeli wszystkie urządzenia wchodzące w skład układu pracują poprawnie i osiągnięty jest stan ustalony równowagi trwałej odpowiadający zerowej odchyłce regulacji, operator 17

18 przełącza układ ze sterowania ręcznego na sterowanie automatyczne AUTO. Jeżeli po przełączeniu nie obserwuje się znaczących i wykraczających poza dopuszczalne wartości zmian odchyłki regulacji to uznaje się, że zostały wprowadzone bezpieczne nastawy regulatora i rozruch taki uznaje się za zakończony. W badanym stanowisku punktem pracy jest temperatura 45± 2 0 C (PV 40± 4%), co odpowiada sygnałowi sterującemu CV 50% przy obrotach wentylatora Y G. Aby doprowadzić instalację do punktu pracy należy: połączyć układ według schematu (rys. 8), włączyć tryb ręczny regulatora MANUAL, ustawić na PC obroty wentylatora Y W = 50%, ustawić na panelu sygnał podawany na grzałkę CV = 50% ustawić wyliczone nastawy dla regulatora o algorytmie P, odczekać na ustalenie temperatury, po ustaleniu temperatury ustawić SP = PV, przełączyć regulator w tryb AUTO. Jeśli po zmianie trybu regulatora na AUTO występują dość znaczne zmiany sygnału sterującego CV i wynikające z tego zmiany wielkości regulowanej PV należy przełączyć regulator w tryb MANUAL. Następnie ustawić bezpieczną wartość sterowania CV = 50% i powtórzyć procedurę rozruchu po znalezieniu przyczyny niewłaściwego działania układu, np. złe nastawy regulatora Badanie układu regulacji z regulatorem o algorytmie P i nastawach wg metody tablicowej Badanie skuteczności kompensacji wpływu zakłócenia wywołanego zmianą obrotów wentylatora Badania przeprowadzić po poprawnie przeprowadzonym rozruchu. wg. następującej procedury: włączyć na wizualizacji komputerowej monitorowanie wartości CV,PV i SP, będąc w trybie AUTO zmienić obroty wentylatora z 50% na 70%, obserwować przebieg, zapamiętać minimalną, maksymalną i ustaloną wartość temperatury, po ustaleniu temperatury zatrzymać rejestrowanie przebiegu, zapisać przebiegi wielkości mierzonej PV i wielkości sterującej CV w edytorze graficznym, przełączyć w tryb MANUAL doprowadzić układ do punktu pracy (CV = 50%, Y W = 50%), odczekać na ustalenie temperatury, po ustaleniu temperatury ustawić SP = PV, przełączyć regulator w tryb AUTO. 18

19 Badanie skuteczności kompensacji wpływu zakłócenia wywołanego zmianą oporności grzałki Badanie przeprowadzić wg. następującej procedury: włączyć na wizualizacji komputerowej monitorowanie wartości PV i SP w trybie AUTO zmienić pozycję przełącznika P1 (rys.8) z 0 na 1, obserwować przebieg, zapamiętać minimalną, maksymalną i ustaloną wartość temperatury, po ustaleniu temperatury zatrzymać rejestrowanie przebiegu, zapisać przebiegi wielkości mierzonej PV i wielkości sterującej CV, zmienić pozycję przełącznika P1 z 1 na 0, w trybie MANUAL doprowadzić układ do punktu pracy (CV = 50%, Y W = 50%), odczekać na ustalenie temperatury, po ustaleniu temperatury ustawić SP = PV, przełączyć regulator w tryb AUTO Badanie skuteczności kompensacji wpływu zakłócenia wywołanego zmianą przekroju wlotu powietrza (przysłona P) Badanie przeprowadzić wg. następującej procedury: włączyć na wizualizacji komputerowej monitorowanie wartości PV i SP w trybie AUTO zamknąć (pozycja pionowa) przysłonę P (rys.8), obserwować przebieg, zapamiętać minimalną, maksymalną i ustaloną wartość temperatury, po ustaleniu temperatury zatrzymać rejestrowanie przebiegu, zapisać przebiegi wielkości mierzonej PV i wielkości sterującej CV, otworzyć(pozycja pozioma) przysłonę P, w trybie MANUAL doprowadzić układ do punktu pracy (CV = 50%, Y W = 50%), odczekać na ustalenie temperatury, po ustaleniu temperatury ustawić SP = PV, przełączyć regulator w tryb AUTO Badanie skuteczności nadążania wielkości regulowanej PV za zmianami wielkości zadanej SP Badanie przeprowadzić wg. następującej procedury: włączyć na wizualizacji komputerowej monitorowanie wartości PV i SP w trybie AUTO ustawić ΔSP = +10% obserwować przebieg, zapamiętać minimalną, maksymalną i ustaloną wartość temperatury, po ustaleniu temperatury zatrzymać rejestrowanie przebiegu, zapisać przebiegi wielkości mierzonej PV i wielkości sterującej CV, w trybie MANUAL doprowadzić układ do punktu pracy (CV = 50%, Y W = 50%) po ustaleniu temperatury ustawić SP = PV 19

20 5.4. Badanie układu regulacji z regulatorem o algorytmie PI Badając układ regulacji z regulatorem PI należy powtórzyć procedury opisane w Badanie układu regulacji z regulatorem o algorytmie PID Badając układ regulacji z regulatorem PID należy powtórzyć procedury opisane w Dobór nastaw regulatorów metodą Zieglera Nicholsa Dobór nastaw metodą Zieglera Nicholsa przeprowadza się wg następującej procedury: 1. Przeprowadzić rozruch instalacji w trybie sterowania ręcznego (tryb MANUAL) (wg.5.2), ustawić CV=50 %,Y w =50% i odczekać do stanu ustalonego PV, 2. Regulator zainstalowany na obiekcie należy ustawić na działanie P, nastawić określoną początkową wartość wzmocnienia regulatora np.k p = 6, wyłączyć pozostałe działania regulatora nastawiając T i 99999, 9, T d Ręcznie z pulpitu HMI regulatora ustawić SP = PV. 4. Na wizualizacji komputerowej wybrać obserwację PV i SP, 5. Przełączyć regulator na tryb AUTO, 6. Wprowadzić impulsową zmianę wartości zadanej np. SP = 2-3 % o czasie trwania impulsu t imp (rys. 8) wystarczającym do wywołania zauważalnych zmian PV. Sygnał CV w czasie próby nie może osiągać wartości granicznych w przeciwnym przypadku, próbę należy powtórzyć. 7. Ocenić przebieg zmian PV i porównać go z przebiegiem z rys7. 8. Jeżeli przebieg PV odpowiada rys. 7c, zapisać przebieg PV w komputerze i przejść do p Jeżeli przebieg PV odpowiada rys. 7a, to należy przełączyć regulator na tryb MANUAL, ustawić CV = 50 %, zwiększyć wzmocnienie k p regulatora, odczekać do stanu ustalonego PV, skorygować wartość SP tak aby SP = PV i powtórzyć czynności od p Jeżeli przebieg PV odpowiada rys.7b, to należy przełączyć regulator na tryb MAN, ustawić CV = 50%, zmniejszyć k p regulatora, odczekać do stanu ustalonego, skorygować wartość SP tak aby SP = PV i powtórzyć czynności od p Przełączyć regulator na tryb MAN, ustawić CV = 50 %. 12. Zanotować bieżącą wartość k p =k kryt, która wywołała oscylacje, następnie odczytać z zarejestrowanego przebiegu okres oscylacji T osc i obliczyć nastawy regulatora P/PI/PID. Uwaga: Każdą zmianę nastaw regulatora można wprowadzać jedynie w trybie MAN. Tablica 4. Wyniki doświadczenia i nastawy regulatora wg metody Z-N Wyniki eksperymentu Z-N k kkryt T osc P PI PID Nastawy regulatora k p T i T d 20

21 5.7. Badanie układu regulacji z regulatorem o algorytmie P, PI, PID nastawy wg Zieglera-Nicholsa Wprowadzając nastawy regulatora z tablicy 4 powtórzyć badania opisane w punktach 5.3, 5.4, 5.5. Do badania można przystąpić po sprawdzeniu czy: a) Układ znajduje się w punkcie pracy (CV= 50%) b) Wprowadzono za pomocą wizualizacji na panelu HMI nastawy, odpowiednie dla regulatora P, PI, PID. 6. SPRAWOZDANIE Z ĆWICZENIA Sprawozdanie winno zawierać takie elementy jak: opis przebiegu ćwiczenia, schematy, zarejestrowane przebiegi z naniesioną obróbką danych, wykresy wykonane na podstawie pomiarów itp. oraz odpowiedzi na pytania poniżej: 1) Narysować schemat blokowy badanego układu regulacji 2) Narysować spodziewany przebieg zmian wielkości regulowanej PV i sterowania CV wywołany zakłóceniem Y w po zastosowaniu regulatora o algorytmie P z działaniem Normal. 3) Załączyć i opisać wyniki eksperymentu Zieglera Nicholsa. 4) Porównać przebiegi przejściowe układu regulacji i ocenić jego jakość statyczną i dynamiczną. Jakość statyczną i dynamiczną ocenić na podstawie odczytanych z wykresów wartości następujących wskaźników : e 1, e 2, e st, e m, t r, ( przeregulowanie). Wyniki podać w zaproponowanej tabeli. 5) Porównać wyniki badań otrzymane dla nastaw regulatora wg tablic i wg metody Zieglera Nicholsa. 6) Obliczyć wartości odchyłek statycznych na podstawie transmitancji obiektu i transmitancji regulatora i porównać je z wartościami otrzymanymi z badań. 7) Obliczyć na podstawie transmitancji obiektu i transmitancji regulatora wartości k pkryt i T osc i porównać je z wartościami otrzymanymi z eksperymentu Z-N. 8) Jak z przebiegu przejściowego układu wywołanego zmianą skokową wartości zadanej SP odczytać nastawioną wartość wzmocnienia k p regulatora. 7. LITERATURA.1. Holejko D, Kościelny W.J.: Automatyka procesów ciągłych. WPW Węgrzyn S.: Podstawy automatyki. PWN Żelazny M.: Podstawy automatyki. PWN

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA7b 1 Badanie jednoobwodowego układu regulacji

Bardziej szczegółowo

Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA8b. Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA8b Badanie jednoobwodowego układu regulacji temperatury powietrza przepływającego przez rurociąg Instrukcja laboratoryjna

Bardziej szczegółowo

Ćwiczenie PAR2. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PAR2. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI LABORATORIUM AUTOMATYKI i ROBOTYKI Ćwiczenie PAR2 Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym Instrukcja laboratoryjna

Bardziej szczegółowo

Ćwiczenie PA8a. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA8a. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko

Bardziej szczegółowo

Ćwiczenie PA8a. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA8a. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA8a Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym Instrukcja laboratoryjna Opracowanie : dr

Bardziej szczegółowo

11. Dobór rodzaju, algorytmu i nastaw regulatora

11. Dobór rodzaju, algorytmu i nastaw regulatora 205 11. Dobór rodzaju, algorytmu i nastaw regulatora 11.1 Wybór rodzaju i algorytmu regulatora Poprawny wybór rodzaju regulatora i jego algorytmu uzależniony jest od znajomości (choćby przybliżonej) właściwości

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7b Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr inż. Jakub Możaryn Michał Bezler Warszawa 2015 powietrza

Bardziej szczegółowo

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7b powietrza przepływającego przez rurociąg Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr inż. Jakub Możaryn

Bardziej szczegółowo

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg

Ćwiczenie PA7b. Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7b Identyfikacja obiektu układu regulacji temperatury powietrza przepływającego przez rurociąg Instrukcja laboratoryjna Opracowanie

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 1. Dobór rodzaju i nastaw regulatorów PID Rodzaje regulatorów 2 Regulatory dwustawne (2P)

Bardziej szczegółowo

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7a Identyfikacja obiektu układu regulacji poziomu cieczy Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S firmy Siemens

Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S firmy Siemens INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA6 Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens Instrukcja laboratoryjna Opracowanie

Bardziej szczegółowo

1. Regulatory ciągłe liniowe.

1. Regulatory ciągłe liniowe. Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),

Bardziej szczegółowo

Ćwiczenie PAR1. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PAR1. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI LABORATORIUM AUTOMATYKI i ROBOTYKI INŻYNIERIA BIOMEDYCZNA Ćwiczenie PAR1 Identyfikacja obiektu układu regulacji poziomu cieczy Instrukcja laboratoryjna

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa.

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. 1. Wprowadzenie Regulator PID (regulator proporcjonalno-całkująco-różniczkujący,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa Rok akademicki 2015/2016 Semestr letni PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa Wstęp teoretyczny: W układzie regulacji określa

Bardziej szczegółowo

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA7a. Identyfikacja obiektu układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Ćwiczenie PA7a Identyfikacja obiektu układu regulacji poziomu cieczy Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko dr

Bardziej szczegółowo

Regulacja dwupołożeniowa.

Regulacja dwupołożeniowa. Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis

Bardziej szczegółowo

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

Regulacja prędkości posuwu belki na prowadnicach pionowych przy wykorzystaniu sterownika Versa Max

Regulacja prędkości posuwu belki na prowadnicach pionowych przy wykorzystaniu sterownika Versa Max Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA9b 1 Regulacja prędkości posuwu belki na prowadnicach

Bardziej szczegółowo

REGULATOR PI W SIŁOWNIKU 2XI

REGULATOR PI W SIŁOWNIKU 2XI REGULATOR PI W SIŁOWNIKU 2XI Wydanie 1 lipiec 2012 r. 1 1. Regulator wbudowany PI Oprogramowanie sterownika Servocont-03 zawiera wbudowany algorytm regulacji PI (opcja). Włącza się go poprzez odpowiedni

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych)

UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych) Cel ćwiczenia: Zapoznanie się z budową i zasadą działania regulatorów ciągłych oraz ocena jakości regulacji ciągłej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania

Bardziej szczegółowo

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2. 1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ATOMATYKI I ELEKTRONIKI ĆWICZENIE Nr 8 Badanie układu regulacji dwustawnej Dobór nastaw regulatora dwustawnego Laboratorium z przedmiotu: ATOMATYKA

Bardziej szczegółowo

Praktyka inżynierska korzystamy z tego co mamy. regulator. zespół wykonawczy. obiekt (model) Konfiguracja regulatora

Praktyka inżynierska korzystamy z tego co mamy. regulator. zespół wykonawczy. obiekt (model) Konfiguracja regulatora raktyka inżynierska korzystamy z tego co mamy Urządzenia realizujące: - blok funkcyjny D w sterowniku LC - moduł D w sterowniku LC - regulator wielofunkcyjny - prosty regulator cyfrowy zadajnik S e CV

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 7. Badanie jakości regulacji dwupołożeniowej.

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 7. Badanie jakości regulacji dwupołożeniowej. Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwupołożeniowego oraz ocena jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z AUTOMATYKI I ROBOTYKI Ćwiczenie nr 4. Badanie jakości regulacji dwupołożeniowej.

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z AUTOMATYKI I ROBOTYKI Ćwiczenie nr 4. Badanie jakości regulacji dwupołożeniowej. Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwupołożeniowego oraz ocena jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Sterowanie pracą reaktora chemicznego

Sterowanie pracą reaktora chemicznego Sterowanie pracą reaktora chemicznego Celem ćwiczenia jest opracowanie na sterowniku programowalnym programu realizującego jednopętlowy układ regulacji a następnie dobór nastaw regulatora zapewniających

Bardziej szczegółowo

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

II. STEROWANIE I REGULACJA AUTOMATYCZNA

II. STEROWANIE I REGULACJA AUTOMATYCZNA II. STEROWANIE I REGULACJA AUTOMATYCZNA 1. STEROWANIE RĘCZNE W UKŁADZIE ZAMKNIĘTYM Schemat zamkniętego układu sterowania ręcznego przedstawia rysunek 1. Centralnym elementem układu jest obiekt sterowania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

STEROWANIE MASZYN I URZĄDZEŃ I. Laboratorium. 8. Układy ciągłe. Regulator PID

STEROWANIE MASZYN I URZĄDZEŃ I. Laboratorium. 8. Układy ciągłe. Regulator PID STEROWANIE MASZYN I URZĄDZEŃ I Laboratorium 8. Układy ciągłe. Regulator PID Opracował: dr hab. inż. Cezary Orlikowski Instytut Politechniczny 1 Blok funkcyjny regulatora PID przedstawiono na rys.1. Opis

Bardziej szczegółowo

LAB-EL LB-760A: regulacja PID i procedura samostrojenia

LAB-EL LB-760A: regulacja PID i procedura samostrojenia Page 1 of 5 Copyright 2003-2010 LAB-EL Elektronika Laboratoryjna www.label.pl LAB-EL LB-760A: regulacja PID i procedura samostrojenia Nastawy regulatora PID W regulatorze LB-760A poczynając od wersji 7.1

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID.

Ćwiczenie 4 - Badanie charakterystyk skokowych regulatora PID. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie KATEDRA AUTOMATYKI LABORATORIUM Aparatura Automatyzacji Ćwiczenie 4. Badanie charakterystyk skokowych regulatora PID. Wydział EAIiE kierunek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym (analogowym) zmieniają wartość wielkości sterującej obiektem w sposób ciągły, tzn. wielkość ta może przyjmować wszystkie

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Laboratorium układów automatyki Temat ćwiczenia: Optymalizacja regulatora na podstawie krytycznego nastawienia regulatora wg Zieglera i Nicholsa. Symbol

Bardziej szczegółowo

Ćwiczenie nr 3 Układy sterowania w torze otwartym i zamkniętym

Ćwiczenie nr 3 Układy sterowania w torze otwartym i zamkniętym Ćwiczenie nr 3 Układy sterowania w torze otwartym i zamkniętym 1. Cel ćwiczenia Celem ćwiczenia jest analiza właściwości układu sterowania w torze otwartym, zamkniętym oraz zamkniętym z kompensacją zakłóceń.

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)

Bardziej szczegółowo

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania

Bardziej szczegółowo

Ćwiczenie 5 Badanie sensorów piezoelektrycznych

Ćwiczenie 5 Badanie sensorów piezoelektrycznych Ćwiczenie 5 Badanie sensorów piezoelektrycznych 1. Cel ćwiczenia Poznanie podstawowych układów pracy sensorów piezoelektrycznych jako przetworników wielkości mechanicznych na elektryczne. Doświadczalne

Bardziej szczegółowo

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e Plan wykładu I n t e l i g e n t n e s y s t e m y z e s p r zężeniem wizyjnym wykład 6 Sterownik PID o Wprowadzenie o Wiadomości podstawowe o Implementacja w S7-1200 SIMATIC S7-1200 Regulator PID w sterowaniu

Bardziej szczegółowo

(Wszystkie wyniki zapisywać na dysku Dane E:)

(Wszystkie wyniki zapisywać na dysku Dane E:) Cel ćwiczenia: Zapoznanie się z budową i zasadą działania PID oraz ocena jakości regulacji ciągłej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. UWAGA Temperatura mikrotermostatu

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

(Wszystkie wyniki zapisywać na dysku Dane E:)

(Wszystkie wyniki zapisywać na dysku Dane E:) Cel ćwiczenia: Zapoznanie się z budową i zasadą działania PID oraz ocena jakości regulacji ciągłej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. UWAGA Temperatura mikrotermostatu

Bardziej szczegółowo

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs () 4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 5

Instrukcja do ćwiczenia laboratoryjnego nr 5 Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów

Bardziej szczegółowo

Ćwiczenie PA9. Badanie układu regulacji ciśnienia w zbiorniku ze sterownikiem PLC SIMATIC

Ćwiczenie PA9. Badanie układu regulacji ciśnienia w zbiorniku ze sterownikiem PLC SIMATIC - laboratorium Ćwiczenie PA9 Badanie układu regulacji ciśnienia w zbiorniku ze sterownikiem Instrukcja laboratoryjna Opracował : mgr inŝ. Łukasz Tabor Człowiek - najlepsza inwestycja Projekt współfinansowany

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)

Bardziej szczegółowo

SYNTEZA UKŁADU DWUPOŁOŻENIOWEJ REGULACJI POZIOMU CIECZY W ZBIORNIKU

SYNTEZA UKŁADU DWUPOŁOŻENIOWEJ REGULACJI POZIOMU CIECZY W ZBIORNIKU Ćwiczenie SYNTEZA UKŁADU DWUPOŁOŻENIOWEJ REGULACJI POZIOMU CIECZY W ZBIORNIKU 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z pracą układu dwupołożeniowej regulacji poziomu cieczy w zbiorniku.

Bardziej szczegółowo

LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego

LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Uwagi (pominąć, jeśli nie ma problemów z wykonywaniem ćwiczenia) 1. Jeśli pojawiają się błędy przy próbie symulacji:

Bardziej szczegółowo

Zaliczenie - zagadnienia (aktualizacja )

Zaliczenie - zagadnienia (aktualizacja ) Tomasz Żabiński Ocena 3.0 Zaliczenie - zagadnienia (aktualizacja 23.01.2017) 1. Podaj na jakie dwie główne grupy dzieli się układy przełączające. 2. Scharakteryzuj układy kombinacyjne. 3. Scharakteryzuj

Bardziej szczegółowo

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu 1. WSTĘP Serwomechanizmy są to przeważnie układy regulacji położenia. Są trzy główne typy zadań serwomechanizmów: - ruch point-to-point,

Bardziej szczegółowo

BADANIE SILNIKA SKOKOWEGO

BADANIE SILNIKA SKOKOWEGO Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA SKOKOWEGO Warszawa 00. 1. STANOWISKO I UKŁAD POMIAROWY. W skład stanowiska pomiarowego

Bardziej szczegółowo

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Badanie układu regulacji poziomu cieczy

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Badanie układu regulacji poziomu cieczy Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr. 6 Badanie układu regulacji poziomu cieczy Laboratorium z przedmiotu: PODSTAWY AUTOMATYKI 2 Kod: ES1C400 031 Opracowanie:

Bardziej szczegółowo

Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control

Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control Identyfikacja obiektu i optymalizacja nastaw w Standard PID Control Rozwiązując zadanie sterowania układu, automatyk powinien przede wszystkim sporządzić odpowiedni jego opis. Chcąc np. automatycznie sterować

Bardziej szczegółowo

UWAGA. Program i przebieg ćwiczenia:

UWAGA. Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium Ćwiczenie 1 Badanie aktuatora elektrohydraulicznego Instrukcja laboratoryjna Opracował : mgr inż. Arkadiusz Winnicki Warszawa 2010 Badanie

Bardziej szczegółowo

SYNTEZA UKŁADU AUTOMATYCZNEJ REGULACJI TEMPERATURY

SYNTEZA UKŁADU AUTOMATYCZNEJ REGULACJI TEMPERATURY Ćwiczenie SYNTEZA UKŁADU AUTOMATYCZNEJ REGULACJI TEMPERATURY 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z pracą układu automatycznej regulacji temperatury 2. WPROWADZENIE Układy automatycznej

Bardziej szczegółowo

Układy sterowania: a) otwarty, b) zamknięty w układzie zamkniętym, czyli w układzie z ujemnym sprzężeniem zwrotnym (układzie regulacji automatycznej)

Układy sterowania: a) otwarty, b) zamknięty w układzie zamkniętym, czyli w układzie z ujemnym sprzężeniem zwrotnym (układzie regulacji automatycznej) Istnieją dwa podstawowe sposoby sterowania: w układzie otwartym: układ składa się z elementu sterującego i obiektu sterowania; element sterujący nie otrzymuje żadnych informacji o sygnale wyjściowym y,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS)

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Temat: Platforma Systemowa Wonderware cz. 2 przemysłowa baza danych,

Bardziej szczegółowo

Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora)

Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora) Dr inż. Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw. S-III.4 ELEMENTY ANALIZY I SYNTEZY UAR (Dobór nastaw regulatora) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem "syntezy

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń laboratoryjnych

Materiały pomocnicze do ćwiczeń laboratoryjnych Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie napędów elektrycznych z luzownikami w robocie Kawasaki FA006E wersja próbna Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Elementy programowania

Bardziej szczegółowo

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego 4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź

Bardziej szczegółowo

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika. PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów

Bardziej szczegółowo

Realizacje regulatorów PID w sterownikach PLC Siemens S7-1200

Realizacje regulatorów PID w sterownikach PLC Siemens S7-1200 D w sterownikach PLC Siemens S7-1200 Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania 2014/2015 Politechnika Gdańska Wydział Elektrotechniki

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności regulacyjnych regulatorów ciśnienia bezpośredniego

Bardziej szczegółowo

Laboratorium elementów automatyki i pomiarów w technologii chemicznej

Laboratorium elementów automatyki i pomiarów w technologii chemicznej POLITECHNIKA WROCŁAWSKA Wydziałowy Zakład Inżynierii Biomedycznej i Pomiarowej Laboratorium elementów automatyki i pomiarów w technologii chemicznej Instrukcja do ćwiczenia Regulacja dwupołożeniowa Wrocław

Bardziej szczegółowo

Obrabiarki CNC. Nr 10

Obrabiarki CNC. Nr 10 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Obrabiarki CNC Nr 10 Obróbka na tokarce CNC CT210 ze sterowaniem Sinumerik 840D Opracował: Dr inż. Wojciech Ptaszyński Poznań, 17 maja,

Bardziej szczegółowo

Laboratorium Metod i Algorytmów Sterowania Cyfrowego

Laboratorium Metod i Algorytmów Sterowania Cyfrowego Laboratorium Metod i Algorytmów Sterowania Cyfrowego Ćwiczenie 3 Dobór nastaw cyfrowych regulatorów rzemysłowych PID I. Cel ćwiczenia 1. Poznanie zasad doboru nastaw cyfrowych regulatorów rzemysłowych..

Bardziej szczegółowo

Zespól B-D Elektrotechniki

Zespól B-D Elektrotechniki Zespól B-D Elektrotechniki Laboratorium Elektroniki i Elektrotechniki Samochodowej Temat ćwiczenia: Badanie sondy lambda i przepływomierza powietrza w systemie Motronic Opracowanie: dr hab inż S DUER 39

Bardziej szczegółowo