MATEMATYKA FINANSOWA

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYKA FINANSOWA"

Transkrypt

1 Matematyka Finansowa, Andrzej Spakowski MATEMATYKA FINANSOWA matematyka finansów i ubezpieczeń. Trajektoria (realizacja) procesu stochastycznego Wspó lczesna, szeroko rozumiana MF opisuje i bada losowy charakter rynków finansowych i ubezpieczeniowych. Co obejmuje MF? Jak jest jej struktura?

2 Matematyka Finansowa, Struktura MF Analiza matemat. MATEMATYKA FINANSOWA Rach. prawdop. Procesy stochast. Analiza matemat. Algebra liniowa Topologia Anal. funkcj.,..., Statystyka mat. Rach.prawd. Anal.matemat.. rachunek procentowy Symulacje komputerowe Monte Carlo Teoria ryzyka Matematyka ubezpieczeñ portfele inwestycyjne Matematyka finansowa stochastyczna Szeregi czasowe Ubezpiecz. na ycie Ubezpiecz. maj¹tkowe Rynki finansowe In ynieria finansowa

3 Matematyka Finansowa, Jaka matematyka dla finansów i ubezpieczeń? Niezbe dne narze dzia: zmienne losowe oraz procesy stochastyczne. Proces stochastyczny - rodzina zmiennych losowych X t, t T. inaczej: funkcja, której wartościami sa zmienne losowe, X(t) = X t (ω) cena akcji w chwili t 0, ω Ω. Trajektoria (realizacja) procesu stochastycznego Trajektoria procesu stochastycznego.

4 Matematyka Finansowa, Dlaczego i kiedy powsta la MF? letni światowy krach systemów finansowych opartych na wymienialności pienia dza na z loto Konferencja w Bretton Woods (USA) - parytety 1973 Koniec parytetów - zmienne kursy walutowe. Ryzyko finansowe staje sie mocno losowe. Losowy charakter cen na gie ldach. Potrzeba redukcji ryzyka wywo luje popyt na nowe produkty finansowe (instrumenty finansowe) oraz nowe narze dzia matematyczne (ca lka stochastyczna, stochastyczne r.r.): b a X(t,ω) db(t,ω), ds(t) = µs(t)dt + σs(t)db(t).

5 Matematyka Finansowa, Dlaczego i kiedy powsta la MU? Świat starożytny, średniowiecze: idea wspólnego ponoszenia ryzyka, karawany kupieckie, wyprawy morskie, renty dożywotnie (klasztory) Genua, pierwsze ubezpieczenia morskie Londyn, pierwsze (Insurance Office) Halley: Breslau Mortality Tables, pocza tek matematyki aktuarialnej (rachunek prawdop.) San Francisco earthquake, rozwój mat.teorii ryzyka Światowy kryzys systemów finansowych, wzrost zapotrzebowania na rozmaite ubezpieczenia: biznesowe, maja tkowe, komunikacyjne, zdrowotne, etc., nowe metody matematyczne.

6 Matematyka Finansowa, Rozwój narze dzi matematycznych (1) XVII gry hazardowe, statystyki urodzeń i zgonów, pocza tki rachunku prawdopodobieństwa, Fermat, Pascal, Bernoulli. 1733, 1809 Abraham de Moivre, Carl Gauss odkrywaja i stosuja rozk lad normalny N(µ,σ 2 ) o ge stości f(x) = 1 σ 2π e (x µ) 2 /(2σ 2 ) krzywa Gaussa. 1999

7 Matematyka Finansowa, Rozwój narze dzi matematycznych (2) 1827 Robert Brown opisuje b la dzenie losowe cza steczek w p lynie (ruchy Browna).

8 Matematyka Finansowa, Rozwój narze dzi matematycznych (3) 1900 Louis Bachelier: ruchy Browna modeluja ceny akcji na gie ldzie paryskiej, S(t) = S(0) + σb(t), B(t) N(S(0),σ 2 t) Norbert Wiener: ścis ly opis ruchu Browna, ca lka stochastyczna b f(t) db(t,ω). a Louis Bachelier Norbert Wiener

9 Matematyka Finansowa, Rozwój narze dzi matematycznych (4) 1944 Kiyosi Itô: wspó lczesna ca lka stochastyczna. b a X(t, ω) db(t, ω) k(n) =lim n i=1 X n (t in,ω)(b(t in,ω) B(t (i 1)n,ω)).

10 Matematyka Finansowa, Rozwój narze dzi matematycznych (5) Rynki finansowe opisuja stochastyczne r.r. ds(t) = µs(t)dt + σs(t)db(t), ściślej, stochastyczne równania ca lkowe: S(t + h) S(t) = t+h t µs(t)dt + t+h t σs(t) db(t). Fischer Black i Myron Scholes podaja (1973) efektywne rozwia zanie s.r.r. i wzór na cene opcji europejskiej.

11 Matematyka Finansowa, Wzór za 1 mln $. Sprawiedliwa cene opcji określa wzór: gdzie c = S(0) N(d) e rt K N(d σ T), d = 1 σ T N(d) = d (ln S(0)erT K + σ2 T 2 ), 1 2π e x2 /2 dx = P(X < d). r stopa procentowa, T okres rozliczenia, K cena rozliczenia, σ wspó lczynnik zmienności cen akcji, N dystrybuanta rozk ladu normalnego N(0,1).

12 Matematyka Finansowa, Lata Robert Merton i inni: rozwój metod MF Nagroda Nobla za stochastyczne metody wyceny, - Robert Merton i Myron Sholes (1 mln $) Myron Scholes Fischer Black Robert Merton (Fischer Black, 1995).

13 Matematyka Finansowa, Wspó lczesna MF i MU tworzy narzedzia matematyczne dla rzeczywistych rynków finansowych i rynków ubezpieczeniowych: narze dzia elementarne jak i bardzo zaawansowane Różne dzia ly matematyki: rachunek prawdopodobieństwa, procesy stochastyczne, analiza matematyczna, równania różniczkowe, algebra liniowa, programowanie matematyczne, topologia, analiza funkcjonalna, itd. Inżynieria finansowa, konstruowanie i wycena instrumentów (produktów) finansowych i ubezpieczeniowych.

14 Matematyka Finansowa, Europejska opcja kupna (1). to prawo (ale nie obowia zek) do zakupu akcji po ustalonej cenie w ustalonym terminie. Przyk lad symulacji dla opcji europejskiej. Cena pakietu akcji = z l Cena rozliczenia opcji = 990 z l Cena opcji 10-dniowej = 20 z l Kto zdecyduje sie na zakup takiej opcji?

15 Matematyka Finansowa, Europejska opcja kupna (2). Problem. Jaka jest sprawiedliwa cena opcji europejskiej? Rozwia zanie teoretyczne: sprawiedliwa cene jest wartość oczekiwana zysku. Rozwia zanie dok ladne: wzór Blacka-Scholesa (1973). Rozwia zania przybliżone: proste algorytmy (drzewko dwumianowe), specjalne kalkulatory finansowe, symulacje komputerowe Monte Carlo.

16 Matematyka Finansowa, Symulacja Monte Carlo. Klasyczna metoda Monte Carlo oparta jest na twierdzeniu rachunku prawdopodobieństwa (Prawo Wielkich Liczb): X 1 + X X n E(X) z prawdop.1. n Przyk lad. Wyznaczyć sprawiedliwa cene 10-dniowej opcji (azjatyckiej) na pakiet akcji: cena pocza tkowa z l, cena rozliczenia = średnia arytmetyczna cen z 10 dni. Przyk lad symulacji Monte Carlo:

17 Matematyka Finansowa, Modele ubezpieczeń na życie (1). T x zmienna losowa, czas dalszego życia x-latka. Sk ladke ubezpieczenia określa wzór: E(b(T x )v T x ) = b(t) t p x µ [x]+t dt. 0 gdzie: b(t) wartość ubezpieczenia wyp lacana w chwili t, b(t) = 1 ubezpieczenie dożywotnie, b(t) = I(t n) ubezpieczenie terminowe na n lat, v = 1/(1 + i) = e δ czynnik dyskontuja cy, tp x = P(T x > t), µ [x]+t nate żenie śmiertelności. Ryzyko sk ladki określa wariancja: Var(b(T x )v T x ).

18 Matematyka Finansowa, Modele ubezpieczeń na życie (2). Czy sk ladka E(b(T x )v T x ) gwarantuje wyp lacalność? Tak, ale tylko z prawdop. 1/2. Bardzo duże ryzyko niewyp lacalności. Jak zagwarantować wyp lacalność z prawdop. 0,95? Problem sprowadza sie do postaci: min{h > 0 : P( n k=1 Z k h) 0,95}, gdzie: h kwota gwarantuja ca wyp laty Z 1,...,Z n. Dok ladne wyznaczenie minimum jest bardzo trudne. Stosuje sie metody przybliżone: Centralne Tw. Graniczne.

19 Matematyka Finansowa, Literatura polska A. Weron, R. Weron, Inżynieria finansowa, WNT, Warszawa J.Jakubowski, R.Sztencel, Wste p do teorii prawdopodobieństwa, Script, Warszawa J. Jakubowski, A. Palczewski, M. Rutkowski, L. Stettner, Matematyka finansowa, WNT, Warszawa B. B laszczyszyn, T. Rolski, Podstawy matematyki ubezpieczeń na życie, WNT, Warszawa.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy 1 Matematyka aktuarialna 1. matematyka w ubezpieczeniach, 2. dok ladniej, matematyka ubezpieczeń na życie, 3. czasami szerzej,

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Czy opcje walutowe mogą być toksyczne?

Czy opcje walutowe mogą być toksyczne? Katedra Matematyki Finansowej Wydział Matematyki Stosowanej AGH 11 maja 2012 Kurs walutowy Kurs walutowy cena danej waluty wyrażona w innej walucie np. 1 USD = 3,21 PLN; USD/PLN = 3,21 Rodzaje kursów walutowych:

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Matematyka w Finansach Sylwetka absolwenta Studia na tej specjalności realizują dwa główne cele: - poznanie narzędzi stosowanych w budowie modeli

Matematyka w Finansach Sylwetka absolwenta Studia na tej specjalności realizują dwa główne cele: - poznanie narzędzi stosowanych w budowie modeli Matematyka w Finansach Sylwetka absolwenta Studia na tej specjalności realizują dwa główne cele: - poznanie narzędzi stosowanych w budowie modeli matematycznych zjawisk ekonomicznych, które charakteryzują

Bardziej szczegółowo

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS 148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek

Bardziej szczegółowo

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia. Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1,

Bardziej szczegółowo

Szkoła Letnia Matematyki Finansowej 2012 STRESZCZENIA WYSTĄPIEŃ

Szkoła Letnia Matematyki Finansowej 2012 STRESZCZENIA WYSTĄPIEŃ Szkoła Letnia Matematyki Finansowej 2012 STRESZCZENIA WYSTĄPIEŃ dr Margareta Wiciak Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska If I Knew How to Make Money Matematyka finansowa stanowi

Bardziej szczegółowo

Spis treści. Przedmowa. O Autorach. Wstęp. Część I. Finanse i system finansowy

Spis treści. Przedmowa. O Autorach. Wstęp. Część I. Finanse i system finansowy Spis treści Przedmowa O Autorach Wstęp Część I. Finanse i system finansowy Rozdział 1. Co to są finanse? 1.1. Definicja pojęcia finanse 1.2. Dlaczego należy studiować finanse? 1.3. Decyzje finansowe gospodarstw

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. 1 Zadanie (29) zawar l umowe kredytu w momencie ukończenia

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA

LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA Załącznik nr 2 do zarządzenia nr 165 Rektora Uniwersytetu Śląskiego w Katowicach z dnia 26 października 2012 r. LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA

Bardziej szczegółowo

Teoretyczna i rzeczywista wartość walutowych instrumentów pochodnych rynek polski

Teoretyczna i rzeczywista wartość walutowych instrumentów pochodnych rynek polski Krzyszto Piontek Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Teoretyczna i rzeczywista wartość walutowych instrumentów pochodnych rynek polski 1. Wprowadzenie W ostatnim

Bardziej szczegółowo

Instytut Matematyczno-Przyrodniczy, Zakład Matematyki Kierunek studiów matematyka Nazwa modułu

Instytut Matematyczno-Przyrodniczy, Zakład Matematyki Kierunek studiów matematyka Nazwa modułu Jednostka Instytut Matematyczno-Przyrodniczy, Zakład Matematyki Kierunek studiów matematyka Nazwa modułu Moduł MF / Rachunek prawdopodobieństwa II kształcenia/ przedmiotu Kod modułu kształcenia/ przedmiotu

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ

INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ INFORMATYKA i FINANSE KATEDRA INFORMATYKI TEORETYCZNEJ dr hab. Czesław Bagiński, prof. PB Kierownik KIT dr hab. Wiktor Dańko, prof. PB dr hab. Piotr Grzeszczuk, prof. PB dr Ryszard Mazurek dr Jolanta Koszelew

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

22258 6 Statystyka matematyczna I 22058 3 Teoria podejmowania decyzji 22064 3

22258 6 Statystyka matematyczna I 22058 3 Teoria podejmowania decyzji 22064 3 STUDIA MAGISTERSKIE PRZEDMIOTY KIERUNKOWE MIESI Przedmiot Algebra i analiza matematyczna 22200 6 Ekonometria szeregów czasowych 22206 6 Mikroekonometria 22034 3 Nieklasyczne metody optymalizacji 22280

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Inżynieria finansowa Wykład II Stopy Procentowe

Inżynieria finansowa Wykład II Stopy Procentowe Inżynieria finansowa Wykład II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 1 Rynkowe stopy procentowe Rodzaje stóp rynkowych Reguły rachunku stóp 2 3 Definicje stóp

Bardziej szczegółowo

Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie

Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie dr hab. Grzegorz Bartoszewicz, prof. nadzw. UEP Katedra Informatyki Ekonomicznej Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie Tematyka seminarium związana jest z wykorzystaniem

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi metodami i technikami analizy finansowej na podstawie nowoczesnych instrumentów finansowych

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Opcje koszykowe a lokaty strukturyzowane - wycena

Opcje koszykowe a lokaty strukturyzowane - wycena Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie

Bardziej szczegółowo

Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r. Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe

Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r. Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe 1 Opis zakładanych efektów kształcenia na studiach podyplomowych

Bardziej szczegółowo

Modele rynku, kontrakty terminowe, spekulacje

Modele rynku, kontrakty terminowe, spekulacje Modele rynku, kontrakty terminowe, spekulacje Marcin Abram WFAIS UJ w Krakowie 9 marca 2009 Założenia modelu Cena rozpatrywanego obiektu zmienia się skokowo co czas δt. Bezwzględna wartość zmiany ceny

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Model Blacka-Scholesa

Model Blacka-Scholesa Model Blacka-Scholesa Średnie giełdowe odzwierciedlaja wszystko za wyjatkiem działań Pana Boga I zasada Dow 1 Rafał Ciesielski 2 Instytut Fizyki Teoretycznej Uniwersytet Warszawski Streszczenie W pracy

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Propozycje przedmiotów do wyboru. oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014

Propozycje przedmiotów do wyboru. oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014 Propozycje przedmiotów do wyboru oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. Arytmetyka........................................... 3 2. Inżynieria

Bardziej szczegółowo

KURS DORADCY FINANSOWEGO

KURS DORADCY FINANSOWEGO KURS DORADCY FINANSOWEGO Przykładowy program szkolenia I. Wprowadzenie do planowania finansowego 1. Rola doradcy finansowego Definicja i cechy doradcy finansowego Oczekiwania klienta Obszary umiejętności

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 5 212 EWA DZIAWGO ANALIZA WŁASNOŚCI OPCJI SUPERSHARE Wprowadzenie Proces globalizacji rynków finansowych stwarza

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI. www.wmat.pwr.edu.pl

WYDZIAŁ MATEMATYKI. www.wmat.pwr.edu.pl WYDZIAŁ MATEMATYKI www.wmat.pwr.edu.pl MATEMATYKA Studenci kierunku Matematyka uzyskują wszechstronne i gruntowne wykształcenie matematyczne oraz zapoznają się z klasycznymi i nowoczesnymi zastosowaniami

Bardziej szczegółowo

Matematyka finansowa 2.06.2001 r.

Matematyka finansowa 2.06.2001 r. Matematyka finansowa 2.06.2001 r. 3. Inwe 2!%3'(!!%3 $'!%4&!! &,'! * "! &,-' ryzyko inwestycji odchyleniem standardowym stopy zwrotu ze swojego portfela. Jak *!&! $!%3$! %4 A.,. B. spadnie o 5% C. spadnie

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Jeden przyk lad... czyli dlaczego warto wybrać MIESI.

Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Opcje walutowe proste. 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen

Opcje walutowe proste. 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen Opcje walutowe proste 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen Historia opcji Opcje byly znane od setek lat Ich natura spekulacyjna

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

Spis treści. O autorze... 7 Wstęp... 9

Spis treści. O autorze... 7 Wstęp... 9 Spis treści O autorze... 7 Wstęp... 9 1. Przedmiot inżynierii finansowej... 11 1.1. Kilka uwag na temat inżynierii finansowej... 11 1.2. Definicja inżynierii finansowej... 15 1.3. Wrażliwość zajmowanej

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Czwartek 13.00-15.00, p. 205C wioletta.nowak@uwr.edu.pl http://prawo.uni.wroc.pl/user/12141/students-resources Sylabus Zasady i metody wyceny kontraktów

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

Kierunek Ekonomia - studia stacjonarne pierwszego stopnia

Kierunek Ekonomia - studia stacjonarne pierwszego stopnia Kierunek Ekonomia - studia stacjonarne pierwszego stopnia obowiązujący od roku akademickiego 2015/201 (W wykład, C ćwiczenia, P projekt/seminarium, L laboratorium/lektorat, E -egzamin) Semestr I 1 Język

Bardziej szczegółowo

Finanse behawioralne. Finanse 110630-1165

Finanse behawioralne. Finanse 110630-1165 behawioralne Plan wykładu klasyczne a behawioralne Kiedy są przydatne narzędzia finansów behawioralnych? Przykłady modeli finansów behawioralnych klasyczne a behawioralne klasyczne opierają się dwóch założeniach:

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

ANALIZA INWESTYCJI. Wstęp

ANALIZA INWESTYCJI. Wstęp ANALIZA INWESTYCJI Wstęp Pod hasłem "analiza inwestycji" rozumie się analizę dochodowości aktywów, ich wycenę, jak też analizę ryzyka. Niniejsza książka dostarcza narzędzi służących kwantyfikacji wymienionych

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Microsoft Excel 2010 Analiza i modelowanie danych biznesowych

Microsoft Excel 2010 Analiza i modelowanie danych biznesowych Microsoft Excel 2010 Analiza i modelowanie danych biznesowych Wayne L. Winston Przekład: Janusz Machowski APN Promise Warszawa 2011 Microsoft Excel 2010: Analiza i modelowanie danych biznesowych 2011 APN

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Wybrane aspekty ubezpieczeń i reasekuracji Nazwa w języku angielskim: Selected Aspects Of Insurance And Reinsurance Kierunek

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki Program studiów na kierunku matematyka (studia I stopnia o profilu ogólnoakademickim, stacjonarne) dotyczy osób zarekrutowanych w roku 2013/14 i w latach następnych Państwowa Wyższa Szkoła Zawodowa w Tarnowie

Bardziej szczegółowo

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka)

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka) Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka) 1. CHARAKTERYSTYKA STUDIÓW Celem kształcenia w ramach specjalności Metody fizyki w ekonomii

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2

Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2 Matematyka finansowa i ubezpieczeniowa - Ubezpieczenia Ŝyciowe 2 Składki netto w ubezpieczeniach Ŝyciowych Zakład ubezpieczeniowy pobiera za ubezpieczenia składkę brutto, składającą się ze składki netto

Bardziej szczegółowo

KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH

KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH Nazwa Nazwa w j. ang. Statystyka opisowa i rachunek prawdopodobieństwa Descriptive statistics and probability theory Punktacja ECTS* 6 Opis kursu (cele kształcenia)

Bardziej szczegółowo

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008)

TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 2007/2008) TEST POZIOMU KOMPETENCJI UCZNIÓW KLAS PIERWSZYCH TECHNIKUM PO GIMNAZJUM Z MATEMATYKI (rok szkolny 007/008) Test i analizę opracował: mgr Wojciech Janeczek Test przeprowadziły: mgr Barbara Zalewska, mgr

Bardziej szczegółowo

Kierunek: Matematyka. Specjalność: MATEMATYKA FINANSOWA I UBEZPIECZENIOWA

Kierunek: Matematyka. Specjalność: MATEMATYKA FINANSOWA I UBEZPIECZENIOWA Kierunek: Matematyka Specjalność: MATEMATYKA FINANSOWA I UBEZPIECZENIOWA DLACZEGO MATEMATYKA NA PWR? Oprócz przedmiotów matematycznych i informatycznych proponujemy dużą liczbę przedmiotów specjalistycznych

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Program studiów stacjonarnych drugiego stopnia dla studentów, którzy rozpoczęli studia w latach 2010/11 i 2011/12

Program studiów stacjonarnych drugiego stopnia dla studentów, którzy rozpoczęli studia w latach 2010/11 i 2011/12 Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Program studiów stacjonarnych drugiego stopnia dla studentów, którzy rozpoczęli studia w latach 2010/11 i 2011/12 Warszawa, wersja z dnia

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

METODY MONTE CARLO W INŻYNIERII FINANSOWEJ

METODY MONTE CARLO W INŻYNIERII FINANSOWEJ Tomasz Rolski Instytut Matematyczny Uniwersytet Wrocławski METODY MONTE CARLO W INŻYNIERII FINANSOWEJ Walim, 13.12.2013. Plan wykładu: Coś o generatorach, Statystyczne opracowanie wyników, Coś o redukcji

Bardziej szczegółowo

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci 1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli

Bardziej szczegółowo

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

RAMOWY PROGRAM STUDIÓW NA KIERUNKU INFORMATYKA STUDIA INŻYNIERSKIE SEMESTR: I

RAMOWY PROGRAM STUDIÓW NA KIERUNKU INFORMATYKA STUDIA INŻYNIERSKIE SEMESTR: I SEMESTR: I 1. Język angielski Z 18 1 PRZEDMIOTY PODSTAWOWE 1. Analiza matematyczna i algebra liniowa E Z 30 15 5 2. Podstawy elektrotechniki Z 10 1 3. Podstawy elektroniki i miernictwa 1 Z 10 2 1. Podstawy

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

2. Równania nieliniowe i ich uk lady

2. Równania nieliniowe i ich uk lady Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?

Bardziej szczegółowo