MATERIAŁY Z KURSU KWALIFIKACYJNEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATERIAŁY Z KURSU KWALIFIKACYJNEGO"

Transkrypt

1 Wszystkie materiały tworzone i przekazywane przez Wykładowców NPDN PROTOTO są chronione prawem autorskim i przeznaczone wyłącznie do użytku prywatnego. MATERIAŁY Z KURSU KWALIFIKACYJNEGO

2 Wiązania chemiczne w świetle mechaniki kwantowej dr Jakub Guzy

3 ELEMENTY MECHANIKI KWANTOWEJ W UJĘCIU JAKOŚCIOWYM. Dualizm korpuskularno-falowy Zasada nieoznaczoności Heisenberga Orbital atomowy Stany kwantowe KONFIGURACJA ELEKTRONOWA ATOMÓW. ORBITALE MOLEKULARNE Budowa cząsteczki Teoria orbitali molekularnych Kryteria doboru orbitali atomowych Typy orbitali molekularnych Podobieństwa i różnice pomiędzy orbitalami atomowymi OA i molekularnymi OM Cząsteczki dwuatomowe homojądrowe. Cząsteczki dwuatomowe heterojądrowe. BUDOWA CZĄSTECZEK WIELOATOMOWYCH Hybrydyzacja orbitali atomowych Rodzaje hybrydyzacji Teoria VSEPR

4 ELEMENTY MECHANIKI KWANTOWEJ W UJĘCIU JAKOŚCIOWYM Dualizm korpuskularno-falowy Współczesna nauka opiera opis atomu na dualizmie korpuskularno falowym elementarnych cząstek materii. Według hipotezy de Broglie`a ruch elementarnych cząstek materii należy rozważać jako ruch korpuskuł (cząstek) ujawniających cechy falowe. Każdej cząstce można przypisać falę o długości: Zasada nieoznaczoności Heisenberga Nie można jednocześnie ustalić dokładnie prędkości i położenia elektronu. Im mniejszy jest błąd określenia położenia elektronu x tym większy jest błąd określenia prędkości v i odwrotnie: v x const Mechanika kwantowa nie jest w stanie określić dokładnie ani położenia ani prędkości elektronu w atomie bądź cząsteczce. Z tego powodu operuje się prawdopodobieństwem znalezienia elektronu w danym obszarze.

5 Orbital atomowy OA Zgodnie z teorią Schrödingera stan elektronu w atomie opisuje funkcja falowa Y, nazwana orbitalem, kwadrat tej funkcji daje prawdopodobieństwo znalezienia elektronu w danym obszarze wokół jądra, energia elektronów jest kwantowana a geometryczne kształty orbitali wskazują na przestrzenny rozkład prawdopodobieństwa znalezienia elektronu opisanego danym orbitalem. Znane orbitale to orbital s, p, d i f, każdy stan kwantowy elektronu jest opisany za pomocą czterech liczb kwantowych, tj. główna liczba kwantowa - n, poboczna liczba kwantowa - l, magnetyczna liczba kwantowa - m i magnetyczna spinowa liczba kwantowa - ms Funkcja falowa Y jest amplitudą prawdopodobieństwa w punkcie przestrzeni określonym współrzędnymi x, y, z. W przypadku elektronu funkcja falowa Y określa zatem prawdopodobieństwo znalezienia tej cząstki w określonym miejscu przestrzeni wokół atomu, a także określa najbardziej prawdopodobne wartości jego energii.

6 Graficzny zapis orbitalu Obrazem graficznym orbitalu jest fragment przestrzeni, w której prawdopodobieństwo znalezienia elektronu jest duże. Każdy orbital ma inny kształt i orientację przestrzenną, a zajmujący go elektron charakteryzuje się inną energia. Orbitale zdegenerowane, to takie, które różnią się od siebie tylko położeniem w przestrzeni ( orbitale p; orbitale d; orbitale f) Orbital typu s Orbital typu p Orbital typu d Orbitale typu s mają kształt kuli Orbital p jest trójkrotnie zdegenerowany, ze względu na równocenność energety czną orbitali px, py i pz. Orbital d jest pięciokrotnie zdegenerowany, a f siedmiokrotnie.

7 Stany kwantowe Ruch elektronu w atomie charakteryzuje się podając: - orbitalny moment pędu M L /ruch postępowy/ - własny moment pędu zwany spinem M S / ruch wirowy/ Momenty pędów elektronów mogą przyjmować tylko określone wartości, są wielkościami skwantowanymi. Składowe wektorów momentów pędu w stosunku do kierunku wyróżnionego w przestrzeni są więc wielkościami skwantowanymi. Na całkowitą energię elektronu w atomie składa się jego energia kinetyczna i potencjalna. Wartości energii są wielkościami skwantowanymi, czyli mogą przyjmować tylko określone wartości. Wartości tych wielkości fizycznych określa się za pomocą parametrów zwanych liczbami kwantowymi.

8 Wyróżnia się pięć liczb kwantowych, które odnoszą się do atomu GŁÓWNA LICZBA KWANTOWA ORBITALNA LICZBA KWANTOWA MAGNETYCZNA ORBITALNA LICZBA KWANTOWA SPINOWA LICZBA KWANTOWA MAGNETYCZNA SPINOWA LICZBA KWANTOWA n l m l s m s Jest związana z energią elektronu. Charakteryzuje stan elektronu wynikający z odległości od jądra. Charakteryzuje stan elektronu związany z orbitalnym momentem pędu. Jest również związana z energią elektronu. Na podstawie jej wartości określa się kształt przestrzenny orbitalu. Charakteryzuje składową wektora orbitalnego momentu pędu elektronu. Określa zachowanie elektronu w zewnętrznym polu magnetycznym Na podstawie jej wartości określa się orientację przestrzenną orbitalu. Charakteryzuje własny moment pędu elektronu (spin). Może przyjmować tylko jedną wartość s=1/2 Charakteryzuje składową wektora własnego momentu pędu elektronu (spinu). Liczba m s decyduje o możliwości łączenia się elektronów w pary

9 Liczba kwantowa Możliwe wartości Liczba możliwych wartości Znaczenie liczby n główna kolejne liczby naturalne: 1,2,3... nieograniczona decyduje o wielkości orbitalu l poboczna kolejne liczby całkowite od 0 do (n-1) włącznie zależy od n informuje o kształcie orbitalu (s,p,d.f.) m magnetyczna liczby całkowite od -l do +l (z 0 ) zależy od l i wynosi (2l+1) decyduje o orientacji przestrzennej orbitalu określa liczbę orbitali w danej podpowłoce ms magnetyczna spinowa ½ lub ½ 2 decyduje o orientacji przestrzennej spinu

10 KONFIGURACJA ELEKTRONOWA ATOMÓW Konfiguracja elektronowa to sposób opisu elektronów danego atomu przez orbitale. Aby poprawnie zapisać konfigurację danego atomu należy: Opisywać elektrony na orbitalach zgodnie ze wzrostem ich energii orbitalnej Przestrzegać reguły Hunda Liczba niesparowanych elektronów w podpowłoce powinna być jak największa. Niesparowane elektrony mają jednakowy spin. Reguła Hunda dotyczy orbitali zdegenerowanych, czyli takich, które różnią się od siebie tylko położeniem w przestrzeni ( orbitale p; orbitale d) Przestrzegać zakazu Pauliego Atom nie może mieć dwóch elektronów o takich samych wartościach wszystkich czterech liczb kwantowych. Muszą się różnić przynajmniej jedną ( najczęściej m s ).

11 TEORIA KWANTOWA dopuszcza możliwość interpretowania struktury cząsteczki różnymi metodami, z których każda ma charakter przybliżony a wszystkie prowadzą do wniosków niemal takich samych, zgodnych w większości przypadków z danymi eksperymentalnymi. Stosunkowo najprostsza do przedstawienia jest metoda, która zakłada, że wiązania kowalencyjne i kowalencyjne spolaryzowane powstają na skutek nakładania się orbitali atomowych obsadzonych niesparowanymi elektronami i należących do dwóch różnych atomów. Nakładanie się orbitali, rozumianych jako obszary przestrzenne, prowadzi do nowego obszaru orbitalu molekularnego- obejmującego swym zasięgiem oba jądra symetrycznie wiazanie kowalencyjne- lub niesymetrycznie wiązanie kowalencyjne spolaryzowane

12 BUDOWA CZĄSTECZKI Cząsteczka składa się z dwóch lub więcej jader oraz elektronów będących w sferze ich oddziaływania. Zachowanie się elektronów w cząsteczce opisuje się za pomocą funkcji falowych Ψ zwanych orbitalami molekularnymi ( cząsteczkowymi) OM Znajomość tych funkcji pozwala na wyznaczenie prawdopodobieństwa przebywania elektronu w określonym obszarze cząsteczki. Powstające pomiędzy atomami wiązania mogą być: Zlokalizowane wiążąca para elektronów jest wspólna wyłącznie dla dwóch jąder atomów Zdelokalizowane elektrony biorące udział w wytworzeniu wiązania pozostają w zasięgu oddziaływania kilku jąder atomowych

13 TEORIA ORBITALI MOLEKULARNYCH Bada stany energetyczne, które może osiągnąć elektron wchodzący w skład wiązania w polu wszystkich jąder atomowych cząsteczki. Teoria ta zakłada, że podczas powstawania wiązania chemicznego chmury elektronowe orbitali (zawierających niesparowany elektron) każdego z wiążących się atomów przenikają się lub nakładają nawzajem i powstają w ten sposób tzw. orbitale molekularne. Pozwala to traktować funkcję falową elektronu w cząsteczce jako liniową kombinację funkcji falowych opisujących orbitale atomowe. Przy kombinacji dwu orbitali atomowych tworzą się dwa energetycznie różne orbitale cząsteczkowe, jeden (nisko energetyczny) wiążący i jeden (wysoko energetyczny) antywiążący. Orbitalowi molekularnemu wiążącemu odpowiada energia niższa od energii elektronów izolowanych atomów, orbitalowi antywiążącemu energia wyższa. Energia orbitali atomowych i molekularnych

14 Dla cząsteczki złożonej z dwóch atomów A i B, powstają dwa orbitale molekularne cząsteczkowe wiążący c A A oraz orbital antywiążący c B B W równaniu stałe c A i c B dobrane są tak, by energia orbitalu cząsteczkowego osiągała minimum. c A A c B B Różnica pomiędzy orbitalem wiążącym i antywiążącym polega na zwiększonym prawdopodobieństwie napotkania elektronu pomiędzy jądrami w przypadku orbitalu wiążącego, oraz w najbliższym otoczeniu poza jądrami w przypadku orbitalu antywiążącego.

15 Kryteria doboru orbitali atomowych Do wyznaczania orbitalu molekularnego nadają się wyłącznie, te orbitale atomowe, które opisując elektrony walencyjne atomów wchodzących w skład cząsteczki, spełniają następujące warunki: 1. Mają porównywalne energie 2. Wzajemnie się nakładają 3. Wykazują jednakową symetrię w stosunku do prostej łączącej jądra atomów. Nie nakładają się Im pełniejsze jest wzajemne przenikanie się orbitali, tym większa jest trwałość tworzonego wiązania. Jeżeli przejściu elektronów z orbitali atomowych na orbitale cząsteczkowe towarzyszy wydzielanie energii, to cząsteczka oczywiście stanowi układ bardziej trwały od atomów, co równoznaczne jest z wytworzeniem wiązania.

16 Typy orbitali molekularnych Nakładanie czołowe orbitali atomowych (wzdłuż prostej łączącej jądra) powoduje powstawanie orbitali molekularnych typu σ (sigma) Orbitale typu σ mogą powstać z orbitali atomowych tego samego typu (s - s; p y - p y; ) lub różnego typu (s p). Orbital wiążący σ charakteryzuje się zwiększoną gęstością elektronów w przestrzeni między jądrami. Para elektronów zajmująca ten orbital nosi nazwę wiążącej i tworzy trwałe wiązanie. Orbital antywiążący σ* charakteryzuje się mniejszą gęstością elektronów w przestrzeni między jądrami, co powoduje, że jądra atomów odpychają się.

17 Nakładanie boczne orbitali atomowych powoduje powstawanie orbitali molekularnych typu π (pi) Osie symetrii orbitali są prostopadłe do prostej łączącej jądra atomów. Orbitale typu π mogą powstawać z orbitali tego samego typu (p x p x ; p z p z ) lub różnego typu (p d). Wiązania pojedyncze zawsze są wiązaniami sigma, natomiast wiązania wielokrotne (podwójne, potrójne), posiadają jedno wiązanie sigma i pozostałe wiązania typu pi. Wiązania pi są słabsze od wiązań sigma i łatwiej ulegają rozerwaniu.

18 Podobieństwa i różnice pomiędzy orbitalami atomowymi OA i molekularnymi OM Orbital atomowy OA Opisuje zachowanie się pojedynczego elektronu w atomie Jest jednocentrowy opisuje zachowanie elektronu w polu pojedynczego jądra Każdy OA określony jest zespołem liczb kwantowych Każdemu OA odpowiada określona energia orbitalna elektronów Każdy elektron opisany OA ma ściśle określony spin ( ms = -1/2 albo ms = 1/2 Obowiązują: zasada najmniejszej energii, zakaz Pauliego, reguła Hunda Każdy OA opisać może stan max 2 elektronów o przeciwnych spinach Orbital cząsteczkowy OM Opisuje zachowanie się elektronu w cząsteczce Jest wielocentrowy opisuje zachowanie elektronu poruszającego się w polu kilku jąder Każdemu OM można przyporządkować określone liczby kwantowe Każdemu OM odpowiada określona energia orbitalna elektronów Każdy elektron opisany OM ma ściśle określony spin Obowiązują: zasada najmniejszej energii, zakaz Pauliego, reguła Hunda Każdy OM opisać może stan max 2 elektronów o przeciwnych spinach

19 Cząsteczki dwuatomowe homojądrowe. Cząsteczka wodoru Cząsteczka H 2 powstaje w wyniku utworzenia orbitalu cząsteczkowego z orbitali 1s atomów wodoru. Przez nałożenie się dwu orbitali atomowych powstają dwa orbitale cząsteczkowe σ i σ*. W cząsteczce wodoru obydwa elektrony obsadzają orbital o niższej energii, a orbital σ* pozostaje nie zajęty. W czasie tworzenia wiązania wydziela się energia (energia wiązania), a układ jest trwały ze względu na uzyskanie uprzywilejowanego stanu energetycznego charakteryzującego się minimum energii.

20 Cząsteczka azotu U pierwiastków wieloelektronowych przenikanie orbitali głębiej położonych nie odgrywa roli. Cząsteczka N 2 powstaje z dwóch atomów azotu, które w stanie podstawowym maja konfigurację; [ 7N] 1s 2s 2p Dziesięć elektronów walencyjnych obu atomów N po sparowaniu rozmieszcza się w cząsteczce, w kolejności wzrastającej energii, na pięciu najniższych energetycznie orbitalach molekularnych. W cząsteczce azotu powstają trzy pary elektronów wiążących wytwarzające jedno wiązanie typu σ i dwa wiązania typu π Konfiguracja elektronowa cząsteczki N 2 [N ] [1s ][1s ]( 2s) (σ 2s) ( ) 2 2 σ2p 2 y ) ( π2px ) ( π2pz wiazanie σ wiazanie π wiazanie π

21 Cząsteczki dwuatomowe heterojądrowe Budowa cząsteczki LiH Konfiguracja atomu litu i wodoru w stanie podstawowym: [ H] 1s [ Li] 1s 2 2s 1 Wartości energii jonizacji: H = 13,6 ev; Li = 5,4 ev ponieważ energie orbitali są jeszcze porównywalne z orbitalu 2s atomu Li i orbitalu 1s atomu H można utworzyć orbital wiążący σ2s,1s i orbital antywiążący σ * 2s,1s Konfiguracja elektronowa cząsteczki: [LiH] [He]( 2s,1s) 2 Poziom energetyczny orbitalu 1s at. H znajduje się bliżej poziomu orbitalu molekularnego wiążącego niż poziom 2s at. Li. Większy jest zatem udział orbitalu wodoru w orbitalu molekularnym wiążącym cząsteczki, natomiast w orbitalu molekularnym antywiążącym większy udział stanowi orbital litu. Wynika stąd, że para elektronów wiążąca (opisywana orbitalem σ2s,1s) przesunięta jest w kierunku atomu wodoru, nadając mu charakter bardziej elektroujemny.

22 HYBRYDYZACJA ORBITALI WALENCYJNYCH CENTRALNYCH ATOMÓW CZĄSTECZEK Orbitale cząsteczkowe opisujące zachowanie elektronów w cząsteczkach wieloatomowych, utworzone przez proste kombinacje liniowe orbitali atomowych, często nie pozwalają na uzyskanie w obliczeniach zgodnych z doświadczeniem wartości katów miedzy wiązaniami. W przypadku cząsteczek wieloatomowych uzyskuje się wyniki bardziej zgodne z doświadczeniem jeśli do wyliczenia funkcji cząsteczkowych nie posługuje się prostymi orbitalami atomowymi lecz orbitalami mieszanymi zhybrydyzowanymi. HYBRYDYZACJA polega na tworzeniu nowych funkcji falowych dla ATOMU CENTRALNEGO CZĄSTECZKI. Funkcje te tworzy się jako kombinacje liniowe jego orbitali atomowych. Uwaga Hybrydyzacja jest zabiegiem matematycznym, a nie procesem fizycznym. Ułatwia przedstawienie rozkładu przestrzennego.

23 Atom centralny znajduje się w stanie wzbudzonym. Wytworzone orbitale zhybrydyzowane są równocenne energetycznie. Orbitale zhybrydyzowane mają taki sam kształt konturu i określone rozmieszczenie w przestrzeni, które decyduje o kształcie cząsteczki. Każdy z hybrydów złożony jest z dwóch części, rozciągających się po obu stronach jądra: - część dodatnia ( większe prawdopodobieństwo napotkania elektronu) - część ujemna wartości funkcji Liczba powstających hybryd jest równa liczbie orbitali biorących udział w hybrydyzacji

24 Typy hybrydyzacji Typ hybrydyzacji Hybrydyzacja digonalna sp Ilość orbitali tworzących hybrydę Jeden orbital typu s Jeden orbital typu p Układ przestrzenny Kąty miedzy wiązania mi Ilość orbitali zhybrydyzowanych liniowy 180 o Dwa orbitale typu sp Hybrydyzacja trygonalna sp 2 Jeden orbital typu s Dwa orbitale typu p Orbitale skierowane ku wierzchołkom trójkąta foremnego 120 o Trzy orbitale typu sp 2 Hybrydyzacja tetraedryczna sp 3 Jeden orbital typu s Trzy orbitale typu p Cztery orbitale ustawione są w kierunku wierzchołków czworościanu foremnego 109 o 28` Cztery orbitale typu sp 3

25 Hybrydyzacja typu sp Hybrydyzacja sp polega na wymieszaniu się orbitalu s z jednym orbitalem p z wytworzeniem struktury liniowej. Wszystkie wiązania wytworzone z udziałem zhybrydyzowanych orbitali sp leżą wzdłuż jednej prostej. Cząsteczka CH 2 W cząsteczce etynu C 2 H 2 (acetylenu), atomy węgla wytwarzają za pomocą zhybrydyzowanych orbitali sp wiązanie σ wiążąc dwa atomy wodoru i tworząc wiązanie między sobą, a niezhybrydyzowane dwa orbitale p tworzą dwa wiązania π. 6C Stan podstawowy Stan wzbudzony 1s 2 2s 2 2p x1 2p y1 2p z 1s 2 2s 1 2p x1 2p y1 2p z 1

26 Hybrydyzacja typu sp 2 Hybrydyzacja sp 2 polega na wymieszaniu się orbitalu s z dwoma orbitalami p z wytworzeniem struktury płaskiej Wiązania wytworzone z udziałem zhybrydyzowanych orbitali sp 2 leżą na jednej płaszczyźnie, a kąt między nimi wynosi 120. Cząsteczka C 2 H 4 W cząsteczce etenu C 2 H 4 (etylenu), atomy węgla wytwarzają za pomocą zhybrydyzowanych orbitali sp 2 wiązanie σ, wiążąc po dwa atomy wodoru i tworząc wiązanie między sobą, a niezhybrydyzowane orbitale p tworzą wiązanie π. Wszystkie atomy leżą na tej samej płaszczyźnie, a wiązanie π usztywnia cząsteczkę uniemożliwiając swobodny obrót wokół wiązania C-C.

27 Hybrydyzacja typu sp 3 Obsadzone pojedynczymi elektronami orbital s i trzy orbitale p we wzbudzonym atomie węgla ulegają hybrydyzacji dając cztery równocenne zhybrydyzowane orbitale typu sp 3. Odpychanie między czterema równocennymi chmurami elektronowymi jest najmniejsze, gdy ich osie skierowane są od środka czworościanu foremnego ku jego narożom i tworzą kąty 109 o 28' Cząsteczka CH 4 Tworzy cztery wiązania σ z czterema atomami wodoru 6C Stan podstawowy Stan wzbudzony 1s 2 2s 2 2p x1 2p y1 2p z 1s 2 2s 1 2p x1 2p y1 2p z 1

28 METODA VSEPR Metoda ta zakłada, ze budowa przestrzenna cząsteczki zależy od łącznej liczby elektronów wokół atomu centralnego, a orientacja przestrzenna zapewnia minimum energii odpychania elektronów w atomie centralnym W przypadku np..metanu H CH 4 cztery zhybrydyzowane orbitale atomu węgla(sp 3 ) nakładają się z czterema O : orbitalami typu s atomów wodoru. Atom centralny nie ma wolnych par elektronowych. Kąty pomiędzy wiązaniami wynoszą 1s22s22p4 109 o 28 : H wolne pary H20 elektronowe H C H H 1s22s22p2 H CH4 1s2 2sp3 1s22sp3

29 W przypadku amoniaku NH 3 ( hybrydyzacja atomu azotu sp 3 ). Trzy hybrydy uczestniczą w tworzeniu wiązań z atomami wodoru, natomiast czwarta opisuje wolną parę elektronową. Kształt cząsteczki to piramida o podstawie trójkąta. Kąty pomiędzy wiązaniami N-H wynosi106 45' W przypadku cząsteczki wody H 2 O elektrony ostatniej powłoki atomu tlenu ulegają hybrydyzacji typu sp 3. występują dwie hybrydy z wolnymi parami elektronowymi. Kąty pomiędzy wiązaniami O-H 104 o 45

30 Mieszaniny

31 Substancje czyste chemicznie to substancje zawierające tylko jeden rodzaj atomów bądź cząsteczek chemicznych. Mają ściśle określony skład i charakterystyczne właściwości fizyczne i chemiczne. Dzieli się je na pierwiastki i związki chemiczne. Mieszaniny (układy dyspersyjne) to układy złożone z co najmniej dwóch składników, zwanych fazami, z których jeden jest rozproszony w drugim. Fazy zmieszane są ze sobą w określonej (ogólnie jednak dowolnej) proporcji ilościowej, nie są połączone chemicznie, zachowują swoje indywidualne właściwości fizyczne i chemiczne, można je rozdzielić metodami fizycznymi. Zarówno jedną jak i drugą fazę mogą stanowić pierwiastki lub związki chemiczne we wszystkich stanach skupienia. Pojecie układ dyspersyjny z reguły używa się w odniesieniu do mieszaniny, w której drobinki cieczy lub ciała stałego są rozproszone w gazie.

32 Mieszaniny powstają przez zmieszanie ze sobą co najmniej dwóch substancji. Przykłady mieszanin: woda mineralna mleko herbata ropa naftowa

33 Faza: rozproszona rozpraszająca gaz ciecz ciało stałe gaz ciecz ciało stałe roztwory gazowe (np.powietrze) aerozole i mgły (np. deszcz) dymy (np. kurz) piany (np. woda sodowa) roztwory właściwe (np.ocet) emulsje (np.mleko) roztwory właściwe, koloidy i zawiesiny piany stałe (np. pumeks) (np. mokra gąbka) stopy metali (np. brąz)

34 Mieszaniny jednorodne (homogeniczne) Charakteryzuje je rozproszenie molekularne, a rozmiary cząsteczek rozproszonych są wielkości mniejszych od 1 nm. Nazywa się je roztworami właściwymi. Są one jednorodne fizycznie, tzn. każda próbka, pobrana z dowolnego miejsca układu, ma taki sam skład jakościowy i ilościowy. Mieszaniny niejednorodne (heterogeniczne) Charakteryzuje je rozproszenie koloidalne bądź makroskopowe. W pierwszy przypadku nazywamy je koloidami, a rozmiary cząstek rozproszonych zawierają się pomiędzy 1 nm a 100 nm. W drugim przypadku są to zawiesiny, gdzie rozmiary cząstek rozproszonych przewyższają 100 nm. Te ostatnie są zazwyczaj układami nietrwałymi, złożonymi z cząsteczek substancji stałej w cieczy lub gazie.

35 Przykłady mieszanin niejednorodnych: ciecz opiłki żelaza zmieszane z siarką, piasek z wodą, olej z wodą, ciecz woda i atrament, kreda i woda rys.1 emulsje - powstają w wyniku zmieszania dwóch nierozpuszczalnych wzajemnie cieczy, z których jedna jest rozproszona w drugiej np. mleko (pod mikroskopem można dostrzec pojedyncze kulki tłuszczu - rys.1) piana z mydła - pęcherzyki gazu rozproszone w cieczy lub ciele stałym (rys.2) dym - drobiny ciał stałych rozproszone w fazie gazowej pęcherzyki gazu rys. 2 ciecz lub ciało stałe

36 Przykłady mieszanin jednorodnych (homogenicznych): benzyna (mieszanina węglowodorów) solanka (roztwór wodny soli kamiennej) cukier w wodzie powietrze (mieszanina gazów) roztwory wodne soków ocet

37 Rozdzielanie mieszanin Metody pozwalające rozdzielić mieszaniny na składniki polegają na wykorzystaniu różnic we właściwościach fizycznych tych składników, np.: gęstości, temperatury topnienia, rozpuszczalności w wodzie itp.

38 Rozdzielanie mieszanin jednorodnych krystalizacja. Służy do rozdzielenia mieszanin jednorodnych, z których jedna jest cieczą a druga ciałem stałym rozpuszczalnym w wodzie lub innych rozpuszczalnikach. Przykładem takiej substancji może być sól kuchenna, która bardzo dobrze rozpuszcza się w wodzie. Żeby krystalizacja była możliwa, mieszanina (roztwór) musi znajdować się w stanie przesycenia, co osiągamy poprzez odparowanie i ogrzewanie roztworu. W takim roztworze po schłodzeniu, na dnie naczynia tworzą się kryształy

39 Rozdzielanie mieszanin jednorodnych DESTYLACJA proces rozdzielania ciekłych mieszanin wieloskładnikowych, wykorzystujący różną lotność poszczególnych składników Kolba 5 Zestaw do destylacji 4 2. Nasadka destylacyjna 3. Chłodnica 4. Przedłużacz 5. Odbieralnik 6. Termometr

40 Chromatografia Termin chromatografia oznacza efekt rozdziału (separacji) mieszaniny substancji na jej składniki, obserwowany podczas przepływu fazy ruchomej wzdłuż powierzchni fazy nieruchomej. Rys.5 Rys.1 Rys.2 Rys.3 Rys.4 Zasada działania najprostszego chromatografu - fazą stałą jest bibuła (rys.1) a fazą ruchomą ocet (rys.2). Mieszaniną, która podlega rozdziałowi jest tusz mazaka (rys.3), którym rysujemy poziomą kreskę na bibule i zanurzamy w naczyniu z octem (rys. 4). Po pewnym czasie na pasku bibuły obserwujemy różnobarwne smugi (rys.5) Najprostszym przykładem zastosowania chromatografii może być zwykły domowy filtr do oczyszczania wody.

41 Odparowanie Odparowanie ma zastosowanie do rozdzielania mieszanin jednorodnych na przykład solanki (woda + sól). Przepuszczając taką mieszaninę przez filtr nie jesteśmy w stanie jej rozdzielić (rys.1). Odparowanie (zatężanie) polega na ogrzewaniu mieszaniny z której odparowuje woda a w naczyniu pozostaje sól. Proces ten może być przeprowadzony w parownicy lub szkiełku. Przed rozpoczęciem odparowania naczynie napełniamy roztworem co najwyżej do połowy, Następnie ustawicznie mieszając bagietką podgrzewamy naczynie na małym ogniu. Usuwamy palnik po odparowaniu około połowy objętości rozpuszczalnika. Pozostała ilość rozpuszczalnika odparowuje wykorzystując ciepło rozgrzanego naczynia. rys.1

42 Rozdzielanie mieszanin niejednorodnych w postaci dwóch cieczy, które można z łatwością odróżnić. Przykładem takiej mieszaniny jest woda zmieszana z olejem. Te dwie substancje po pewnym czasie rozdzielą się, tworząc dwie warstwy. Olej jako lżejszy od wody, utworzy warstwę górną a woda znajdzie się w warstwie dolnej. Wystarczy wtedy zlać olej z nad wody aby uzyskać rozdzielenie tych dwóch substancji. Dokładniejszy rozdział tych substancji uzyskamy spuszczając dolną warstwę przez zawór, jednocześnie obserwując granicę kontaktu tych dwóch warstw. Przebieg tej metody ilustruje rysunek Rys.1 Rozdzielacz olej woda

43 Rozdzielanie mechaniczne To rozdzielanie mieszanin "silnie niejednorodnych". Proces ten polega na wyjmowaniu np. za pomocą pincety dużych kawałków jednej substancji, np. kulek ołowianych z piasku. Zalicza się do tego typu również: przesiewanie, rozdzielanie magnesem itp.

44 Schemat procesu sedymentacji cząstka ciała stałego ciecz Rys.1 Cząstki ciała stałego są zawieszone w całej powierzchni cieczy ciecz cząstka ciała stałego Rys.2 Po pewnym czasie cząstki ciała stałego opadają na dno Sedymentacja opadanie cząsteczek ciała stałego w cieczy na dno naczynia pod wpływem siły przyciągania ziemskiego (grawitacji). Jest to proces samoczynny

45 Dekantacja Oddzielenie ciała stałego (osadu) od cieczy poprzez zlanie klarownej cieczy z nad osadu. Stosuje się ją do rozdzielania mieszanin, w których jeden ze składników jest cieczą. Dekantacja często jest poprzedzona procesem sedymentacji. Zlewanie należy przeprowadzać ostrożnie i po bagietce. Skuteczniejszą odmianą tego typu procesu jest sączenie.

46 SĄCZENIE (FILTROWANIE) Przykładem filtracji jest rozdzielenie mieszaniny zawierającej drobiny kredy zawieszone w wodzie (rys. 1). W celu rozdzielenia takiej mieszany wystarczy przepuścić ją przez warstwę filtrującą, którą może być zwykła bibuła. Na filtrze pozostaje osad a rozpuszczalnik przenika przez filtr i oczyszczony od osadu spływa do zlewki. W celu przeprowadzenia filtracji sączek z bibuły filtracyjnej układamy w lejku odpowiedniej wielkości, dociskamy do ścianek i zwilżamy wodą destylowaną. Ciecz do filtracji bagietka powoli (najlepiej po bagietce) wlewamy do lejka. Filtr napełniamy do poziomu ok. 1 cm poniżej jego krawędzi. Następną porcję wlewamy do filtru dopiero wtedy, kiedy poprzednia została już kreda przefiltrowana. sączek 1 1 lejek woda Rys. 1.

47 Mieszanina a związek chemiczny MIESZANINY ZWIĄZKI CHEMICZNE Właściwości chemiczne składników są zachowane. Można je rozdzielić na składniki metodami fizycznymi Właściwości fizyczne są zawsze pośrednie. Skład ilościowy i jakościowy może być dowolny. Zawiera różne cząstki składowe. Właściwości chemiczne składników zanikają zupełnie. Można je rozdzielić na składniki, czyli pierwiastki chemiczne, tylko na drodze reakcji chemicznej. Właściwości fizyczne mogą przekraczać wartości charakterystyczne dla pierwiastków, które te związki tworzą. Ma ściśle określony skład jakościowy i ilościowy ( prawo stałości składu). Zawiera cząsteczki jednego rodzaju. Może zawierać wiele składników. Zawiera zwykle niewielką liczbę składników.

48 Metody rozdzielania: ZAWIESINY Mieszaniny niejednorodne, w których średnica cząsteczek substancji rozproszonej jest większa od średnicy ośrodka rozpraszającego i wynosi powyżej 10-7 m. sączenie przez materiał porowaty sedymentacja w polu grawitacyjnym ziemskim dekantacja, tzn. ostrożne zlanie cieczy znad osadu segregacja mechaniczna (jeżeli ziarna poszczególnych składników są dostatecznie duże) Sedymentacja jest jednym z podstawowych procesów wykorzystywanych w oczyszczaniu wody do usuwania z niej cząstek o gęstości większej od gęstości wody, a więc cząstek opadających. Opadanie cząstek w wodzie jest zjawiskiem złożonym i zależy między innymi od ich stężenia, wymiaru, kształtu, gęstości i temperatury oraz prędkości i kierunku przepływu wody. W zależności od charakteru i ilości zawiesin wyróżnia się: - opadanie cząstek ziarnistych - opadanie cząstek kłaczkowatych

49 KOLOIDY Mieszaniny w których średnica cząsteczek substancji rozproszonej jest większa od średnicy cząsteczek ośrodka rozpraszającego, jej wielkość waha się w granicach 10-9 m 10-7 m Stan rozproszenia koloidalnego jest bardzo rozpowszechniony, zarówno w świecie przyrody ożywionej (różnorodne białka, pektyny, węglowodany) i nieożywionej (gliny, mgły, pył wulkaniczny), jak również wśród związków otrzymanych sztucznie w laboratorium chemicznym (mydła, niektóre barwniki, siarka koloidalna, tlenki metali itd.). Oprócz tego w przyrodzie występuje dużo związków, których cząsteczki mają wymiary charakterystyczne dla układów koloidalnych, zwane są one eukoloidami (np. skrobia, celuloza, kauczuk, keratyna, kolagen glikogen itd.), znane są również syntetyczne eukoloidy, jak polistyreny i inne tworzywa sztuczne. Podczas rozpuszczania eukoloidów powstają samorzutnie układy koloidalne. Najbardziej rozpowszechnione są układy koloidalne o ciekłym ośrodku dyspersyjnym, zwane roztworami koloidalnymi, liozolami lub zolami. Jeżeli ośrodek dyspersyjny jest wodą, zwane są hydrozolami, jeżeli alkoholem alkozolami, jeżeli benzenem - benzenozolami itd. Ogólnie, jeżeli ośrodek dyspersyjny jest cieczą organiczną, układy koloidalne nazywa się organozolami, jeżeli zaś gazem gazozolami (w przypadku powietrza - aerozolami).

50 Podział koloidów ze względu na powinowactwo substancji rozproszonej do fazy rozpraszającej Koloidy liofilowe Koloidy liofobowe Koloidy liofilowe charakteryzują się dużym powinowactwem do rozpuszczalnika, cząstki koloidowe otaczają się otoczka solwatacyjną, która jest czynnikiem nadającym im trwałość. Jeśli fazą rozpraszającą jest woda wówczas nazywamy je koloidami hydrofilowymi. Przykłady: żelatyna, białko, insulina, kwas krzemowy Koloidy liofobowe wykazują mniejsze powinowactwo do rozpuszczalnika, nie otaczają się otoczką solwatacyjną. Czynnikiem stabilizującym je jest głównie ładunek elektryczny. Cząstka fazy rozproszonej adsorbuje na swej powierzchni jony określonego jednego znaku Przykłady: zole metali Au, Pt, Ag, chlorek srebra

51 Podział koloidów ze względu na suchą pozostałość powstałą po usunięciu ( odparowaniu) ośrodka rozpraszającego. Koloidy odwracalne Koloidy nieodwracalne Koloidy odwracalne - sucha pozostałość przechodzi z powrotem do roztworu pod działaniem nowej ilości fazy rozpraszającej. Koloidy nieodwracalne brak powtórnego utworzenia roztworu

52 Otrzymywanie koloidów Metody dyspersyjne Polegają na rozdrabnianiu cząstek o wymiarach większych od 500nm, aż do uzyskania wymiarów charakterystycznych dla roztworów koloidalnych. Należą tu głównie: rozdrabnianie mechaniczne (rozcieranie), metoda Brediga, polegająca na rozpyleniu głównie czystych metali w łuku Volty, peptyzacja (polega na działaniu roztworem odpowiedniego elektrolitu na świeżo wytrącony trudno rozpuszczalny osad), rozpylanie za pomocą ultradźwięków, rozpylanie katodowe, termiczne itd. Metody kondensacyjne (rozdrabnianie na drodze przemian chemicznych) Polegają na łączeniu cząsteczek lub jonów w większe zespoły aż do osiągnięcia rozdrobnienia koloidalnego. Najważniejsze z tego typu metod to zmniejszenie rozpuszczalności, redukcja, czasem utlenienie, hydroliza, polimeryzacja, metoda zarodnikowa i inne. Np; 2H S SO 2 AgNO 3 2 NaCl 2H 2 O 3S NaNO 3 AgCl

53 Właściwości mechaniczne Niektóre właściwości układów koloidalnych ruchy Browna Dyfuzja Sedymentacja Osmoza nieustanne, chaotyczne ruchy (postępowe, obrotowe i drgające) cząstek fazy rozproszonej w ośrodku ciekłym lub gazowym Ruch cząsteczek pod wpływem różnicy stężeń pomiędzy rożnymi częściami roztworu (od większego do mniejszego). Tendencja do opadania pod wpływem siły ciężkości. Jednostronna dyfuzja rozpuszczalnika przez błonę półprzepuszczalną. Czynnik warunkujący to ciśnienie osmotyczne. Właściwości optyczne Efekt Tyndalla Rozmiary cząsteczek koloidalnych powodują że światło przepuszczane przez układ koloidalny ulega na cząstkach ugięciu i częściowemu rozproszeniu - charakterystyczny stożek Tyndalla. Intensywność tego zjawiska jest tym większa, im większa jest różnica między współczynnikiem załamania fazy rozproszonej i ośrodka dyspersyjnego.

54 Właściwości elektryczne Na skutek adsorpcji jonów elektrolitu z roztworu na powierzchni cząstki koloidalnej powstaje ładunek elektryczny. W wyniku tej adsorpcji tworzy się podwójna warstwa elektryczna złożona z powłoki wewnętrznej, czyli adsorpcyjnej, przylegającej mocno do powierzchni zewnętrznej, będącej warstwą jonów przeciwnego znaku. Zależnie od tego jakie jony są adsorbowane na powierzchni, cząstka może być naładowana albo ujemnie albo dodatnio. Jednak znak ładunku elektrycznego nie jest ich cechą charakterystyczną. Ta sama bowiem cząstka koloidalna może mieć ładunek dodatni lub ujemny, zależnie od środowiska. Na przykład koloidalny jodek srebra AgJ w roztworze zawierającym jony srebra jest naładowany dodatnio, w roztworze zaś zawierającym jony jodkowe ujemne. Cząstka dowolnego koloidu posiadająca ładunek nosi nazwę miceli.

55 Koagulacja Właściwości elektryczne układów koloidalnych decydują o ich zdolności do koagulacji. Koagulacja polega na zmniejszeniu się stopnia dyspersji układów koloidalnych, a więc na łączeniu się cząstek fazy rozproszonej w większe zespoły w wyniku obniżania ładunku elektrycznego powierzchni cząstki koloidalnej. Podczas koagulacji zole przechodzą w żele (usieciowane koloidy) lub osady. Koagulacja może być odwracalna i nieodwracalna. Odwracalna jest wówczas, gdy żel można z powrotem przeprowadzić w zol. Nosi ona wtedy nazwę peptyzacji. Koagulację koloidów mogą na ogół wywoływać następujące czynniki: - dodatek elektrolitu, - dodatek koloidu o ładunku przeciwnym, co powoduje rozładowanie cząstek, -naświetlanie radiochemiczne (np. promieniowanie b powoduje koagulację zoli dodatnich), - działanie mechaniczne (mieszanie, wytrząsanie), - ogrzewanie (np. ścinanie się białka), - dehydratacja lub desolwatacja przez dodanie środków odwadniających, np. alkoholu lub acetonu, -odparowanie lub wymrażanie ośrodka dyspersyjnego. Peptyzacja Zjawisko przechodzenia osadu koloidalnego lub (żelu) w koloid (odwrotność koagulacji).

56 Koloidy liofobowe Koloidy liofilowe Otrzymywanie metodą dyspersji lub kondensacji przez zwykłe rozpuszczanie Struktura cząstek zespoły cząsteczek cząsteczki olbrzymy Stężenie fazy rozproszonej na ogół nieznaczne może być duże Ruchy Browna występują wyraźnie często bardzo niewyraźne Efekt Tyndalla wyraźny niewyraźny Ładunek elektryczny cząstki są zawsze naładowane ładunek nieznaczny lub brak Lepkość nieznaczna znaczna Tworzenie piany nie tworzą piany łatwo tworzą pianę Tworzenie galaret nie tworzą tworzą łatwo Wrażliwość na elektrolit duża, zachodzi koagulacja mała Trwałość trwałość tych koloidów wiąże się z istnieniem sił elektrostatycznego odpychania cząstek fazy rozproszonej wywołanych przez jednoimienne ładunki powierzchniowe trwałość tych koloidów wiąże się z istnieniem otoczki salwatacyjnej Charakter koagulacji z reguły nieodwracalna z reguły odwracalna

57 Trochę pojęć koagulat - substancja rozpuszczona powstała po odparowaniu rozpuszczalnika z koloidu żel - typowa forma koagulatu, układ o wyglądzie zbliżonym do ciała stałego, często miękki i elastyczny koagulacja - proces przejścia koloidu w koagulat, polega na łączeniu się cząstek koloidalnych w wielkie agregaty tworzące nieregularną sieć peptyzacja - proces przejścia koagulatu w koloid (odwrotność koagulacji) galareta - substancja powstała rozpuszczenia płatków żelatyny w gorącej wodzie i ochłodzeniu roztworu emulsje - są to układy rozproszone, w których zarówno substancja jak i ośrodek rozpraszający są cieczami. emulgator - stabilizujący układ dodawany do typowych emulsji; składa się zazwyczaj z dwóch części: hydrofobowej (zwykle dość długiej i oznaczonej na rysunkach kolorem zielonym) oraz hydrofilowej (niewielkiej oznaczonej na rysunkach kolorem pomarańczowym) piany - są to układy dyspersyjne, w których substancją rozpuszczoną jest gaz, a ośrodkiem dyspersyjnym ciecz lub ciało stałe; z reguły nietrwałe

58 MIESZANINY JEDNORODNE Roztwór - jest jednorodną mieszaniną składającą się z rozpuszczalnika i jednej lub większej ilości substancji rozpuszczonej. Roztwory właściwe złożone są z cząsteczek lub jonów o rozmiarach mniejszych niż 10-9 m. Powszechnie jest używany do roztworów ciekłych. Chemicy mówią również o roztworach gazowych (mieszanina gazów) i o roztworach stałych (stopy). ROZTWORY GAZOWE CIEKŁE STAŁE (stopy)

59 Roztwory ciekłe Roztwory ciekłe powstają przez rozpuszczenie w cieczy substancji gazowych, ciekłych lub stałych. Roztwór rozpuszczalnik substancja rozpuszczona Typy rozpuszczalników roztwór Najważniejszą cechą fizyczną rozpuszczalników jest ich polarność. Rozpuszczalniki polarne tworzą cząsteczki o dużych momentach dipolowych ( woda, amoniak). Na poziomie mikroskopowym substancje rozpuszczone w rozpuszczalnikach polarnych ulegają solwatacji. Cząsteczki rozpuszczalnika zostają uporządkowane wokół cząsteczek rozpuszczonych. W rzeczywistości solwatacja polega na oddziaływaniach typu donor akceptor, niekoniecznie tylko elektrostatycznej natury, dzięki czemu również cząsteczki elektrycznie obojętne mogą ulegać silnej solwatacji.

60 Cząsteczki rozpuszczalników niepolarnych wykazują co najwyżej mały moment dipolowy. Zazwyczaj lepiej rozpuszczają się w nich substancje niepolarne. W takich rozpuszczalnikach cząsteczki oddziałują głownie za pośrednictwem sił van der Waalsa. Niepolarne ciecze są zwykle słabymi rozpuszczalnikami dla cząsteczek polarnych, ponieważ słabe oddziaływania międzycząsteczkowe nie mogą konkurować z silniejszymi oddziaływaniami wewnątrz substancji rozpuszczanej. Na podobnej zasadzie substancje niepolarne nie mogą współzawodniczyć z silnymi oddziaływaniami międzycząsteczkowymi w rozpuszczalnikach polarnych i ich rozpuszczalność jest w takich rozpuszczalnikach słaba. W chemii często cytuje się pożyteczne uogólnienie "podobne rozpuszcza podobne". Oznacza to, że rozpuszczanie występuje wówczas, gdy cząsteczki substancji rozpuszczanej mają strukturę i właściwości elektryczne podobne do cząsteczek rozpuszczalnika.

61 Woda jako rozpuszczalnik Woda jest najbardziej rozpowszechnionym rozpuszczalnikiem. Jednak daleko jej jeszcze do tego, aby być rozpuszczalnikiem uniwersalnym, ponieważ istnieje wielka liczba substancji, które z natury nie rozpuszczają się w wodzie. Jakie są więc czynniki wpływające na rozpuszczalność w wodzie? W przypadku wody sytuacja jest szczególnie złożona, ponieważ występujące wiązanie wodorowe ma tendencję do utrzymywania cząsteczek wody w stanie zasocjowanym. Na ogół woda jest słabym rozpuszczalnikiem dla niejonowych substancji rozpuszczanych. W szczególności węglowodory są praktycznie nierozpuszczalne w wodzie. W tych przypadkach wzajemne oddziaływanie wody i cząsteczek substancji rozpuszczanej jest tak słabe, że nie wydziela się dostatecznie dużo energii do zniszczenia struktury wody. Istnieją jednak pewne substancje, które dobrze rozpuszczają się w wodzie, np. amoniak NH 3 czy alkohol etylowy C 2 H 5 OH. W przypadku amoniaku powstają wiązania wodorowe pomiędzy N z amoniaku i O z wody, a w przypadku alkoholu etylowego- pomiędzy O z alkoholu i O z wody. Cukry jak np. sacharoza C 12 H 22 O 11, swoją znakomitą rozpuszczalność zawdzięczają w dużym stopniu wiązaniu wodorowemu, ponieważ podobnie jak C 2 H 5 OH zawierają one grupy OH. Związki jonowe dobrze rozpuszczają się w wodzie, ponieważ cząsteczki wody stanowią dipole, dzięki czemu mogą atakować zarówno kation na powierzchni kryształu, zbliżając się do niego ujemnym biegunem dipola, jak też mogą wyrwać z sieci jonowej anion, zbliżając się do niego dodatnim biegunem dipola. Każdy jon uwolniony z sieci krystalicznej zostaje otoczony przez kilka cząsteczek wody. Zjawisko takie nosi nazwę hydratacji, w przypadku, gdy rozpuszczalnikiem jest woda. Rozpuszczalność substancji jonowych w wodzie zależy od subtelnej równowagi między energią sieci krystalicznej a energią uwodnienia i entropią jonów.

62 Rozpuszczanie Proces mieszania dwóch substancji prowadzący do otrzymania mieszaniny jednorodnej makroskopowo nazywa się rozpuszczaniem Rozpuszczanie możemy przyspieszyć przez: a) rozdrobnienie substancji rozpuszczanej b) mieszanie c) podgrzewanie Oczywiście prędkość rozpuszczania zależy od substancji, którą rozpuszczamy i użytego rozpuszczalnika. Roztwór nasycony - roztwór, w którym nie można rozpuścić więcej substancji w danej temperaturze. Roztwór nienasycony - roztwór, w którym można rozpuścić więcej substancji w danej temperaturze. Roztwór stężony - roztwór, w którym masa substancji rozpuszczonej jest znaczna (kilkadziesiąt procent) w stosunku do masy wody (rozpuszczalnika). Roztwór rozcieńczony - roztwór, w którym masa substancji rozpuszczonej jest mała (kilka procent) w stosunku do masy rozpuszczalnika. Roztwór przesycony to roztwór o stężeniu większym od stężenia roztworu nasyconego w danej temperaturze. Można go otrzymać przez uzyskanie roztworu nasyconego w temperaturze wyższej, pozbawienie go pozostałej stałej substancji rozpuszczanej (tak żeby nie było zarodków krystalizacji), a następnie ostrożne oziębianie tego roztworu. Roztwór przesycony jest termodynamicznie nietrwały.

63 Rozpuszczalność Jest to wielkość, którą wyznacza się doświadczalnie i wyraża ona masę substancji rozpuszczonej wyrażoną w gramach, którą możemy rozpuścić w 100 gramach rozpuszczalnika w określonej temperaturze i ciśnieniu. z utworzeniem roztworu nasyconego. R m m subst rozp 100 m s masa substancji rozpuszczonej w roztworze nasyconym w [g] m rozp masa rozpuszczalnika w [g]. Rozpuszczalność substancji zależy od: rodzaju substancji rozpuszczanej, rodzaju rozpuszczalnika, temperatury ( dla większości substancji), ciśnienia (dla gazów). efektu solnego (dla soli) wpływu wspólnego jonu (dla soli) kompleksowania (dla soli)

64 Rozpuszczalność, wraz ze wzrostem temperatury, z reguły rośnie dla cieczy i ciał stałych, zaś maleje dla gazów. Każdą substancję można zaliczyć do jednej z trzech grup: 1. substancja praktycznie nierozpuszczalna (rozpuszczalność poniżej 0,1g), 2. substancja słabo rozpuszczalna (rozpuszczalność w granicach 0,1-1g), 3. substancja dobrze rozpuszczalna (rozpuszczalność ponad 1g). Do 400g wody w temp.20c dodano 200g substancji po czym okazało się ze rozpuściła się tylko połowa ilości. Oblicz rozpuszczalność tej substancji w danej temp. Dane: m H2O = 400g m 100g subst m S = 200g/2= 100g R m rozp 100 R R 400g 25g 100

65 Stopy Stopami nazywamy stopienie ze sobą dwóch metali lub metali z niemetalami. Stopy posiadają zupełnie inne cechy niż metale wchodzące w ich skład. Obecnie stale stopowe wytwarzane są w wielkiej różnorodności gatunków. Zmienia się nie tylko substancje dodawane do stali, ale także sposoby obróbki cieplnej, by uzyskać materiał o pożądanych własnościach. Stal manganowa zawiera na przykład około 1% węgla i 11 do14% manganu. Używa się jej do wytwarzania elementów narażonych na wzmożone ścieranie. Typowa stal nierdzewna, składa się z żelaza oraz 18% chromu, 8% niklu oraz 0,08% węgla. Inne odmiany stali nierdzewnej zawierają od 12 do 30% chromu, często wraz z mniejszymi ilościami innych metali, jak nikiel, molibden czy miedź. Stopy te są szeroko stosowane w przemyśle oraz w wyrobach codziennego użytku. Stopy na bazie miedzi obejmują brąz, mosiądz oraz stopy miedziowoniklowe. Brąz jest najstarszym znanym stopem. Pierwotnie składał się z 75% miedzi oraz 25% cyny. Dzisiaj nazwa brąz odnosi się do szerokiej gamy stopów na bazie miedzi, zawierających różne dodatki, a niekiedy zupełnie nie zawierających cyny. Spośród najważniejszych odmian brązu należy wymienić fosforobrązy, wytwarzane przez dodanie do 0,5% fosforu do brązu o zawartości 85-90% miedzi. Przy zawartości fosforu nie większej niż 0,3% stop jest sprężysty i niemagnetyczny.

66 Mosiądz to stop miedzi i cynku, łączonych ze sobą w różnych proporcjach. Do tego podstawowego składu dodaje się często inne metale, przykładowo cynę, ołów i aluminium. Mosiądz łuskowy składa się w 70% z miedzi i w 30% z cynku. Mosiądz o dużej wytrzymałości na rozciąganie, twardszy i wytrzymalszy od mosiądzu łuskowego, produkowany jest przez stopienie miedzi i cynku z dodatkiem manganu, żelaza, cyny, ołowiu i aluminium. Jest to materiał łatwy do obróbki i do odlewania. Stopem z grupy mosiądzów jest również nowe srebro, czyli argentan lub po prostu mosiądz wysokoniklowy. Stop ten składa się z miedzi (normalnie około 65%), cynku (około 17%) oraz niklu (18%). Nowe srebro nie zawiera w sobie ani grama srebra, jednak swym wyglądem bardzo przypomina ten szlachetny metal. Stopy aluminium mają stosunkowo krótką historię, gdyż ich wytwarzanie zaczęto w XX wieku. Nadające się do odlewania stopy aluminium zawierają do 15% krzemu oraz niewielkie dodatki metali, takich jak cynk, miedź żelazo, nikiel i mangan. Z tych lekkich stopów odlewane są bloki cylindrów, inne elementy silników spalinowych, a także elementy kadłubów samolotów. Stopy aluminium nadające się do kształtowania w trakcie takich procesów jak kucie, walcowanie lub ciągnięcie zawierają około 7% magnezu i około 1% manganu. Duraluminium zwykle zwiera, oprócz aluminium, 3,5-4,5% miedzi, po 0,4-0,7% magnezu i manganu oraz do 0,7% krzemu.

67 PODSUMOWANIE Mieszanina jednorodna - mieszanina, której składników nie można zobaczyć gołym okiem lub za pomocą przyrządów optycznych. Mieszanina niejednorodna - mieszanina, której składniki można zobaczyć gołym okiem lub za pomocą przyrządów optycznych. Każdą mieszaninę można rozdzielić np.: 1. Mieszaniny ciała stałego w cieczy: ciało stałe można oddzielić od cieczy przez filtrację - ciało stałe zatrzymuje się na bibule, a ciecz przenika przez nią, odwirowanie - ciało stałe zawieszone w cieczy osiada na dnie naczynia wskutek jego szybkiego wirowania, dekantację zlewanie cieczy z nad osadu, odparowanie -rozpuszczalnik odparowuje, a substancja stała pozostaje w naczyniu), krystalizację - ciało stałe w zimnym roztworze osadza się w postaci kryształów, 2. Mieszaniny dwóch cieczy: przez destylację - uwzględniając różnice temperatury wrzenia obu cieczy, w rozdzielaczu -wykorzystuje się różnicę w ciężarze właściwym obu cieczy, metodami chromatograficznymi - różne zabarwienia.

68 mieszaniny związków chemicznych RODZAJE MIESZANIN mieszaniny pierwiastków mieszaniny pierwiastków i związków chemicznych

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Ściąga eksperta. Mieszaniny. - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne?

Ściąga eksperta. Mieszaniny.  - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne? Mieszaniny Jak dzielimy substancje chemiczne? Mieszaninami nazywamy substancje złożone z kilku skład, zachowujących swoje właściwości. Mieszaniny uzyskuje się na drodze mechanicznego mieszania ze sobą

Bardziej szczegółowo

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Wykład 5: Cząsteczki dwuatomowe

Wykład 5: Cząsteczki dwuatomowe Wykład 5: Cząsteczki dwuatomowe Wiązania jonowe i kowalencyjne Ograniczenia teorii Lewisa Orbitale cząsteczkowe Kombinacja liniowa orbitali atomowych Orbitale dwucentrowe Schematy nakładania orbitali Diagramy

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków

Bardziej szczegółowo

Spis treści. Metoda VSEPR. Reguły określania struktury cząsteczek. Ustalanie struktury przestrzennej

Spis treści. Metoda VSEPR. Reguły określania struktury cząsteczek. Ustalanie struktury przestrzennej Spis treści 1 Metoda VSEPR 2 Reguły określania struktury cząsteczek 3 Ustalanie struktury przestrzennej 4 Typy geometrii cząsteczek przykłady 41 Przykład 1 określanie struktury BCl 3 42 Przykład 2 określanie

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Substancje i ich właściwości

Substancje i ich właściwości Pierwsza partia materiału i dobrane do nich zadania typu egzaminacyjnego. Materia jest to wszystko co nas otacza. Materię tworzą substancje, posiadające określony stały skład i określone właściwości. Właściwości

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Układ Otoczenie Faza układu Składnik układu Układ dyspersyjny

Układ Otoczenie Faza układu Składnik układu Układ dyspersyjny ROZTWORY - STĘŻENIA Chemia roztworów Układ wyodrębniony obszar materii oddzielony od otoczenia wyraźnymi granicami Otoczenie to wszystko co się znajduje poza układem Faza układu jednorodna pod względem

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany PYTANIA EGZAMINACYJNE Z CHEMII OGÓLNEJ I Podstawowe pojęcia chemiczne 1) Pierwiastkiem nazywamy : a zbiór atomów o tej samej liczbie masowej b + zbiór atomów o tej samej liczbie atomowej c zbiór atomów

Bardziej szczegółowo

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3 Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą

Bardziej szczegółowo

Test kompetencji z chemii do liceum. Grupa A.

Test kompetencji z chemii do liceum. Grupa A. Test kompetencji z chemii do liceum. Grupa A. 1. Atomy to: A- niepodzielne cząstki pierwiastka B- ujemne cząstki materii C- dodatnie cząstki materii D- najmniejsze cząstki pierwiastka, zachowujące jego

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE.

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. 1. Którą mieszaninę można rozdzielić na składniki poprzez filtrację; A. Wodę z octem. B. Wodę z kredą. C. Piasek z cukrem D. Wodę

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Materiał powtórzeniowy do sprawdzianu - roztwory i sposoby wyrażania stężeń roztworów, rozcieńczanie i zatężanie roztworów, zadania z rozwiązaniami

Materiał powtórzeniowy do sprawdzianu - roztwory i sposoby wyrażania stężeń roztworów, rozcieńczanie i zatężanie roztworów, zadania z rozwiązaniami Materiał powtórzeniowy do sprawdzianu - roztwory i sposoby wyrażania stężeń roztworów, rozcieńczanie i zatężanie roztworów, zadania z rozwiązaniami I. Mieszaniny Mieszanina to układ przynajmniej dwuskładnikowy

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. Dział - Substancje i ich przemiany WYMAGANIA PODSTAWOWE stosuje zasady bezpieczeństwa

Bardziej szczegółowo

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tytuł i numer rozdziału w podręczniku Nr lekcji Temat lekcji Szkło i sprzęt laboratoryjny 1. Pracownia chemiczna.

Bardziej szczegółowo

I. Właściwości wody: II. Stany skupienia wody. Na dnie zbiornika wodnego jest zawsze temperatura 4 O C (największa gęstość wody).

I. Właściwości wody: II. Stany skupienia wody. Na dnie zbiornika wodnego jest zawsze temperatura 4 O C (największa gęstość wody). I. Właściwości wody: bezbarwna bezwonna bez smaku dobry rozpuszczalnik temp. topnienia 0 O C temp. wrzenia 100 O C (pod ciśnieniem 1013 hpa) największa gęstość przy temp. 4 O C Na dnie zbiornika wodnego

Bardziej szczegółowo

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Okres połowiczego rozpadu pewnego radionuklidu wynosi 16 godzin. a) Określ, ile procent atomów tego izotopu rozpadnie

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab CZĄSTECZKA I RÓWNANIE REKCJI CHEMICZNEJ potrafi powiedzieć co to jest: wiązanie chemiczne, wiązanie jonowe, wiązanie

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

Konfiguracja elektronowa atomu

Konfiguracja elektronowa atomu Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa

Bardziej szczegółowo

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością.

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością. 105 Elektronowa teoria wiązania chemicznego Cząsteczki powstają w wyniku połączenia się dwóch lub więcej atomów. Już w początkowym okresie rozwoju chemii podejmowano wysiłki zmierzające do wyjaśnienia

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 1.1. Struktura elektronowa atomów Rozkład elektronów na pierwszych czterech powłokach elektronowych 1. powłoka 2. powłoka 3. powłoka

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 1 I. Substancje i ich przemiany 1. Pracownia chemiczna podstawowe szkło i sprzęt laboratoryjny. Przepisy BHP i regulamin pracowni chemicznej zaliczam chemię do nauk przyrodniczych

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018. Eliminacje szkolne

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018. Eliminacje szkolne ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 Eliminacje szkolne Podczas rozwiązywania zadań

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami

1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami 1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami 2. Stechiometria. Prawa stechiometrii Roztwory buforowe Węglowce - budowa elektronowa. Ogólna charakterystyka 3. Mikro- i

Bardziej szczegółowo

Wymagania przedmiotowe do podstawy programowej - chemia klasa 7

Wymagania przedmiotowe do podstawy programowej - chemia klasa 7 Wymagania przedmiotowe do podstawy programowej - chemia klasa 7 I. Substancje i ich właściwości opisuje cechy mieszanin jednorodnych i niejednorodnych, klasyfikuje pierwiastki na metale i niemetale, posługuje

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

BUDOWA ATOMU KRYSTYNA SITKO

BUDOWA ATOMU KRYSTYNA SITKO BUDOWA ATOMU KRYSTYNA SITKO Ziarnista budowa materii Otaczająca nas materia to świat różnorodnych substancji np. woda, powietrze, drewno, metale. Sprawiają one wrażenie, że mają budowę ciągłą, to znaczy

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt)

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt) Zadanie: 1 (1pkt) Stężenie procentowe nasyconego roztworu azotanu (V) ołowiu (II) Pb(NO 3 ) 2 w temperaturze 20 0 C wynosi 37,5%. Rozpuszczalność tej soli w podanych warunkach określa wartość: a) 60g b)

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 7 I. Substancje i ich przemiany 1. Zasady bezpiecznej pracy na lekcjach chemii zaliczam chemię do nauk przyrodniczych stosuję zasady bezpieczeństwa obowiązujące w pracowni chemicznej

Bardziej szczegółowo

Temat 1: Budowa atomu zadania

Temat 1: Budowa atomu zadania Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.

Bardziej szczegółowo

Wykład przygotowany w oparciu o podręczniki:

Wykład przygotowany w oparciu o podręczniki: Slajd 1 Wykład przygotowany w oparciu o podręczniki: Organic Chemistry 4 th Edition Paula Yurkanis Bruice Slajd 2 Struktura elektronowa wiązanie chemiczne Kwasy i zasady Slajd 3 Chemia organiczna Związki

Bardziej szczegółowo

Lista materiałów dydaktycznych dostępnych w Multitece Chemia Nowej Ery dla klasy 7

Lista materiałów dydaktycznych dostępnych w Multitece Chemia Nowej Ery dla klasy 7 Lista materiałów dydaktycznych dostępnych w Multitece Chemia Nowej Ery dla klasy 7 W tabeli zostały wyróżnione y z doświadczeń zalecanych do realizacji w szkole podstawowej. Temat w podręczniku Tytuł Typ

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej Temat w podręczniku Substancje i ich przemiany 1. Zasady

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej Nauczyciel: Marta Zielonka Temat w podręczniku Substancje i ich przemiany 1. Zasady bezpiecznej pracy

Bardziej szczegółowo

Karta pracy IV/1a - Reakcje w roztworach: - rozpuszczanie, rozpuszczalność i krystalizacja

Karta pracy IV/1a - Reakcje w roztworach: - rozpuszczanie, rozpuszczalność i krystalizacja Karta pracy IV/1a - Reakcje w roztworach: - rozpuszczanie, rozpuszczalność i krystalizacja I. Rozpuszczalność 1. Rozpuszczalność - maksymalna ilość gram substancji, która w określonej temperaturze rozpuszcza

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek Monika Gałkiewicz Zad. 1 () Podaj wzory dwóch dowolnych kationów i dwóch dowolnych anionów posiadających

Bardziej szczegółowo

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II Czas trwania testu 120 minut Informacje 1. Proszę sprawdzić czy arkusz zawiera 10 stron. Ewentualny brak należy zgłosić nauczycielowi. 2. Proszę rozwiązać

Bardziej szczegółowo

WOJEWÓDZKI KONKURS CHEMICZNY

WOJEWÓDZKI KONKURS CHEMICZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS CHEMICZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 2018/2019 30.10.2018 r. 1. Test konkursowy zawiera 22 zadania. Są to zadania

Bardziej szczegółowo

Szanowne koleżanki i koledzy nauczyciele chemii!

Szanowne koleżanki i koledzy nauczyciele chemii! Szanowne koleżanki i koledzy nauczyciele chemii! Chciałabym podzielić się z Wami moimi spostrzeżeniami dotyczącymi poziomu wiedzy z chemii uczniów rozpoczynających naukę w Liceum Ogólnokształcącym. Co

Bardziej szczegółowo

Ligand to cząsteczka albo jon, który związany jest z jonem albo atomem centralnym.

Ligand to cząsteczka albo jon, który związany jest z jonem albo atomem centralnym. 138 Poznanie struktury cząsteczek jest niezwykle ważnym przedsięwzięciem w chemii, ponieważ pozwala nam zrozumieć zachowanie się materii, ale także daje podstawy do praktycznego wykorzystania zdobytej

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Wewnętrzna budowa materii

Wewnętrzna budowa materii Atom i układ okresowy Wewnętrzna budowa materii Atom jest zbudowany z jądra atomowego oraz krążących wokół niego elektronów. Na jądro atomowe składają się protony oraz neutrony, zwane wspólnie nukleonami.

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. I. Substancje i ich przemiany. Ocena bardzo dobra. Ocena dostateczna. Ocena dopuszczająca.

Wymagania programowe na poszczególne oceny. I. Substancje i ich przemiany. Ocena bardzo dobra. Ocena dostateczna. Ocena dopuszczająca. Wymagania programowe na poszczególne oceny I. Substancje i ich przemiany Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra [1] [1 + 2] [1 + 2 + 3] [1 + 2 + 3 + 4] 1 zalicza chemię do

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Ocenę niedostateczną otrzymuje uczeń, który nie opanował wymagań na ocenę dopuszczającą.

Bardziej szczegółowo

Metody rozdziału substancji, czyli śladami Kopciuszka.

Metody rozdziału substancji, czyli śladami Kopciuszka. 1 Metody rozdziału substancji, czyli śladami Kopciuszka. Czas trwania zajęć: 45 minut Pojęcia kluczowe: - ekstrakcja, - chromatografia, - adsorpcja, - sedymentacja, - dekantacja, - odparowywanie oraz z

Bardziej szczegółowo

Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019

Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019 Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019 I. Eliminacje szkolne (60 minut, liczba punktów: 30). Wymagania szczegółowe. Cele kształcenia

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp W przypadku trudno rozpuszczalnej soli, mimo osiągnięcia stanu nasycenia, jej stężenie w roztworze jest bardzo małe i przyjmuje się, że ta

Bardziej szczegółowo

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Chemia Kl.1. I. Substancje chemiczne i ich przemiany

Wymagania programowe na poszczególne oceny. Chemia Kl.1. I. Substancje chemiczne i ich przemiany Wymagania programowe na poszczególne oceny Chemia Kl.1 I. Substancje chemiczne i ich przemiany Ocena dopuszczająca [1] zna zasady bhp obowiązujące w pracowni chemicznej nazywa sprzęt i szkło laboratoryjne

Bardziej szczegółowo

Nowoczesna teoria atomistyczna

Nowoczesna teoria atomistyczna Nowoczesna teoria atomistyczna Joseph Louis Proust Prawo stosunków stałych (1797) (1754-1826) John Dalton, Prawo stosunków wielokrotnych (1804) Louis Joseph Gay-Lussac Prawo stosunków objętościowych (1808)

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany Wymagania edukacyjne na poszczególne oceny szkolne klasa 7 Niepełnosprawność intelektualna oraz obniżenie wymagań i dostosowanie ich do możliwości ucznia I. Substancje i ich przemiany stosuje zasady bezpieczeństwa

Bardziej szczegółowo

Przedmiotowy system oceniania z chemii kl. 1

Przedmiotowy system oceniania z chemii kl. 1 Wymagania programowe z chemii dla klasy I Substancje chemiczne i ich przemiany ocena Wymagania Uczeń : Dopuszczająca zna zasady prawidłowego i bezpiecznego zachowania się w pracowni chemicznej wyjaśnia

Bardziej szczegółowo

Chemia I Semestr I (1 )

Chemia I Semestr I (1 ) 1/ 6 Inżyniera Materiałowa Chemia I Semestr I (1 ) Osoba odpowiedzialna za przedmiot: dr inż. Maciej Walewski. 2/ 6 Wykład Program 1. Atomy i cząsteczki: Materia, masa, energia. Cząstki elementarne. Atom,

Bardziej szczegółowo

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016 XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego II Etap - 18 stycznia 2016 Nazwisko i imię ucznia: Liczba uzyskanych punktów: Drogi Uczniu, przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

TEORIA ORBITALI MOLEKULARNYCH (MO) dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii

TEORIA ORBITALI MOLEKULARNYCH (MO) dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii TERIA RBITALI MLEKULARNYCH (M) Metoda (teoria) orbitali molekularnych (M) podstawy metody M - F. Hund, R.S. Mulliken Teoria M zakłada, że zachowanie się elektronu w cząsteczce opisuje orbital molekularny

Bardziej szczegółowo

RJC. Wiązania Chemiczne & Slides 1 to 39

RJC. Wiązania Chemiczne & Slides 1 to 39 Wiązania Chemiczne & Struktura Cząsteczki Teoria Orbitali & ybrydyzacja Slides 1 to 39 Układ okresowy pierwiastków Siły występujące w cząsteczce związku organicznego Atomy w cząsteczce związku organicznego

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp Mianem rozpuszczalności określamy maksymalną ilość danej substancji (w gramach lub molach), jaką w danej temperaturze można rozpuścić w określonej

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u Elektronowa struktura atomu Anna Pietnoczka BUDOWA ATOMU CZĄSTKA SYMBOL WYSTĘPOWANIE MASA ŁADUNEK ELEKTRYCZNY PROTON p + jądroatomowe około 1 u + 1 NEUTRON n 0 jądroatomowe około 1u Brak ELEKTRON e - powłoki

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

ROZTWORY. Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe

ROZTWORY. Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe ROZTWORY Mieszaniny heterogeniczne homogeniczne Roztwory - jednorodne mieszaniny dwóch lub wi cej składników gazowe ciekłe stałe roztwór nienasycony - roztwór, w którym st enie substancji rozpuszczonej

Bardziej szczegółowo

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji:

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji: Zadanie 1. [0-3 pkt] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Suma protonów i elektronów anionu X 2- jest równa 34. II. Stosunek masowy

Bardziej szczegółowo