Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń."

Transkrypt

1 Materiały dydatyczne Mateatya Dysretna (Wyład 5 Podstawowe technii zliczania obietów obinatorycznych. Szufladowa zasada Dirichleta, Zasada włączeń i wyłączeń. Szufladowa Zasada Dirichleta. Jest rzeczą oczywistą, że jeżeli F : X Y jest funcją różnowartościową, to X Y, lub inaczej, nie istnieje funcja różnowartościowa oreślona na zbiorze X o wartościach w Y, jeśli Y a niej eleentów, niż X. Obserwacja ta nosi nazwę Szufladowej (lub Pudełowej Zasady Dirichleta (SZD. Ma ona liczne zastosowania w różnego rodzaju zadaniach obinatorycznych i io swej prostoty, jej użycie wyaga często niestandardowych obserwacji i nieałej poysłowości. Foralne brzienie tej zasady w wersji podstawowej jest następujące. Twierdzenie 1. (Szufladowa Zasada Dirichleta Niech X i Y będą dowolnyi zbiorai sończonyi, przy czy X > Y. Wówczas dla dowolnej funcji F oreślonej na zbiorze X o wartościach w zbiorze Y istnieją eleenty x 1, x 2 X, x 1 x 2, dla tórych F (x 1 = F (x 2. Mówiąc potocznie SZD stwierdza, że jeśli pewną liczbę przediotów włożyy do szuflad, a szuflad jest niej niż przediotów, tóre właday, to w pewnej szufladzie znajdą się co najniej dwa przedioty. Szufladową Zasadę Dirichleta ożey sforułować również w wersji nieco silniejszej. Twierdzenie 2. Niech X i Y będą dowolnyi zbiorai sończonyi, przy czy dla pewnej liczby naturalnej zachodzi nierówność X > Y. Wówczas dla dowolnej funcji F oreślonej na zbiorze X o wartościach w zbiorze Y istnieją różne eleenty x 1, x 2,..., x, x +1 X, dla tórych F (x 1 = F (x 2 = = F (x = F (x +1. Odwołując się do szufladowej interpretacji podstawowej wersji SZD, ożey wyrazić jej wersję silniejszą następująco. Jeśli w ażdej z = Y szuflad upaujey przediotów, to łącznie spaujey = Y przediotów. Jeśli zate do upaowania ay n = X przediotów i n >, to przynajniej do jednej szuflady trzeba włożyć więcej niż przediotów. Np. ając 11 szuflad i 100 przediotów, tóre chcey w tych szufladach schować, usiy przynajniej do jednej z nich włożyć co najniej 10 przediotów. Bo przecież, gdyby do ażdej szuflady włożyć nie więcej niż 9 z nich, to łącznie urylibyśy nie więcej niż 9 11 = 99, a więc nie wszystie przedioty zostałyby uryte. Dużo poważniejszy i trudniejszy uogólnienie Szufladowej Zasady Dirichleta jest twierdzenie Ph. Halla, tóre ze względu na jego atryonialną interpretację nazywane jest twierdzenie Halla o ojarzeniu ałżeństw. Taą interpretację przedstawiy później. Najpierw jej szufladowa otywacja. Rozważy zbiór X sładający się z n przediotów, tóre chcey rozieścić w szufladach, ta aby ażdy przediot znalazł się w innej szufladzie. Zbiór Y złożony z szuflad, tóre ay do dyspozycji, nie jest idealny, bo cechy (roziary przediotów są różne, roziary szuflad też są różne i w związu z ty dowolny przediot daję się włożyć tylo do nietórych szuflad. Załóży, że A 1 jest zbiore tych szuflad, w tórych ożna schować przediot x 1, A 2 jest zbiore tych szuflad, w tórych ożna schować przediot x 2, itd. A n jest zbiore tych szuflad, w tórych ożna schować przediot x n. 1

2 Materiały dydatyczne Mateatya Dysretna (Wyład 5 Jaie waruni wystarczające i onieczne uszą być spełnione, aby rozieszczenie tych n przediotów w n szufladach (po jedny przediocie w ażdej szufladzie było wyonalne? Zauważy, że jeśli nie a ograniczeń dotyczących rozieszczeń przediotów w szufladach, tzn. gdy ażdy ze zbiorów A i, (i = 1,..., n porywa się ze zbiore Y wszystich szuflad, to tai warunie jest by liczba przediotów była niejsza od liczby szuflad. To właśnie stwierdza SZD. Odpowiedź na powyższe pytanie jest nieco bardziej sopliowana. Otóż Rozieszczenie n przediotów w szufladach zgodnie z powyżej ustalonyi zasadai jest wyonalne wtedy i tylo wtedy, gdy dla dowolnego podzbioru {x 1, x 2,..., x } zbioru przediotów X łączna liczba wszystich szuflad, do tórych ogą te przedioty być władane, nie jest niejsza od liczby przediotów. Przyład 1. Udowodnić, że w dowolny zbiorze dziesięciu dwucyfrowych liczb naturalnych istnieją dwa rozłączne podzbiory taie, że suy liczb obu pozbiorów są równe. Niech zate Z będzie dowolny, acz ustalony zbiore dziesięciu liczb dwucyfrowych i niech X = 2 Z będzie zbiore wszystich podzbiorów zbioru Z. Na zbiorze X definiujey funcję f, w następujący sposób: dla A X niech f(a = a A a, f( = 0. Innyi słowy, ażdeu podzbiorowi zbioru Z funcja f przyporządowuje suę liczb tego podzbioru. Na przyład, jeśli A = {1, 2, 31, 42, 90}, to f(a = = 166. Zauważy teraz, że liczba eleentów zbioru X jest równa 2 10 = 1024, natoiast zbiór wartości funcji f a nie więcej niż 945 eleentów, bo 945 jest suą dziesięciu najwięszych liczb dwucyfrowych: = 945. Na ocy SZD istnieją dwa podzbiory A i B zbioru Z taie, że f(a = f(b. Zbiory A i B nie uszą być rozłączne, ale jeśli f(a = a = b = f(b, to dla A 1 = A (A B B 1 = B (A B również ay f(a 1 = f(b 1, a zbiory A 1 i B 1 są rozłączne. Przyład 2. Niech n będzie ustaloną liczbą naturalną. Spośród liczb 1, 2,..., 2n wybrano n + 1 liczb. Udowodnić, że wśród wybranych liczb istnieje taa, tóra jest dzielniie co najniej jednej z pozostałych n liczb. Każdą liczbę naturalną a ożna w sposób jednoznaczy zapisać w postaci a = 2, gdzie jest liczbą nieparzystą, natoiast nieujeną liczbą całowitą. Na nasz użyte liczbę nazwijy częścią nieparzystą liczby a. Niech teraz X będzie ustalony n + 1-eleentowy podzbiore zbioru {1, 2, 3,..., 2n 1, 2n}. Na zbiorze X oreślay funcję f, tóra ażdej liczbie tego zbioru przyporządowuje jej część nieparzystą. Innyi słowy f(a = f(2 =. Zbiór wartości funcji f ieści się w zbiorze n-eleentowy {1, 3,..., 2n 1}. Ponieważ zbiór X a n + 1 eleentów, więc znowu na podstawie SZD istnieją dwie liczby a i b (a < b, dla tórych f(a = = f(b. To oznacza, że a = 2, b = 2 l dla pewnych liczb całowitych i l, < l. Ponieważ liczba b a = 2l jest całowita, więc a jest dzielniie b. a A b B 2

3 Materiały dydatyczne Mateatya Dysretna (Wyład 5 Przyład 3. Niech i n będą liczbai naturalnyi. Udowodnić, że w dowolny ciągu różnych liczb naturalnych ający n + 1 wyrazów istnieje podciąg rosnący długości + 1 lub podciąg alejący długości n + 1. Niech a 1, a 2, a 3,..., a n, a n+1 będzie owy ciągie. Niech X będzie zbiore wyrazów tego ciągu. Na ty zbiorze definiujey funcję f przyjując, że f(a i jest długością najdłuższego rosnącego podciągu ciągu {a } 1 n+1, tórego pierwszy wyraze jest a i. Jeśli dla pewnego i, f(a i n + 1, to z oreślenia funcji f, istnieje rosnący podciąg długości nie niejszj niż n + 1. Załóży zate, że dla dowolnego i, f(a i n. Innyi słowy, załaday, że zbiór wartości funcji f a nie więcej niż n eleentów. May zate nierówność X = n + 1 > f(x. Wobec tego, na ocy silniejszej wersji SZD istnieją i 1 < i 2 < < i +1, taie że f(a i1 = f(a i2 = = f(a i+1. (1 Wystarczy teraz udowodnić, że a i1 > a i2 > > a i+1. Przypuśćy, że jest inaczej, tzn. istnieje j taie, że w powyższy podciągu wyrazy a ij i a ij+1 spełniają warune a ij < a ij+1. Wtedy jedna długość najdłuższego ciągu rosnącego zaczynającego się od a ij jest więsza niż długość najdłuższego ciągu rosnącego zaczynającego się od a ij+1 (wystarczy ten drugi uzupełnić dołączając doń na początu a ij. To przeczy jedna równości (1. Zasada włączeń i wyłączeń. Ja zauważyliśy w wyładzie 2, liczba różnowartościowych funcji z jednego zbioru do drugiego jest łatwa do policzenia. Znacznie trudniej obliczyć liczbę funcji z jednego na drugi zbiór, tzn. liczbę surjecji, o ile taie istnieją. Twierdzenie 3. (Zasada włączeń-wyłączeń Niech P 1, P 2,..., P n będą podzbiorai sończonego zbioru X. Wówczas P 1 P 2 P n = P i + 1 i n 1 i 1 <i 2 n 1 i 1 <i 2 <i 3 n P i1 P i2 + P i1 P i2 P i ( i 1 <i 2 <<i n +( 1 n 1 P 1 P 2 P n P i1 P i2 P i Dowód. Zauważy, że liczba sładniów w pierwszej suie po prawej stronie jest równa 1, w drugiej jest ich ( ( n 2, w trzeciej n 3, itd. Dowód wzoru (2 wynia ze znanej tożsaości dotyczącej współczynniów dwuianowych ( ( ( ( ( ( + + ( ( ( 1 = 0, tóry przepiszy w postaci ( ( 1 = ( 1 ( (2 ( ( + + ( ( 1 1. (3 1 Niech x P 1 P 2 P n będzie dowolny eleente. Jego wład do ocy tego zbioru, (czyli do liczby stojącej po lewej stronie równości (2 jest równy 1. Trzeba poazać, że jego wład do 3

4 Materiały dydatyczne Mateatya Dysretna (Wyład 5 poszczególnych sładniów suy po prawej stronie jest tai, że ich sua (z uwzględnienie znaów jest taże równa 1. Załóży, że x jest eleente należący do doładnie spośród zbiorów P 1,..., P n. Wład do suy po prawej stronie wzoru 2 zliczay po olei. I ta, w sładniach postaci P i eleent x występuje = ( 1 razy, w sładniach postaci Pi P j występuje ( 2 razy, itd. Zate uwzględniając znai plus/inus otrzyujey suę po prawej stronie równości (3. To ończy dowód. Twierdzenie 4. Jeżeli X = n, Y =, to liczba wszystich funcji z X na Y (tzn. wszystich surjecji jest równa liczbie liczba s n = ( 0 n ( 1 ( 1 + ( 2 ( 2 n + ( 1 j( j ( j n + + ( n = ( 1 j( j ( j n. Dowód. Niech F = Y X będzie zbiore wszystich funcji oreślonych na zbiorze X o wartościach w zbiorze Y. Ja wiadoo F = n. Dla dowodu twierdzenia wystarczy więc oreślić liczbę funcji z X do Y, tóre nie są surjecjai, tzn. tych funcji, tórych zbiór wartości nie zawiera przynajniej jednego eleentu ze zbioru Y. Niech Y = {y 1, y 2,..., y } i niech F i, i = 1, 2,..., będzie zbiore tych funcji, tórych zbiór wartości nie zawiera eleentu y i. Bezpośrednie zastosowanie Zasady włączeń i wyłączeń w celu obliczenia F 1 F 2 F prowadzi do wzoru podanego w twierdzeniu. Wniose 5. Niech i n będą ustalonyi liczbai naturalnyi. Wówczas, ( 1 j( j ( j n = { n! jeśli n = 0 jeśli n <. Powyższy wniose jest onsewencją znanego fatu, że w przypadu, gdy zbiory X i Y są sończone i równoliczne, to ażda surjecja z X do Y jest injecją, a zate jest przeształcenie wzajenie jednoznaczny. Tych zaś jest doładnie n!, gdzie n = X = Y. Jeżeli natoiast X < Y, to żadna funcja z X do Y nie jest surjecją. Nieporządie na zbiorze X nazyway dowolną perutację f : X X taą, że f(x x dla dowolnego x X. Twierdzenie 6. Jeżeli X = n, to liczba wszystich nieporządów na zbiorze X jest równa D n = n ( 1 j j (n j! = n!( 1 0! 1 1! + 1 2! + ( 1j 1 j! + + ( 1n 1 n! = n n! ( 1 j j!. Dowód. Podobnie, ja w dowodzie poprzedniego twierdzenia, wystarczy policzyć ile jest tych perutacji, tóre nieporządai nie są. Niech X = {1, 2,..., n} i niech S(n będzie zbiore wszystich perutacji zbioru X. Wtedy oczywiście S(n = n!. Niech dalej S i (n będzie zbiore wszystich tych perutacji zbioru X, tórych eleent i jest punte stały, tzn. S i (n = {f S(n : f(i = i}. Teraz, aby otrzyać wzór z twierdzenia, wystarczy zastosować Zasadę włączeń i wyłączeń do policzenia S 1 (n S 2 (n S n (n. 4

5 Materiały dydatyczne Mateatya Dysretna (Wyład 5 Na oniec przedstawiy jeszcze jeden przyład zastosowania Zasady włączeń i wyłączeń. Przyład 4. Niech,, n będą liczbai całowityi nieujenyi. Wyznaczyć liczbę rozwiązań równania x 1 + x x n = (4 w liczbach całowitych, przy ograniczeniach: { 0 x 1, x 2,..., x n. (5 Na począte zauważy, że liczba rozwiązań równania (4, przy ograniczeniach 0 x i, i = 1, 2,..., n, jest równa ( ( n+ 1 = n+ 1 n 1. Ze zbioru wszystich rozwiązań tego równania z taii ograniczeniai trzeba usunąć te, dla tórych przynajniej jedna ze ziennych nie spełnia drugiego ograniczenia. Niech A i, będzie zbiore rozwiązań równania (4, w tórych niewiadoa x i spełnia warune < x i (tzn. nie spełnia ogranicznia górnego podanego w zadaniu. Do policzenia A 1 A 2 A n zastosujey Zasadę włączeń i wyłączeń. Od liczby wszystich rozwiązań trzeba odjąć właśnie tę liczbę. Przyjijy y i = x i, wtedy oczywiście ay 0 y i, a po sprowadzeniu równania (4 do postaci x y i + + x n = dostajey A i = + 1 A 1 A 2 A n =. 1. Analogicznie liczyy Ai A j = ( n+ 1 2, itd. Zate Opracował: Cz. Bagińsi 5

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy: Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Analiza B. Paweł Głowacki

Analiza B. Paweł Głowacki Analiza B Paweł Głowaci Pojęcie liczby rzeczywistej uważać będziemy za intuicyjnie oczywiste. Tym niemniej celowe wydaje się przypomnienie i ugruntowanie nietórych fundamentalnych własności liczb rzeczywistych.

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Φ(f) ={g 1,...,g n }, jeżeli f ma przedstawienie f = x j g j dla pewnych x i R \{0}.

Φ(f) ={g 1,...,g n }, jeżeli f ma przedstawienie f = x j g j dla pewnych x i R \{0}. 10. Wykład 10: Moduły wolne. Definicja 10.1. Niech R będzie pierścienie z jedynką. Lewy unitarny R-oduł M nazyway odułe wolny, gdy M = i I f i, gdzie f i = R, i I. Rodzinę {f i : i I} nazyway bazą (lub

Bardziej szczegółowo

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1

Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1 BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 18, 2003 Algoryt wyznaczania rotności diagnostycznej strutury opiniowania diagnostycznego typu PMC 1 Artur ARCIUCH Załad Systeów Koputerowych, Instytut Teleinforatyi

Bardziej szczegółowo

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) = Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p,

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p, Zadanie 1. Sprawdzić, czy formuła φa ) ) = 3 a 2 zadaje funcjonał liniowy na l p dla p [1, ] i na c, jeśli ta, to czy zadaje funcjonał ciągły, i jeśli ta, policzyć normę. Dowód. Sprawdzam liniowość: φλa

Bardziej szczegółowo

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych.

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych. ateriały do wyładów na temat Obliczanie sił przerojowych i momentów przerojowych dla prętów zginanych Wydr eletroniczny. slajdów na. stronach przeznaczony do celów dydatycznych dla stdentów II ro stdiów

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a) ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Sławomir Jemielity Zasada inducji matematycznej Są różne sformułowania tej zasady, mniej lub bardziej abstracyjne My będziemy się posługiwać taą: Niech T(n) oznacza twierdzenie dotyczące liczby naturalnej

Bardziej szczegółowo

O ciężarkach na bloczku z uwzględnieniem masy nici

O ciężarkach na bloczku z uwzględnieniem masy nici 46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Wyk lad 6 Przyk lady homomorfizmów

Wyk lad 6 Przyk lady homomorfizmów Wyk lad 6 Przyk lady hooorfizów Przyk lad 6.1. Dla dowolnych grup (G 1, 1, e 1 ), (G 2, 2, e 2 ) przekszta lcenie f: G 1 G 2 dane wzore f(x) = e 2 dla x G 1 jest hooorfize grup, bo f(a) 2 f(b) = e 2 2

Bardziej szczegółowo

Liczby Stirlinga II rodzaju - definicja i własności

Liczby Stirlinga II rodzaju - definicja i własności Liczby Stirliga II rodzaju - defiicja i własości Liczby Stirliga II rodzaju ozaczae sybole S(, ) lub { oża defiiować jao współczyii w rozwiięciu gdzie { x x, 0 (1) 0 x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 17 marca 2003 roku

Matematyka Dyskretna. Andrzej Szepietowski. 17 marca 2003 roku Matematya Dysretna Andrzej Szepietowsi 17 marca 2003 rou Rozdział 1 Kombinatorya 1.1 Zasada podwójnego zliczania Zasada podwójnego zliczania jest bardzo prosta. Oto ona: Jeżeli elementy jaiegoś zbioru

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

Równania trygonometryczne z parametrem- inne spojrzenie

Równania trygonometryczne z parametrem- inne spojrzenie Agnieszka Zielińska aga7ziel@wppl Nauczyciel ateatyki w III Liceu Ogólnokształcący w Zaościu Równania trygonoetryczne z paraetre- inne spojrzenie Cele tego reeratu jest zapoznanie państwa z oii etodai

Bardziej szczegółowo

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

1 Przestrzeń zdarzeń elementarnych

1 Przestrzeń zdarzeń elementarnych Przestrzeń zdarzeń elementarnych Przestrzeń zdarzeń elementarnych jest pojęciem pierwotnym w teorii prawdopodobieństwa. W zastosowaniach tej teorii zdarzenia elementarne interpretuje się jao możliwe przypadi,

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

KOLOKWIUM Z ALGEBRY I R

KOLOKWIUM Z ALGEBRY I R Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane

Bardziej szczegółowo

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH

DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH Instrucja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie 5 Wybrane właściwości Dysretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość

Bardziej szczegółowo

OBLICZENIA W POMIARACH POŚREDNICH

OBLICZENIA W POMIARACH POŚREDNICH ROZDZAŁ 6 OBLCZENA W POMARACH POŚREDNCH Stefan ubisa Zachodniopoorsi niwersytet Technologiczny. Wstęp Poiar pośredni to tai w tóry wartość wielości ierzonej wielości wyjściowej ezurandu y oblicza się z

Bardziej szczegółowo

1. Funkcje monotoniczne, wahanie funkcji.

1. Funkcje monotoniczne, wahanie funkcji. 1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.

Bardziej szczegółowo

CIĄGI wiadomości podstawowe

CIĄGI wiadomości podstawowe 1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Kodowanie informacji w systemach cyfrowych

Kodowanie informacji w systemach cyfrowych Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 2. Kodowanie informacji w systemach cyfrowych Cel dydatyczny: Nabycie umiejętności posługiwania się różnymi odami wyorzystywanymi w systemach

Bardziej szczegółowo

Analiza B II zadania. cos kx = sin(n x) 2 sin x 2. cos n sin 1 n., tan x, cot x, log sin x, log tan x, 1 + x

Analiza B II zadania. cos kx = sin(n x) 2 sin x 2. cos n sin 1 n., tan x, cot x, log sin x, log tan x, 1 + x Analiza B II zadania Oblicz granicę n cos n n Udowodnij wzór dla mπ 3 Udowodnij że szereg + n = cos = sin(n + sin cos n sin n jest zbieżny warunowo 4 Wyprowadź wzory (sin = cos (cos = sin 5 Wyaż że funcje

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,

Bardziej szczegółowo

7. Klasyfikacja skończenie generowanych grup przemiennych

7. Klasyfikacja skończenie generowanych grup przemiennych 32 7 Klasyfiacja sończenie generowanych grup przemiennych W tym rozdziale zajmiemy sie sończenie generowanymi grupami przemiennymi Zgodnie z tradycja be dziemy sie pos lugiwać zapisem addytywnym Dzia lanie

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

3 n 2k /5 n. Wstawiamy, i dostajemy. k=0 P(a 5 = k i a 6 = k) = ( 6 n 1( n. n=0. k 1 Wiemy, że P J = L J R J. Wstawiamy, zmieniamy granice sumowania:

3 n 2k /5 n. Wstawiamy, i dostajemy. k=0 P(a 5 = k i a 6 = k) = ( 6 n 1( n. n=0. k 1 Wiemy, że P J = L J R J. Wstawiamy, zmieniamy granice sumowania: 1 Cele ćwiczeń Prawdopodobieństwo całkowite, Bayesowskie, niezależność. 2 Treść ćwiczeń 2.1 Sprawy organizacyjne Zbiera prace doowe. Zapowiada kartkówkę na za tydzień (10go arca). Druga będzie wstępnie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 Kolokwiu r 5: piątek 8..06, godz. 8:5-9:00, ateriał zad. 40, 50-585. Kolokwiu r 53: piątek 5..06, godz. 8:5-9:00, ateriał zad. 50, 50-59. Kolokwiu r 54: piątek..06, godz. 8:5-9:00, ateriał zad. 83, 50-64.

Bardziej szczegółowo

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE Równania reurencyjne 1 RÓWNANIA REKURENCYJNE 1 Ciągi arytmetyczne i geometryczne Z najprostszymi równaniami reurencyjnymi zetnęliśmy się już w szole Zacznijmy od przypomnienia definicji ciągu arytmetycznego

Bardziej szczegółowo

Interpolacja. Interpolacja wykorzystująca wielomian Newtona

Interpolacja. Interpolacja wykorzystująca wielomian Newtona Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej

Bardziej szczegółowo

Matematyka Dyskretna - zagadnienia

Matematyka Dyskretna - zagadnienia Matematya Dysretna - zagadnienia dr hab. Szymon Żebersi opracował: Miołaj Pietre Semestr letni 206/207 - strona internetowa Zasada inducji matematycznej. Zbiory sończone, podstawowe tożsamości 2. Zasada

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy

Bardziej szczegółowo

n(n + 1) 2 k = k = 1, P = 1 (1 + 1)/2 = 2/2 = 1 = L. n(n + 1) 2 + (n + 1) = n(n + 1)(2n + 1) 6 k 2 = n(n + 1)(2n + 1) 6 + (n + 1) 2 = n + 1

n(n + 1) 2 k = k = 1, P = 1 (1 + 1)/2 = 2/2 = 1 = L. n(n + 1) 2 + (n + 1) = n(n + 1)(2n + 1) 6 k 2 = n(n + 1)(2n + 1) 6 + (n + 1) 2 = n + 1 Materiały do zajęć wyrównawczych z matematyi da studentów informatyi, ro aademici 013/14 Zestaw zadań 5 odpowiedzi uwaga: nieco inna oejność zadań 1. Udowodnij, że 1 n(n 1 (1a Odpowiedź: Da n 1 mamy L

Bardziej szczegółowo

Pytania i polecenia podstawowe

Pytania i polecenia podstawowe Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:

Bardziej szczegółowo

Matematyka Dyskretna Zadania

Matematyka Dyskretna Zadania Matematya Dysretna Zadania Jace Cichoń Politechnia Wrocławsa, WPPT Wrocław 015 1 Wstęp 11 Oznaczenia [n] = {1,, n} [] = {X P ( : X = } (x = 1 j=0 (x j, (x = 1 (x + j Zadanie 1 j=0 Poaż za pomocą inducji

Bardziej szczegółowo

Badanie stacjonarności szeregów czasowych w programie GRETL

Badanie stacjonarności szeregów czasowych w programie GRETL Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

Komitet Główny Olimpiady Fizycznej; Kazimierz Rosiński: Fizyka w szkole nr 1, 1956; Czarnecki Stefan: Olimpiady Fizyczne I IV, PZWS, Warszawa 1956.

Komitet Główny Olimpiady Fizycznej; Kazimierz Rosiński: Fizyka w szkole nr 1, 1956; Czarnecki Stefan: Olimpiady Fizyczne I IV, PZWS, Warszawa 1956. V OLIMPIADA FIZYCZNA (955/956). Stopień wstępny, zad. doświadczalne D. Źródło: Nazwa zadania: Działy: Słowa luczowe: Koitet Główny Olipiady Fizycznej; Kaziierz Rosińsi: Fizya w szole nr, 956; Czarneci

Bardziej szczegółowo

Zajęcia nr. 3 notatki

Zajęcia nr. 3 notatki Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 1: UWAGI WSTĘPNE. PROCENT SKŁADANY 1. Uwagi wstępne Ryzyko jest związane z niealże każdy rodzaje działalności człowieka: przy planowaniu urlopu ryzyko słabej

Bardziej szczegółowo

Restauracja a poprawa jakości obrazów

Restauracja a poprawa jakości obrazów Restauracja obrazów Zadaniem metod restauracji obrazu jest taie jego przeształcenie aby zmniejszyć (usunąć) znieształcenia obrazu powstające przy jego rejestracji. Suteczność metod restauracji obrazu zależy

Bardziej szczegółowo

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004 Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40

Bardziej szczegółowo

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania

Bardziej szczegółowo

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska Kombinatoryka Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Aspekty kombinatoryki Victor Bryant

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 11/14 Współczynniki multimianowe (wielomianowe) Współczynniki dwumianowe pojawiały się przy rozwinięciu dwumianu. Odpowiadały one

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Lista zagadnień omawianych na wykładzie w dn r. :

Lista zagadnień omawianych na wykładzie w dn r. : Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

Wojciech Kordecki. Matematyka dyskretna. dla informatyków

Wojciech Kordecki. Matematyka dyskretna. dla informatyków Wojciech Kordeci Matematya dysretna dla informatyów Wrocław 2005 Spis treści 1. Relacje, funcje i rozmieszczenia 1 1.1. Zbiory częściowo uporządowane 1 1.2. Funcje i rozmieszczenia 2 1.3. Zadania 4 2.

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Analiza 1, cze ść druga

Analiza 1, cze ść druga Analiza 1, cze ść druga Granica górna cia gu a n ) nazywamy res górny zbioru z lożonego z granic wszystich tych podcia gów cia gu a n ), tóre maja granice sończone lub nie). Oznaczamy ja przez lim sup

Bardziej szczegółowo

UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM

UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM Wojciech Zieliński Katedra Ekonoetrii i Statystyki, SGGW Nowoursynowska 159, PL-0-767 Warszawa wojtekzielinski@statystykainfo Streszczenie: W odelu regresji

Bardziej szczegółowo

ANALIZA WIELOKRYTERIALNA

ANALIZA WIELOKRYTERIALNA ANALIZA WIELOKRYTERIALNA Dział Badań Operacyjnych zajmujący się oceną możliwych wariantów (decyzji) w przypadu gdy występuje więcej niż jedno ryterium oceny D zbiór rozwiązań (decyzji) dopuszczalnych x

Bardziej szczegółowo

1 Renty życiowe. 1.1 Podstawowe renty życiowe

1 Renty życiowe. 1.1 Podstawowe renty życiowe Renty życiowe Renta życiowa jest serią płatności okonywanych w czasie życia ubezpieczonego Jej wartość teraźniejsza jest zienną losową (bo zależy o przyszłego czasu życia T, oznaczaną Y Postawowe renty

Bardziej szczegółowo

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo