REAKTYWNE FORMY TLENU

Wielkość: px
Rozpocząć pokaz od strony:

Download "REAKTYWNE FORMY TLENU"

Transkrypt

1 BROMAT. CHEM. TOKSYKOL. XLI, 2008, 4, str Helena Puzanowska-Tarasiewicz, Barbara Starczewska, Ludmiła Kuźmicka REAKTYWNE FORMY TLENU Zakład Chemii Ogólnej i Nieorganicznej Instytutu Chemii Uniwersytetu w Białymstoku Kierownik: prof. dr hab. H. Puzanowska-Tarasiewicz Hasła kluczowe: tlen, reaktywne formy tlenu, antyoksydanty. Key words: oxygen, reactive oxygen species, antioxidants. Tlen jest składnikiem powietrza (20,95% obj.), wody (89% mas.) i litosfery (47,3% mas.). Jako cząsteczka może występować w stanie singletowym i trypletowym. W stanie podstawowym występuje w formie trypletowej, gdyż ma dwa niesparowane elektrony. Wykazuje właściwości paramagnetyczne i zachowuje się jak miniaturowy magnes jest przyciągany przez pole magnetyczne. Tlen singletowy jest bardziej reaktywny od tlenu w stanie trypletowym. W celu wyjaśnienia dlaczego, należy dokonać analizy rozkładu elektronów na orbitalach molekularnych tlenu (ryc. 1). Ryc. 1. Rozkład elektronów na orbitalach molekularnych tlenu oraz w anionorodniku ponadtlenkowym (1). a tlen w stanie podstawowym trypletowy, określany symbolem 3 Σ g O 2 ; b, c dwie formy tlenu singletowego: jedna 1 Δ g O 2 i druga 1 + Σ g O 2 ; d anionorodnik ponadtlenkowy O 2. Strzałki symbolizują elektrony, a ich zwroty spiny elektronów. Fig. 1. Distribution of electrons on the molecular orbitals of oxygen and superoxide anion radical. a base state triplet oxygen 3 Σ g O 2 ; b, c two forms of singlet oxygen, 1 Δ g O 2 and 1 + Σ g O 2 ; d superoxide anion-radical O 2.Arrows represent electrons and arrowheads indicate electron spins.

2 1008 H. Puzanowska i inni Nr 4 Jak wynika z diagramu, tlen w stanie podstawowym (trypletowy, określany w spektroskopii symbolem 3 Σ g O 2 ) jest birodnikiem, natomiast jedna z form tlenu singletowego 1 g O 2 nie jest wolnym rodnikiem (ma dwa sparowane elektrony na * jednym orbitalu π ), druga zaś forma 1 + Σ g O 2 ma po jednym elektronie na każdym * 2p 2p z orbitali π. Aby cząsteczka tlenu w stanie trypletowym utleniła inną cząsteczkę i uległa dwuelektrodowej redukcji, musiałaby przyjąć od utlenianej cząsteczki dwa elektrony, przy tym oba te elektrony musiałyby mieć równoległe spiny i być skierowane przeciwnie w stosunku do spinów dwóch niesparowanych elektronów na orbitalach * 2p y * 2p z π, π. Wymaga to, aby utleniana cząsteczka była również w stanie trypletowym o co nie łatwo, gdyż stan podstawowy większości cząsteczek organicznych jest stanem singletowym. Tlen trypletowy ma więc trudności ze znalezieniem odpowiednich partnerów do reakcji dwuelektronowej i dlatego reaguje z wieloma związkami jednoelektronowo przyjmując od nich jeden elektron. Produktem tej reakcji jest anionorodnik ponadtlenkowy O 2 cząsteczka, która jest wolnym rodnikiem (posiada jeden niesparowany elektron) i anionem (ładunek ujemny spowodowany jest posiadaniem dodatkowego elektronu). Znacznie bardziej reaktywny jest tlen singletowy 1 O 2 powstający w wyniku wzbudzenia cząsteczek tlenu. Wymaga to dostarczenia energii wystarczającej na takie sparowanie elektronów w cząsteczce tlenu, aby spin wypadkowy cząsteczki wynosił zero (1). Wzbudzenie trypletowej cząsteczki tlenu do stanu singletowego może nastąpić w wyniku zaabsorbowania kwantu promieniowania nadfioletowego lub promieniowania o wyższej energii oraz niektórych reakcji chemicznych. Tlen singletowy oddziałuje z innymi cząsteczkami na dwa sposoby: przekazuje energię wzbudzenia cząsteczkom przechodząc w stan trypletowy, jest to tzw. gaszenie tlenu singletowego; wchodzi w reakcję chemiczną, np. z cholesterolem i tryptofanem. Najbardziej podatnymi na uszkodzenie przez tlen singletowy są reszty aminokwasowe białek histydyny, tryptofanu, metioniny i cysteiny oraz składniki kwasów nukleinowych - reszty purynowe, pirymidynowe i guanina (1). Pomimo, że tlen uszkadza składniki komórek, to bez tlenu nie ma życia. Tlen cząsteczkowy jest utleniaczem. Utlenia związki organiczne pobierając od nich elektrony, a sam ulega redukcji. Całkowita, czteroelektronowa redukcja cząsteczki tlenu (O H e 2 H 2 O) z wytworzeniem wody jest utrudniona. Wiadomo jednak, że większość związków organicznych, z którymi tlen mógłby reagować w komórkach, to związki w stanie singletowym, tzn. że spiny wszystkich elektronów w atomach tworzących cząsteczki uległy sparowaniu i wypadkowy spin każdej cząsteczki tych związków równy jest zeru. Woda, produkt redukcji tlenu, jest również cząsteczką w stanie singletowym. Tlen, nie mogąc znaleźć partnerów do reakcji czteroelektronowej, wstępuje na drogę reakcji jednoelektronowej, tworząc anionorodnik ponadtlenkowy: O 2 + e O 2 Przyłączenie kolejnego elektronu do anionorodnika ponadtlenkowego lub dwóch elektronów do cząsteczki tlenu co jest trudne ale możliwe, powoduje powstanie nadtlenku wodoru: O H + + e H 2 O 2 O H e. Nadtlenek wodoru jest mniej reaktywny niż większość wolnych rodników, tj. atomów lub cząsteczek zdol-

3 Nr 4 Reaktywne formy tlenu 1009 nych do samodzielnego istnienia, mających jeden lub więcej niesparowanych elektronów. Jest on jednak bardziej reaktywny od tlenu cząsteczkowego O 2. Anionorodnik ponadtlenkowy, O 2, może w roztworze wodnym przyłączyć proton i utworzyć rodnik wodoronadtlenkowy: O 2 + H + HO 2 Produktem przyłączenia trzech elektronów do cząsteczki tlenu (co zachodzi na szczęście niezbyt łatwo) jest rodnik hydroksylowy OH jeden z najbardziej reaktywnych utleniaczy w układach biologicznych. Do zajścia reakcji anionorodnika ponadtlenkowego, nadtlenku wodoru i rodnika hydroksylowego nie jest istotne, aby partner był w stanie trypletowym. Wszystkie wymienione produkty redukcji i wzbudzenia tlenu są bardziej reaktywne niż cząsteczka tlenu w podstawowym stanie trypletowym. Z tego powodu określane są one różnie jako aktywne formy tlenu, reaktywne formy tlenu, czy reaktywne metabolity tlenu. Niektórzy autorzy proponują używanie zwrotu wolne rodniki tlenowe. Zwrot ten uwzględnia jedynie O 2 i OH, podczas gdy aktywnymi formami są H 2 O 2 (który nie jest rodnikiem) i tlen singletowy (1). Obok wymienionych powyżej reaktywnych form tlenu (RFT), będących główną przyczyną toksyczności tlenu, organizmy żywe mogą zetknąć się z pokrewnymi formami tlenu, np. alotropową odmianą tlenu ozonem O 3, czy związkami tworzącymi się w reakcjach metabolicznych: NO, NO 2, HONO 2, HOCl, HOBr, HOBr (2). Reakcje RFT z cząsteczkami organicznymi prowadzą do powstania wolnych rodników substancji organicznych: RO, ArO, ROO. Mogą to być rodniki, w których niesparowany elektron znajduje się na atomie węgla lub innego pierwiastka, np. azotu. Powstawanie reaktywnych form tlenu Reaktywne formy tlenu znajdują się w wodzie, powietrzu oraz mogą powstawać w organizmach żywych wskutek działania zewnętrznych czynników fizycznych, np. promieniowania jonizującego i nadfioletowego, ultradźwięków. Promieniowanie jonizujące powoduje jonizację oraz wzbudzenie cząsteczek wody (radiolizę) z wytworzeniem rodników hydroksylowych: H 2 O H 2 O + + e; H 2 O H 2 O * (wzbudzona cząsteczka); H 2 O * H + OH; H 2 O + + H 2 O H 3 O + + OH. W wyniku oddziaływania pomiędzy produktami radiolizy wody H i OH powstają m.in. cząsteczki wodoru H 2 i nadtlenku wodoru. Odpowiednio dobierając warunki napromieniowania, można stworzyć sytuacje, w których dominować będzie jeden typ RFT (1). Absorpcja promieniowania nadfioletowego przez cząsteczki prowadzi do wzbudzenia, jonizacji lub rozpadu cząsteczek. Podobnie wysoka temperatura i wyładowania atmosferyczne powodują rozpad cząsteczek tlenu na atomy, które reagując z innymi cząsteczkami tlenu, tworzą ozon O 3 : O 2 O + O; O + O 2 O 3. Ozon atmosferyczny, pojawiający się często jako składnik smogu spowijającego miasta, jest również reaktywną formą tlenu (bardziej reaktywny niż tlen trypletowy). W roztworach wodnych rozpada się, tworząc rodniki OH i HO 2 oraz H 2 O 2. Wdychanie ozonu niszcząco wpływa na nasze płuca i inne tkanki (m.in. serca, wątroby, mózgu) (3). Szereg związków określanych jako fotosensybilizatory (światłouczulacze) po zaabsorbowaniu kwantu światła może przechodzić w stan wzbudzony, tj. ze stanu singletowego w stan trypletowy i reagować z tlenem trypletowym. W wyniku reakcji wytwarza się anionorodnik ponadtlenkowy, np. w fotoredukcji ryboflawiny (1).

4 1010 H. Puzanowska i inni Nr 4 Nie tylko fotoredukcja prowadzi do wytwarzania anionorodnika ponadtlenkowego, ale także obecność zredukowanych form niskocząsteczkowych (RH 2 ) składników komórek, np. zredukowana ryboflawina, cukry o właściwościach redukujących (glukoza), związki tiolowe (cysteina, glutation): RH 2 + O 2 RH + H + + O 2 (1). Działanie na roztwory wodne ultradźwiękami, czyli tzw. sonikacja roztworów, prowadzi do powstawania w tych roztworach RFT. I tak w wyniku sonikacji, czyli sonolizy wody tworzą się atomy wodoru i rodniki OH. Rekombinacja rodników OH prowadzi do powstawania H 2 O 2. W roztworach wodnych, zawierających tlen, atomy wodoru reagują z O 2 tworząc HO 2. Sonikacja napowietrzonych roztworów wodnych prowadzi do powstawania NO (1, 4). Jednoelektronowemu utlenianiu mogą ulegać substancje obce dla organizmu (ksenobiotyki), które znajdują się w organizmie jako leki lub składniki pożywienia. Podobnie, jak w przypadku fotosensybilizatorów, ksenobiotyki ulegają w komórkach cyklicznej redukcji i cyklicznie reagują z tlenem (cykle redoks napędzane są jednak nie przez światło, lecz przez metabolizm komórki) (1). Ten ostatni problem nabiera znaczenia, jeśli weźmiemy pod uwagę trucizny stosowane do zwalczania szkodników, np.fungicydy, herbicydy, insektycydy. Mechanizm toksyczności wielu z tych związków polega na wytwarzaniu RFT. W organizmach żywych przebiegają również procesy utleniania białek oddechowych, tj. hemoglobiny i mioglobiny. Zarówno hemoglobina obecna w czerwonych krwinkach, jak i mioglobina występująca w mięśniach zawierają jako grupę prostetyczną hem. W grupach hemowych obecne są jony żelaza Fe 2+, które pod wpływem tlenu mogą się łatwo utleniać do jonów żelaza Fe 3+ : hem-fe 2+ + O 2 hem-fe 3+ + O 2. W przypadku hemoglobiny i mioglobiny jon Fe 2+ jest silnie związany z hemem białek oddechowych, dlatego jest mniej podatny na utlenianie, jednak może temu procesowi ulec. W krwinkach czerwonych człowieka w ciągu doby ok. 3% hemoglobiny ulega utlenieniu do methemoglobiny formy niezdolnej do przenoszenia O 2. Reakcja ta jest głównym źródłem O 2. Krwinki zawierają jednak enzym reduktazę methemoglobinową, który redukuje methemoglobinę do hemoglobiny (5). Źródłem O 2 w mięśniach jest utlenianie białka oddechowego mięśni - mioglobiny. W obecności donorów elektronów (D), np. azotanów(iii), aminofenoli może przebiegać dwuelektronowa redukcja O 2 związanego z hemoglobiną i powstawać H 2 O 2 : 2 H + hem Fe 2+ O 2 + D hem Fe 3+ + H 2 O 2 + D utl. (2). Źródłem O 2 i H 2 O 2 w komórkach są niektóre reakcje enzymatyczne, przebiegające np. z udziałem oksydazy ksantynowej. Enzym ten może redukować cząsteczkę tlenu zarówno jedno-, jak i dwuelektronowo w zależności od stężenia O 2 i ph roztworu. W komórkach możliwa jest także czteroelektronowa redukcja tlenu przebiegająca w mitochondriach w głównym miejscu komórki, w którym zużywany jest tlen. W zachodzącym w mitochondriach cyklu Krebsa dwuwęglowe reszty związane z koenzymem A (tj. acetylokoenzym A) utleniane są do CO 2 i H 2 O. Energia uwalniana podczas tego procesu wykorzystywana jest do syntezy ATP (6). Powstające RFT rozpadają się lub wchodzą w reakcje ze składnikami komórek (uszkadzają główne klasy składników komórek związki niskocząsteczkowe, białka, lipidy i kwasy nukleinowe) (1). W komórkach istnieje równowaga pomiędzy szybkością tworzenia RFT a szybkością ich zaniku.

5 Nr 4 Reaktywne formy tlenu 1011 Z rozważań wynika, że O 2 i H 2 O 2 są nieuniknionymi produktami ubocznymi wielu reakcji przebiegających w komórkach aerobowych. Znacznie bardziej reaktywny niż O 2 i H 2 O 2 jest rodnik hydroksylowy OH. Początkowo zakładano, że powstaje on w reakcji Habera-Weissa: O 2 + H 2 O 2 OH + OH + O 2 (7). Stwierdzono jednak, że w/w reakcja w warunkach zbliżonych do fizjologicznych nie ma praktycznego znaczenia. Obecnie przyjęta koncepcja zakłada istnienie cyklu dwóch reakcji: jedna z nich to reakcja Fentona (utlenianie Fe 2+ za pomocą H 2 O 2 ), druga reakcja regeneracji jonu Fe 2+ (2). Fe 2+ + H 2 O 2 OH + OH + Fe 3+ ; O 2 + Fe 3+ O 2 + Fe 2+ Sumując oba równania otrzymujemy reakcję Habera-Weissa katalizowaną przez jony żelaza (7): O 2 + H 2 O 2 OH + OH + O 2 Krótkie przypomnienie: rodnik hydroksylowy OH to zupełnie co innego niż anion wodorotlenkowy OH (OH to anion tworzący się w reakcji dysocjacji elektrolitycznej). Obecność jonów żelaza (Fe 2+ /Fe 3+ ) w bardzo małych stężeniach lub jonów miedzi (Cu + /Cu 2+ ) głównie związanych z białkami, a także innych metali przejściowych (manganu, chromu, kobaltu, niklu) jeszcze w niższych stężeniach niż jonów żelaza i miedzi może katalizować w/w reakcję (1). Jony metali przejściowych mają niesparowane elektrony w powłokach walencyjnych i dlatego można je uznać za wolne rodniki, np.: Fe d Cu... 3d Niektóre jony metali przejściowych, jako niezbędne składniki komórek żywych, mogą występować na różnych stopniach utlenienia. Oznacza to możliwość ich utleniania w reakcji z tlenem lub H 2 O 2 i redukcji przez inne substancje, a tym samym katalizowania przez te jony reakcji prowadzących do powstania RFT. W podsumowaniu można stwierdzić, że część RFT to wolne rodniki, które charakteryzuje na ogół wysoka reaktywność. Dążąc do sparowania elektronów pozbycia się nadmiarowego elektronu lub przyłączenia elektronu do innej cząsteczki, zazwyczaj szybko wchodzą w reakcje z wieloma cząsteczkami. Działanie RFT w żywych organizmach Reaktywne formy tlenu znane są z dwojakiego działania w żywych organizmach. Z jednej strony są one potrzebne do prawidłowego funkcjonowania komórek, m.in. do regulacji procesów naprawczych w komórkach, ekspresji genów, regulacji metabolizmu, przekazywania sygnału mutagennego (8), ale mogą być również bardzo szkodliwe (2). Coraz więcej wyników badań świadczy o tym, że szlaki przewodnictwa wewnątrzkomórkowego są aktywowane przez zmiany równowagi redoks z udziałem RFT, np. ozonu, H 2 O 2. Wiadomo także, że działanie podwyższonych stężeń RFT jest przyczyną wielu chorób cywilizacyjnych, tak jak cukrzyca, miażdżyca uszkodzenie mięśnia sercowego lub mózgu (2). Przekroczenie określonych stężeń RFT w komórkach powoduje groźne dla organizmu konsekwencje i określane jest mianem stresu oksydacyjnego (9), który odpowiada za powstawanie wielu chorób.

6 1012 H. Puzanowska i inni Nr 4 Najczęściej badanym procesem, związanym ze skutkami zachodzenia w organizmie reakcji z RFT, jest peroksydacja lipidów. Przez peroksydację lipidów rozumiemy wolnorodnikowy proces utleniania nienasyconych kwasów tłuszczowych lub innych lipidów, w którym powstają nadtlenki tych związków (z ang. nadtlenek to peroxide). Peroksydacja lipidów, jak każdy proces wolnorodnikowy, składa się z trzech etapów: inicjacji, propagacji (prolongacji), terminacji. Inicjacja peroksydacji lipidów polega na oderwaniu atomu wodoru od cząsteczki wielonienasyconego kwasu tłuszczowego lub reszty takiego kwasu wchodzącego w skład fosfolipidu. Reakcja inicjacji przekształca cząsteczkę kwasu tłuszczowego w wolny rodnik alkilowy L, gdyż przy atomie węgla, który stracił atom wodoru, pozostaje niesparowany elektron. Do czynników odrywających wodór od wielonienasyconego kwasu tłuszczowego (L), inicjującego peroksydację lipidów należy zaliczyć rodnik hydroksylowy OH oraz rodniki: nadtlenkowy LOO, alkoksylowy LO, bądź alkilowy L substancji obecnych w komórce. Peroksydację lipidów mogą też inicjować: ozon, NO, NO 2, SO 2 oraz kationorodniki ferrylowy bądź nadferrylowy oraz kompleks Fe 2+ -O 2 -Fe 3+ (1). Należy zaznaczyć, że naturalnie występujące kwasy tłuszczowe nie zawierają sprzężonych wiązań podwójnych. Pojawienie się tych wiązań jest możliwe podczas procesu peroksydacji. Do wiązań podwójnych może przyłączać się ozon bądź tlen singletowy. In vivo procesowi peroksydacji ulegają przede wszystkim reszty wielonienasyconych kwasów tłuszczowych wchodzące w skład fosfolipidów, gdyż fosfolipidy są głównym składnikiem budulcowym błon komórkowych, a wolne kwasy tłuszczowe występują w błonach w bardzo małych ilościach. Przebieg procesu peroksydacji lipidów można przedstawić w trzech etapach (10): inicjacja: LH + O 2 L + HOO ; 2 LH + O 2 2 L + H 2 O 2 propagacja: L + O 2 LOO ; LOO + LH LOOH + L ; LOOH LO + OH terminacja: L + L L L ; L + LOO LOOL ; LOO + LOO LOOL + O 2 Wolne rodniki powstające w procesach peroksydacji lipidów mogą reagować z białkami. W rezultacie powstają wolne rodniki białek, które mogą uczestniczyć w reakcjach terminacji, tworząc mieszane połączenia białkowo-lipidowe. W procesie peroksydacji lipidów może wystąpić zjawisko reinicjacji polegające na tym, że nadtlenki lipidów (nierodnikowe produkty peroksydacji) mogą ulegać rozkładowi i prowadzić do ponownego powstania wolnych rodników. Rozpad taki inicjowany może być przez jony metali przejściowych, głównie jony żelaza i miedzi (1): LOOH + Fe 2+ LO + OH + Fe 3+ ; LOOH + Fe 3+ LOO + H + + Fe 2+ Dalsze przemiany produktów peroksydacji, zachodzące w wyniku reakcji β-eliminacji, prowadzą do rozpadu reszt wielonienasyconych kwasów tłuszczowych i powstania aldehydów (np. dialdehydu malonowego), hydroksyaldehydów i węglowodorów (np. etanu, pentanu). Im więcej wiązań podwójnych zawiera reszta kwasu tłuszczowego, tym łatwiej ulega ona peroksydacji. Optymalne parcjalne ciśnienie tlenu w tym procesie waha się w granicach 1 10 mm Hg. Wcale nie jest więc tak, że im więcej tlenu, tym szybsza peroksydacja lipidów (1). Przedstawiony powyżej opis peroksydacji lipidów to proces nieenzymatyczny. Powstawanie wielu ważnych biologicznie związków, np.prostaglandyn, trombok-

7 Nr 4 Reaktywne formy tlenu 1013 sanów czy leukotrienów z kwasu arachidonowego inicjowana jest przez reakcje peroksydacji. Reakcje te katalizowane są przez cykloksygenazę i lipoksygenazy enzymy katalizujące wbudowanie cząsteczki tlenu w określoną pozycję cząsteczki kwasu tłuszczowego, w wyniku czego powstają nadtlenki kwasów tłuszczowych (1). Produkty końcowe procesu peroksydacji lipidów, zwłaszcza aldehydy, są mniej reaktywne niż wolne rodniki. Reagują jednak z grupami tiolowymi białek oraz z resztami aminokwasów, np. lizylowymi, histydylowymi, arginylowymi, tyrozylowymi. Mogą zmieniać właściwości antygenowe białek, z którymi się łączą i hamować aktywność szeregu enzymów, co prowadzi m.in. do hamowania replikacji DNA (11). Produkty peroksydacji lipidów modyfikują także właściwości fizyczne błon komórkowych, osłabiają zależność pomiędzy transportem elektronów przez łańcuch oddechowy a syntezą ATP w mitochondriach. Reakcje reaktywnych form tlenu z białkami prowadzą do modyfikacji reszt aminokwasowych, modyfikacji grup prostetycznych (czyli nieaminokwasowych składników białek złożonych) oraz agregacji lub fragmentacji cząsteczek białkowych (1). Reakcja rodnika hydroksylowego OH z białkami (B) powoduje oderwanie atomu wodoru od cząsteczki białkowej. Niesparowany elektron zlokalizowany początkowo na atomie, od którego oderwany został wodór (B H + OH B + H 2 O) może ulegać przemieszczeniu w cząsteczce białka i umiejscowić się na jednej z reszt aminokwasowych, np. na resztach cysteiny (białko 1 Cys S + S Cys białko 2 białko 1 Cys S S Cys białko 2. Rekombinacja wolnych rodników białkowych prowadzi do powstania dimerów białkowych (1). Działanie promieniowania jonizującego na roztwory białek w warunkach tlenowych prowadzi z kolei do fragmentacji cząsteczek białkowych, napromieniowanie zaś w warunkach beztlenowych do agregacji. Szczególnie wrażliwe na uszkodzenia oksydacyjne są oprócz reszt cysteiny reszty metioniny, tyrozyny, argininy, tryptofanu, lizyny, proliny, histydyny, fenyloalaniny (np. utlenianie reszt metioniny niektórych białek prowadzi do utraty funkcji biologicznej białka) (11). Reakcje RFT z białkami powodują nie tylko utlenianie białek, ale także powstanie w białkach grup redukujących, zdolnych do redukcji cytochromu C i jonów metali. Reakcje z RFT mogą prowadzić do powstawania nadtlenków aminokwasów i białek oraz uszkodzeń zasad nukleinowych i kwasów nukleinowych. Kwasy nukleinowe są związkami bardziej stabilnymi niż białka i lipidy, odpowiadają bowiem za powielanie, przechowywanie i przekazywanie informacji genetycznej. Nadtlenek wodoru H 2 O 2 i anionorodnik ponadtlenkowy O 2 nie powodują uszkodzeń składników kwasów nukleinowych. Natomiast rodnik hydroksylowy OH może uszkodzić zasady nukleinowe, reszty cukrowe (np. deoksyrybozę w DNA, rybozę w RNA) lub rozerwać wiązania fosfodiestrowe łączące nukleotydy. Uszkodzenia te stara się organizm naprawić, gdyż DNA jest zbyt ważny, aby jego uszkodzenia pozostawić. Uszkodzone zasady są wycinane z DNA i w znacznej mierze nie metabolizowane dalej, lecz wydalane z komórek organizmu. Oceniono, że liczba uszkodzeń DNA przez endogenne RTF w przeciętnej komórce człowieka jest rzędu 10 4 na dobę (1). Reaktywne formy tlenu mogą uszkodzić cukrowce lub reszty sacharydowe białek, np. mukopolisacharyd kwas hialuronowy (istotny składnik mazi stawowej). Stwierdzono, że działanie RFT na roztwory kwasu hialuronowego powoduje rozry-

8 1014 H. Puzanowska i inni Nr 4 wanie wiązań glikozydowych pomiędzy monomerami, czyli depolimeryzację wielocukru, co prowadzi do zmniejszenia lepkości roztworów kwasu (nie pozostaje to bez znaczenia dla właściwego funkcjonowania stawów) (12). Obrona komórek przed RFT Organizmy żywe zawierają specjalne enzymy katalizujące rozkład anionorodnika ponadtlenkowego O 2 lub H 2 O 2. Dysmutaza ponadtlenkowa (SOD) jest enzymem katalizującym reakcję dysmutacji (dysproporcjonowania) anionorodnika ponadtlenkowego: (O 2 + O H + SOD H 2 O 2 + O 2 ), natomiast peroksydaza gluta- tionowa katalizuje reakcję pomiędzy glutationem (GSH) a H 2 O 2, w wyniku której powstaje utleniona forma glutationu, czyli disulfid glutationu (GSSG): 2 GSH + H 2 O 2 GSSG + 2 H 2 O (1). Enzym ten redukuje nie tylko H 2 O 2, ale także nadtlenki organiczne oraz znajdujące się w błonach komórkowych nadtlenki fosfolipidów. Peroksydaza glutationowa współdziała z reduktazą glutationową enzymem odtwarzającym zredukowaną formę glutationu. Podobnie S-transferazy glutationowe, które w odróżnieniu od peroksydazy glutationowej nie zawierają selenu, katalizują reakcje redukcji nadtlenków lipidów przez glutation (1). Reakcję dysproporcjonowania nadtlenku wodoru katalizuje enzym katalaza, natomiast metalotioneiny (białka) wiążą i detoksykują jony metali ciężkich, np. kadm, rtęć oraz magazynują takie metale niezbędne dla organizmu, jak cynk i miedź (12). W krwinkach zdrowego człowieka w ciągu doby około 3 % hemoglobiny ulega utlenieniu do methemoglobiny, nie mogącej przenosić tlenu. Reakcja ta jest głównym źródłem O 2 w tych komórkach (8). Gdyby nie enzym reduktaza methemo- globinowa, która redukuje methemoglobinę do hemoglobiny, po kilkunastu dniach większość hemoglobiny w krwinkach przeszłaby w niezdolną do przenoszenia O 2 methemoglobinę. Również białka hemowe mogą w pewnych warunkach i we współdziałaniu z niskocząsteczkowymi oksydantami bronić się przed RFT. Przykładowo hemoglobina i mioglobina hamują tworzenie rodnika OH w układzie zawierającym askorbinian, a to dzięki swej aktywności peroksydazowej. Reagują one z H 2 O 2 wykorzystując askorbinian w reakcji: askorbinian + H 2 O 2 dehydroaskorbinian + O 2 (1). Szereg białek enzymatycznych także chroni przed RFT. Katalizują one reakcje nie wytwarzające RFT, np. ceruloplazmina (białko zawierające miedź) zapobiega powstawaniu anionorodnika ponadtlenkowego O 2 ) (13). Poza enzymami rozkładającymi RFT w organizmie, szereg innych związków niskocząsteczkowych wykazuje właściwości antyoksydacyjne, np. kwas moczowy, cysteina, kreatynina. Również melaniny i melatoniny zdolne są do reakcji z wolnymi rodnikami (1). Przykładowo melatonina, rozpuszczalna w roztworach wodnych i lipidach, może pełnić funkcję antyoksydanta hydrofilowego, który chroni środowisko wodne komórki, jak i antyoksydanta hydrofobowego chroniącego wnętrze błon komórkowych. Peroksydację lipidów hamują z kolei składniki błon komórkowych, jak cholesterol, prowitamina D 3, witamina D 3, witamina D 2 (1). Również grupa tiolowa glutationu (GSH) powszechnego składnika bardzo różnych komórek naszego ciała łatwo reaguje z wolnymi rodnikami, najszybciej z rodnikiem hydroksylowym OH, wolniej z rodnikami organicznymi, w tym wolnymi rodnikami białek i innych makrocząsteczek (białko + GSH białko-h + GS ) (1). Za najistotniejszy

9 Nr 4 Reaktywne formy tlenu 1015 antyoksydant płynów komórkowych w organizmie uważa się kwas askorbinowy, czyli witaminę C. Jest on reaktywny wobec O 2, H 2 O 2, OH, tlenu singletowego i rodników nadtlenkowych (1). Fizjologicznym antyoksydantem hydrofobowym, chroniącym błony komórkowe jest witamina E, czyli α-tokoferol (14) oraz karotenoidy (zwłaszcza β-karoten), oksykaroteinoidy, bilirubina i produkt jej utlenienia biliwerdyna oraz koenzym Q (9). I tak np. β-karoten (K) jest efektywnym wygaszaczem tlenu singletowego oraz reaguje z wolnymi rodnikami organicznymi powstającymi w procesie peroksydacji lipidów: LOO + K LOO-K ; LOOK + LOO LOO-K-OOL. Właściwości antyoksydacyjne wykazują żeńskie hormony płciowe pochodne estronu i estradiolu oraz niektóre jony metali, np. selen, cynk (ten ostatni wypiera jony Fe 2+ i Cu 2+ z centrów wiążących w błonach komórkowych i DNA). Aktywność enzymów antyoksydacyjnych w krwinkach czerwonych i osoczu omówiono w pracy Winterbourna (5) oraz w monografii Bartosza (15). Podsumowując rozważania można stwierdzić, że wszystkie antyoksydanty zapobiegają niekontrolowanym, zwłaszcza wolnorodnikowym reakcjom utleniania przebiegającym w organizmie. H. Puzanowska-Tarasiewicz, B. Starczewska, L. Kuźmicka REACTIVE OXYGEN SPECIES PIŚMIENNICTWO 1. Bartosz G.: Druga twarz tlenu. Wyd. Naukowe, PWN, Warszawa Halliwell B., Gutteridge J.M.: Free radicals in biology and medicine. Oxford University, Press Oxford, New York, Mudway I.S., Kelly F.J.: Ozone and the lungs a sensitive issue. Mol. Aspets Med. 2000; 21: Mark G., Schuchmann H.P., Sonntag C.: Formation of peroxynitrite by sonication of aerated water. J. Am. Chem. Soc., 2000; 122: Winterbourn C.C.: Oxidative reactions of hemoglobin. Methods Enzymol., 1990; 186; Cadenas E., Davies K.: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med., 2000; 29: Kehrer J.P.: The Haber Weiss reaction and mechanisms of toxicity. Toxicology, 2000; 14: Dębski B., Milner J.A.: Molekularne mechanizmy przeciwnowotworowego działania czosnku; rola reaktywnych form tlenu. Bromat. Chem. Toksykol., 2007; 40: Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M.: Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem. Biol. Interact., 2006; 160: Gibka J.: Antyutleniacze w kosmetykach. Rynek Chem., 2001; 2: Stadman E.R., Levine R.L.: Protein oxidation. Ann. N.Y. Acad. Sci., 2000; 899: Miles A.T., Hawksworth G.M., Beattie J.H., Rodilla V.: Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol., 2000: 35: Floris G., Medda R., Padiglia A., Musci G.: The physiopathological significance of ceruloplasmin. Biochem. Pharmacol. 2000; 60: Van Acker S.A., Koymans L.M., Bast A.: Molecular pharmacology of vitamin E: structural aspects of antioxidant activity. Free Radic. Biol. Med., 1993; 15: Bartosz G.: Erytrocyty, W. Fizjologia krwi, red. Z. Dąbrowski, t ; Wyd. Naukowe PWN, Warszawa. Adres: Białystok, ul. Hurtowa 1.

Antyoksydanty pokarmowe a korzyści zdrowotne. dr hab. Agata Wawrzyniak, prof. SGGW Katedra Żywienia Człowieka SGGW

Antyoksydanty pokarmowe a korzyści zdrowotne. dr hab. Agata Wawrzyniak, prof. SGGW Katedra Żywienia Człowieka SGGW Antyoksydanty pokarmowe a korzyści zdrowotne dr hab. Agata Wawrzyniak, prof. SGGW Katedra Żywienia Człowieka SGGW Warszawa, dn. 14.12.2016 wolne rodniki uszkodzone cząsteczki chemiczne w postaci wysoce

Bardziej szczegółowo

Wolne rodniki :WR. O 2 - tlen singletowy NO - tlenek azotu. HO 2 - rodnik wodoronadtlenkowy H 2 O 2 - nadtlenek wodoru O 2 anionorodnik ponadtlenkowy

Wolne rodniki :WR. O 2 - tlen singletowy NO - tlenek azotu. HO 2 - rodnik wodoronadtlenkowy H 2 O 2 - nadtlenek wodoru O 2 anionorodnik ponadtlenkowy Wolne rodniki :WR ROS = RFT RNS= RFA 1 O 2 - tlen singletowy NO - tlenek azotu O 3 - ozon OH- rodnik hydroksylowy HO 2 - rodnik wodoronadtlenkowy H 2 O 2 - nadtlenek wodoru O 2 anionorodnik ponadtlenkowy

Bardziej szczegółowo

Wolne rodniki w komórkach SYLABUS A. Informacje ogólne

Wolne rodniki w komórkach SYLABUS A. Informacje ogólne Wolne rodniki w komórkach A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj Rok studiów /semestr

Bardziej szczegółowo

Część 1: Strategia ataku 15

Część 1: Strategia ataku 15 Wstęp 13 Część 1: Strategia ataku 15 1.1. Tlen: pierwiastek życia i śmierci 15 1.1.1. Tlen pierwiastek życia 15 1.1.2. Tlen pierwiastek chorób i śmierci 16 1.2. Co to są reaktywne formy tlenu? 19 1.3.

Bardziej szczegółowo

STRES OKSYDACYJNY WYSIŁKU FIZYCZNYM

STRES OKSYDACYJNY WYSIŁKU FIZYCZNYM Agnieszka Zembroń-Łacny Joanna Ostapiuk-Karolczuk STRES OKSYDACYJNY W WYSIŁKU FIZYCZNYM STRES OKSYDACYJNY zaburzenie równowagi między wytwarzaniem a usuwaniem/redukcją reaktywnych form tlenu i azotu RONS

Bardziej szczegółowo

Aktywuj geny młodości. Badanie genetyczno-biochemiczne dotyczące własnych możliwości organizmu do spowolnienia procesów starzenia.

Aktywuj geny młodości. Badanie genetyczno-biochemiczne dotyczące własnych możliwości organizmu do spowolnienia procesów starzenia. Aktywuj geny młodości. Badanie genetyczno-biochemiczne dotyczące własnych możliwości organizmu do spowolnienia procesów starzenia. mgr Konrad Tomaszewski Dział Nauki, Badań i Rozwoju Marinex International

Bardziej szczegółowo

CIAŁO I ZDROWIE WSZECHŚWIAT KOMÓREK

CIAŁO I ZDROWIE WSZECHŚWIAT KOMÓREK CIAŁ I ZDRWIE WSZECHŚWIAT KMÓREK RGANIZM RGANY TKANKA SKŁADNIKI DŻYWCZE x x KMÓRKA x FUNDAMENT ZDRWEG ŻYCIA x PRZEMIANA MATERII WSZECHŚWIAT KMÓREK Komórki są budulcem wszystkich żywych istot, również nasze

Bardziej szczegółowo

Dr Paweł Krzyczmonik. Pracownia Elektrochemii i Korozji UŁ. 13 marzec 2013

Dr Paweł Krzyczmonik. Pracownia Elektrochemii i Korozji UŁ. 13 marzec 2013 Dr Paweł Krzyczmonik Pracownia Elektrochemii i Korozji UŁ 13 marzec 2013 Plan wykładu Wstęp o tlenie Tlen w stanie podstawowym i wzbudzony Tlen a problem energii zon oddychaniu RFT (reaktywne formy tlenu)

Bardziej szczegółowo

Nukleotydy w układach biologicznych

Nukleotydy w układach biologicznych Nukleotydy w układach biologicznych Schemat 1. Dinukleotyd nikotynoamidoadeninowy Schemat 2. Dinukleotyd NADP + Dinukleotydy NAD +, NADP + i FAD uczestniczą w procesach biochemicznych, w trakcie których

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii

Bardziej szczegółowo

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy Temat: Białka Aminy Pochodne węglowodorów zawierające grupę NH 2 Wzór ogólny amin: R NH 2 Przykład: CH 3 -CH 2 -NH 2 etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl

Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl mogą byd wykorzystywane przez jego Użytkowników

Bardziej szczegółowo

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Bliskie spotkania z biologią METABOLIZM dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Metabolizm całokształt przemian biochemicznych i towarzyszących

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Reakcje zachodzące w komórkach

Reakcje zachodzące w komórkach Reakcje zachodzące w komórkach W każdej sekundzie we wszystkich organizmach żywych zachodzi niezliczona ilość reakcji metabolicznych. Metabolizm (gr. metabole - przemiana) to przemiany materii i energii

Bardziej szczegółowo

Dr Paweł Krzyczmonik. Zakład Elektroanalizy i Elektrochemii UŁ. 23 październik 2013

Dr Paweł Krzyczmonik. Zakład Elektroanalizy i Elektrochemii UŁ. 23 październik 2013 Dr Paweł Krzyczmonik Zakład Elektroanalizy i Elektrochemii UŁ 23 październik 2013 Plan wykładu Wstęp o tlenie Tlen w stanie podstawowym i wzbudzonym Tlen a problem energii zon oddychaniu RFT (reaktywne

Bardziej szczegółowo

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :.

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :. CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A imię i nazwisko :. klasa :.. ilość punktów :. Zadanie 1 Przeanalizuj schemat i wykonaj polecenia. a. Wymień cztery struktury występujące zarówno w komórce roślinnej,

Bardziej szczegółowo

PRZEWODNIK DYDAKTYCZNY PRZEDMIOTU

PRZEWODNIK DYDAKTYCZNY PRZEDMIOTU PRZEWODNIK DYDAKTYCZNY PRZEDMIOTU (SYLABUS) NAZWA JEDNOSTKI PROWADZĄCEJ KIERUNEK: Zakład Biologii Molekularnej NAZWA KIERUNKU: Biotechnologia PROFIL KSZTAŁCENIA: ogólnoakademicki SPECJALNOŚĆ: Biotechnologia

Bardziej szczegółowo

Czy żywność GMO jest bezpieczna?

Czy żywność GMO jest bezpieczna? Instytut Żywności i Żywienia dr n. med. Lucjan Szponar Czy żywność GMO jest bezpieczna? Warszawa, 21 marca 2005 r. Od ponad połowy ubiegłego wieku, jedną z rozpoznanych tajemnic życia biologicznego wszystkich

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

WYBRANE SKŁADNIKI POKARMOWE A GENY

WYBRANE SKŁADNIKI POKARMOWE A GENY WYBRANE SKŁADNIKI POKARMOWE A GENY d r i n ż. Magdalena Górnicka Zakład Oceny Żywienia Katedra Żywienia Człowieka WitaminyA, E i C oraz karotenoidy Selen Flawonoidy AKRYLOAMID Powstaje podczas przetwarzania

Bardziej szczegółowo

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Tlen Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Ogólna charakterystyka tlenowców Tlenowce: obejmują pierwiastki

Bardziej szczegółowo

Beata Mendak fakultety z chemii II tura PYTANIA Z KLASY PIERWSZEJ

Beata Mendak fakultety z chemii II tura PYTANIA Z KLASY PIERWSZEJ Beata Mendak fakultety z chemii II tura Test rozwiązywany na zajęciach wymaga powtórzenia stężenia procentowego i rozpuszczalności. Podaję również pytania do naszej zaplanowanej wcześniej MEGA POWTÓRKI

Bardziej szczegółowo

WITAMINA E LECZY WSZYSTKO, OPRÓCZ ZŁAMANEGO SERCA. Renata Szymańska

WITAMINA E LECZY WSZYSTKO, OPRÓCZ ZŁAMANEGO SERCA. Renata Szymańska WITAMINA E LECZY WSZYSTKO, OPRÓCZ ZŁAMANEGO SERCA Renata Szymańska Tlen stanowi ¼ masy Ziemi Tlenowy paradoks W dolnych warstwach atmosfery w 1 l powietrza znajduje się 210 ml tlenu (21% obj.); Tlenek

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne

Podstawowe pojęcia i prawa chemiczne Podstawowe pojęcia i prawa chemiczne Pierwiastki, nazewnictwo i symbole. Budowa atomu, izotopy. Przemiany promieniotwórcze, okres półtrwania. Układ okresowy. Właściwości pierwiastków a ich położenie w

Bardziej szczegółowo

Substancje o Znaczeniu Biologicznym

Substancje o Znaczeniu Biologicznym Substancje o Znaczeniu Biologicznym Tłuszcze Jadalne są to tłuszcze, które może spożywać człowiek. Stanowią ważny, wysokoenergetyczny składnik diety. Z chemicznego punktu widzenia głównym składnikiem tłuszczów

Bardziej szczegółowo

Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014

Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014 Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014 S E M E S T R II Tydzień 1 24.02-28.02 2 03.03-07.03 3 10.03-14.03 Wykłady

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro

Bardziej szczegółowo

SPIS TREŚCI OD AUTORÓW... 5

SPIS TREŚCI OD AUTORÓW... 5 SPIS TREŚCI OD AUTORÓW... 5 BIAŁKA 1. Wprowadzenie... 7 2. Aminokwasy jednostki strukturalne białek... 7 2.1. Klasyfikacja aminokwasów... 9 2.1.1. Aminokwasy białkowe i niebiałkowe... 9 2.1.2. Zdolność

Bardziej szczegółowo

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja)

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja) Ważne pojęcia Stopień utlenienia Utleniacz Reduktor Utlenianie (dezelektronacja) Stopień utlenienia pierwiastka w dowolnym połączeniu chemicznym jest pojęciem umownym i określa ładunek, który istniałby

Bardziej szczegółowo

Źródła energii dla mięśni. mgr. Joanna Misiorowska

Źródła energii dla mięśni. mgr. Joanna Misiorowska Źródła energii dla mięśni mgr. Joanna Misiorowska Skąd ta energia? Skurcz włókna mięśniowego wymaga nakładu energii w postaci ATP W zależności od czasu pracy mięśni, ATP może być uzyskiwany z różnych źródeł

Bardziej szczegółowo

WSPÓŁCZESNE TECHNIKI ZAMRAŻANIA

WSPÓŁCZESNE TECHNIKI ZAMRAŻANIA WSPÓŁCZESNE TECHNIKI ZAMRAŻANIA Temat: Denaturacja białek oraz przemiany tłuszczów i węglowodorów, jako typowe przemiany chemiczne i biochemiczne zachodzące w żywności mrożonej. Łukasz Tryc SUChiKL Sem.

Bardziej szczegółowo

Spektrofotometryczna metoda oznaczania aktywności peroksydazy

Spektrofotometryczna metoda oznaczania aktywności peroksydazy Spektrofotometryczna metoda oznaczania aktywności peroksydazy Cel ćwiczenia: Ćwiczenie poświęcone jest zapoznaniu się z metodą oznaczania aktywności peroksydazy chrzanowej jako jednego z enzymów z klasy

Bardziej szczegółowo

Reaktywne formy tlenu

Reaktywne formy tlenu Reaktywne formy tlenu Aneta Wójcik Jolanta Czerniak Zastosowanie nowych metod wykrywania wolnych rodników, przy użyciu spektroskopii mikrofalowej (ESR, EPR), poznanie ich znaczenia w stanach zdrowia i

Bardziej szczegółowo

Bliskie spotkania z biologią. METABOLIZM część II. dr hab. Joanna Moraczewska, prof. UKW

Bliskie spotkania z biologią. METABOLIZM część II. dr hab. Joanna Moraczewska, prof. UKW Bliskie spotkania z biologią METABOLIZM część II dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki METABOLIZM KATABOLIZM - rozkład związków chemicznych

Bardziej szczegółowo

Związki nieorganiczne

Związki nieorganiczne strona 1/8 Związki nieorganiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Typy związków nieorganicznych: kwasy, zasady, wodorotlenki, dysocjacja jonowa, odczyn roztworu,

Bardziej szczegółowo

ŹRÓDŁA POWSTAWANIA I ODDZIAŁYWANIE ŚRODOWISKOWE WOLNYCH RODNIKÓW

ŹRÓDŁA POWSTAWANIA I ODDZIAŁYWANIE ŚRODOWISKOWE WOLNYCH RODNIKÓW dr Monika KARBARZ Zakład Fizyki i Chemii SGSP ŹRÓDŁA POWSTAWANIA I ODDZIAŁYWANIE ŚRODOWISKOWE WOLNYCH RODNIKÓW Wolne rodniki odgrywają istotną rolę w funkcjonowaniu Ŝywych organizmów. Biorą one udział

Bardziej szczegółowo

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Obliczenia stechiometryczne, bilansowanie równań reakcji redoks Materiały pomocnicze do zajęć wspomagających z chemii opracował: dr Błażej Gierczyk Wydział Chemii UAM Obliczenia stechiometryczne Podstawą

Bardziej szczegółowo

pobrano z

pobrano z ODPOWIEDZI Zadanie 1. (2 pkt) 1. promienia atomowego, promienia jonowego 2. najwyższego stopnia utlenienia Zadanie 2. (1 pkt) 1. Pierwiastek I jest aktywnym metalem. Tworzy wodorek, w którym wodór przyjmuje

Bardziej szczegółowo

Wykład 1. Od atomów do komórek

Wykład 1. Od atomów do komórek Wykład 1. Od atomów do komórek Skład chemiczny komórek roślinnych Składniki mineralne (nieorganiczne) - popiół Substancje organiczne (sucha masa) - węglowodany - lipidy - kwasy nukleinowe - białka Woda

Bardziej szczegółowo

Ćwiczenie 3 Ilościowe oznaczanie glutationu (GSH) metodą Ellmana

Ćwiczenie 3 Ilościowe oznaczanie glutationu (GSH) metodą Ellmana Ćwiczenie 3 Ilościowe oznaczanie glutationu (GSH) metodą Ellmana Wzór chemiczny glutationu (γ glutamylocysteinyloglicyna) Glutation (GSH) jest tiolowym tripeptydem o powyższym wzorze strukturalnym, występującym

Bardziej szczegółowo

Biochemia stresu oksydacyjnego. Wykład 1 Wolne rodniki i reaktywne formy tlenu

Biochemia stresu oksydacyjnego. Wykład 1 Wolne rodniki i reaktywne formy tlenu Biochemia stresu oksydacyjnego Wykład 1 Wolne rodniki i reaktywne formy tlenu ROS i RNS Reaktywne formy tlenu: - anionorodnik ponadtlenkowy (O 2.- ) - nadtlenek wodoru (H 2 O 2 ) - rodnik hydroksylowy

Bardziej szczegółowo

Wykazanie obecności oksydoreduktaz w materiale biologicznym

Wykazanie obecności oksydoreduktaz w materiale biologicznym KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Wykazanie obecności oksydoreduktaz w materiale biologicznym ĆWICZENIE 9 ZADANIE 1 OTRZYMYWANIE PREPARATU ENZYMATYCZNEGO 1. Umyty ziemniak utrzeć

Bardziej szczegółowo

FIZJOLOGIA WYSIŁKU FIZYCZNEGO ENERGETYKA WYSIŁKU, ROLA KRĄŻENIA I UKŁADU ODDECHOWEGO

FIZJOLOGIA WYSIŁKU FIZYCZNEGO ENERGETYKA WYSIŁKU, ROLA KRĄŻENIA I UKŁADU ODDECHOWEGO FIZJOLOGIA WYSIŁKU FIZYCZNEGO ENERGETYKA WYSIŁKU, ROLA KRĄŻENIA I UKŁADU ODDECHOWEGO Dr hab. Andrzej Klusiewicz Zakład Fizjologii Instytutu Sportu Tematyka wykładu obejmuje trzy systemy energetyczne generujące

Bardziej szczegółowo

protos (gr.) pierwszy protein/proteins (ang.)

protos (gr.) pierwszy protein/proteins (ang.) Białka 1 protos (gr.) pierwszy protein/proteins (ang.) cząsteczki życia materiał budulcowy materii ożywionej oraz wirusów wielkocząsteczkowe biopolimery o masie od kilku tysięcy do kilku milionów jednostek

Bardziej szczegółowo

Reakcje utleniania i redukcji

Reakcje utleniania i redukcji Reakcje utleniania i redukcji Reguły ustalania stopni utlenienia 1. Pierwiastki w stanie wolnym (nie związane z atomem (atomami) innego pierwiastka ma stopień utlenienia równy (zero) 0 ; 0 Cu; 0 H 2 ;

Bardziej szczegółowo

Równowaga kwasowo-zasadowa. Zakład Chemii Medycznej PUM

Równowaga kwasowo-zasadowa. Zakład Chemii Medycznej PUM Równowaga kwasowozasadowa Zakład Chemii Medycznej PUM Teorie kwasów i zasad Teoria dysocjacji elektrolitycznej Arheniusa: podczas rozpuszczania w wodzie wodzie kwas: dysocjuje z odszczepieniem kationu

Bardziej szczegółowo

Rola Ŝelaza w organizmach Ŝywych

Rola Ŝelaza w organizmach Ŝywych Rola Ŝelaza w organizmach Ŝywych Maria Bałanda Instytut Fizyki Jądrowej im. H. Niewodniczańskiego PAN Rola żelaza w organizmach żywych Żelazo, najbardziej rozpowszechniony pierwiastek magnetyczny w skorupie

Bardziej szczegółowo

Wykrywanie obecności enzymów.

Wykrywanie obecności enzymów. ĆWICZENIE 5 Wykrywanie obecności enzymów. Prowadzący: mgr inż. Jadwiga ZAWISZA Miejsce ćwiczenia: sala 104 CEL ĆWICZENIA Celem ćwiczenia jest praktyczne poznanie enzymów z klasy oksydoreduktaz. PODSTAWY

Bardziej szczegółowo

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Scenariusz lekcji chemii w klasie III gimnazjum Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Czas trwania lekcji: 2x 45 minut Cele lekcji: 1. Ogólny zapoznanie

Bardziej szczegółowo

Geometria wiązania hemu w oksymioglobinie

Geometria wiązania hemu w oksymioglobinie Białka wiążące tlen Geometria wiązania hemu w oksymioglobinie Hem Hb A tetrametr zbudowany z dwóch identycznych łańcuchów α (141 reszt aminokwasowych, N koniec stanowi walina, a C koniec arginina) i dwóch

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Tlen: toksyczny pierwiastek życia

Tlen: toksyczny pierwiastek życia Tlen: toksyczny pierwiastek życia Wykład 1 Biochemia stresu oksydacyjnego Dr hab. Agnieszka Łoboda Literatura: Grzegorz Bartosz Druga twarz tlenu Barry Halliwell & John Gutteridge Free radicals in biology

Bardziej szczegółowo

Transport przez błony

Transport przez błony Transport przez błony Transport bierny Nie wymaga nakładu energii Transport aktywny Wymaga nakładu energii Dyfuzja prosta Dyfuzja ułatwiona Przenośniki Kanały jonowe Transport przez pory w błonie jądrowej

Bardziej szczegółowo

KLASA II Dział 6. WODOROTLENKI A ZASADY

KLASA II Dział 6. WODOROTLENKI A ZASADY KLASA II Dział 6. WODOROTLENKI A ZASADY Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą definiuje wskaźnik; wyjaśnia pojęcie: wodorotlenek; wskazuje metale aktywne i mniej aktywne; wymienia

Bardziej szczegółowo

Oddychanie komórkowe. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych. Oddychanie zachodzi w mitochondriach Wykład 7.

Oddychanie komórkowe. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych. Oddychanie zachodzi w mitochondriach Wykład 7. Wykład 7. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych Literatura dodatkowa: Oddychanie to wielostopniowy proces utleniania substratów związany z wytwarzaniem w komórce metabolicznie użytecznej

Bardziej szczegółowo

EGZAMIN MATURALNY Z CHEMII

EGZAMIN MATURALNY Z CHEMII Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MCH-W1D1P-021 EGZAMIN MATURALNY Z CHEMII Instrukcja dla zdającego Czas pracy 90 minut 1. Proszę sprawdzić, czy arkusz

Bardziej szczegółowo

Metabolizm białek. Ogólny schemat metabolizmu bialek

Metabolizm białek. Ogólny schemat metabolizmu bialek Metabolizm białek Ogólny schemat metabolizmu bialek Trawienie białek i absorpcja aminokwasów w przewodzie pokarmowym w żołądku (niskie ph ~2, rola HCl)- hydratacja, homogenizacja, denaturacja białek i

Bardziej szczegółowo

B) podział (aldolowy) na 2 triozy. 2) izomeryzacja do fruktozo-6-p (aldoza w ketozę, dla umoŝliwienia kolejnych przemian)

B) podział (aldolowy) na 2 triozy. 2) izomeryzacja do fruktozo-6-p (aldoza w ketozę, dla umoŝliwienia kolejnych przemian) Glikoliza (Przegląd kluczowych struktur i reakcji) A) przygotowanie heksozy do podziału na dwie triozy: 1)fosforylacja glukozy (czyli przekształcenie w formę metabolicznie aktywną) 2) izomeryzacja do fruktozo-6-p

Bardziej szczegółowo

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji:

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji: Zadanie 1. [0-3 pkt] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Suma protonów i elektronów anionu X 2- jest równa 34. II. Stosunek masowy

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII

ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII Zadanie 1. Na rysunku przedstawiono fragment układu okresowego pierwiastków. Dokoocz zdania tak aby były prawdziwe. Wiązanie jonowe występuje w związku chemicznym

Bardziej szczegółowo

Mechanizmy działania i regulacji enzymów

Mechanizmy działania i regulacji enzymów Mechanizmy działania i regulacji enzymów Enzymy: są katalizatorami, które zmieniają szybkość reakcji, same nie ulegając zmianie są wysoce specyficzne ich aktywność może być regulowana m.in. przez modyfikacje

Bardziej szczegółowo

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016 XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego II Etap - 18 stycznia 2016 Nazwisko i imię ucznia: Liczba uzyskanych punktów: Drogi Uczniu, przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

TIENS Kubek H-Cup. Wybór doskonałości

TIENS Kubek H-Cup. Wybór doskonałości TIENS Kubek H-Cup Wybór doskonałości Woda jest niezbędna do życia Badania nad wysoce uwodornioną wodą Rok 2007 Prof. Ohsawa z Uniwersytetu Medycznego w Japonii opublikował pracę na temat wodoru jako przeciwutleniacza,

Bardziej szczegółowo

Ćwiczenie 6 Aminokwasy

Ćwiczenie 6 Aminokwasy Ćwiczenie 6 Aminokwasy Aminokwasy są to związki dwufunkcyjne, których cząsteczki zawierają grupy karboksylowe i aminowe: grupa aminowa:nh 2 grupa karboksylowa COOH Nomenklatura aminokwasów: Naturalne aminokwasy

Bardziej szczegółowo

Wydział Rehabilitacji Katedra Nauk Przyrodniczych Kierownik: Prof. dr hab. Andrzej Wit BIOCHEMIA. Obowiązkowy

Wydział Rehabilitacji Katedra Nauk Przyrodniczych Kierownik: Prof. dr hab. Andrzej Wit BIOCHEMIA. Obowiązkowy Przedmiot: BIOCHEMIA I. Informacje ogólne Jednostka organizacyjna Nazwa przedmiotu Wydział Rehabilitacji Katedra Nauk Przyrodniczych Kierownik: Prof. dr hab. Andrzej Wit BIOCHEMIA Kod przedmiotu FI-07

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

Suplementy. Wilkasy 2014. Krzysztof Gawin

Suplementy. Wilkasy 2014. Krzysztof Gawin Suplementy Wilkasy 2014 Krzysztof Gawin Suplementy diety - definicja Suplement diety jest środkiem spożywczym, którego celem jest uzupełnienie normalnej diety, będący skoncentrowanym źródłem witamin lub

Bardziej szczegółowo

TIENS L-Karnityna Plus

TIENS L-Karnityna Plus TIENS L-Karnityna Plus Zawartość jednej kapsułki Winian L-Karnityny w proszku 400 mg L-Arginina 100 mg Niacyna (witamina PP) 16 mg Witamina B6 (pirydoksyna) 2.1 mg Stearynian magnezu pochodzenia roślinnego

Bardziej szczegółowo

Tlen: toksyczny pierwiastek życia

Tlen: toksyczny pierwiastek życia Tlen: toksyczny pierwiastek życia Wykład 1 Biochemia stresu oksydacyjnego Literatura: Grzegorz Bartosz Druga twarz tlenu Barry Halliwell & John Gutteridge Free radicals in biology and medicine Trochę o

Bardziej szczegółowo

Spis treści. Od Autora 9. Wprowadzenie 11 CZĘŚĆ A. MOLEKULARNE MENU 13

Spis treści. Od Autora 9. Wprowadzenie 11 CZĘŚĆ A. MOLEKULARNE MENU 13 Spis treści Od Autora 9 Wprowadzenie 11 CZĘŚĆ A. MOLEKULARNE MENU 13 1. Białka 13 1.1. Budowa białek 13 1.1.1. Peptydy 15 1.1.2. Struktury przestrzenne łańcuchów polipeptydowych 16 1.1.2.1. Bioróżnorodność

Bardziej szczegółowo

Wydział Przyrodniczo-Techniczny UO Kierunek studiów: Biotechnologia licencjat Rok akademicki 2009/2010

Wydział Przyrodniczo-Techniczny UO Kierunek studiów: Biotechnologia licencjat Rok akademicki 2009/2010 Kierunek studiów: Biotechnologia licencjat 6.15 BCH2 II Typ studiów: stacjonarne Semestr: IV Liczba punktow ECTS: 5 Jednostka organizacyjna prowadząca przedmiot: Samodzielna Katedra Biotechnologii i Biologii

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z chemii dla klasy II gimnazjum oparte na programie nauczania Chemia Nowa Era

Wymagania edukacyjne na poszczególne oceny z chemii dla klasy II gimnazjum oparte na programie nauczania Chemia Nowa Era Wymagania edukacyjne na poszczególne oceny z chemii dla klasy II gimnazjum oparte na programie nauczania Chemia Nowa Era IV. Kwasy Opracowała mgr Agnieszka Para Ocena dopuszczająca [1] wymienia zasady

Bardziej szczegółowo

Wymagania edukacyjne z chemii Klasa II WODOROTLENKI A ZASADY

Wymagania edukacyjne z chemii Klasa II WODOROTLENKI A ZASADY Wymagania edukacyjne z chemii Klasa II WODOROTLENKI A ZASADY Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą wymienia rodzaje wskaźników; sprawdza doświadczalnie działanie podaje przykłady

Bardziej szczegółowo

Aminokwasy, peptydy i białka. Związki wielofunkcyjne

Aminokwasy, peptydy i białka. Związki wielofunkcyjne Aminokwasy, peptydy i białka Związki wielofunkcyjne Aminokwasy, peptydy i białka Aminokwasy, peptydy i białka: - wiadomości ogólne Aminokwasy: - ogólna charakterystyka - budowa i nazewnictwo - właściwości

Bardziej szczegółowo

Na początek przyjrzymy się więc, jak komórka rośliny produkuje ATP, korzystając z energii światła w fazie jasnej fotosyntezy.

Na początek przyjrzymy się więc, jak komórka rośliny produkuje ATP, korzystając z energii światła w fazie jasnej fotosyntezy. Fotosynteza jako forma biosyntezy Bogactwo molekuł biologicznych przedstawionych w poprzednim rozdziale to efekt ich wytwarzania w komórkach w wyniku różnorodnych powiązanych ze sobą procesów chemicznych.

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH TYPY REAKCJI CHEMICZNYCH Opracowanie: dr inż Krystyna Moskwa, dr hab. Barbara Stypuła, mgr Agnieszka Tąta Reakcje chemiczne to procesy, w czasie których substancje ulegają przemianom, prowadzącym do powstawania

Bardziej szczegółowo

Równowaga kwasowo-zasadowa. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowaga kwasowo-zasadowa. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga kwasowozasadowa Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Krytyka pojęcia ph ph = log [H + ] ph [H+] 1 100 mmol/l D = 90 mmol/l 2 10 mmol/l D = 9 mmol/l 3 1 mmol/l 2 Krytyka pojęcia

Bardziej szczegółowo

Best Body. W skład FitMax Easy GainMass wchodzą:

Best Body. W skład FitMax Easy GainMass wchodzą: Gainery > Model : - Producent : Fitmax Easy GainMass - to produkt przeznaczony jest szczególnie dla sportowców trenujących dyscypliny siłowe, szybkościowo-siłowe oraz wytrzymałościowe. Doskonale dopracowany

Bardziej szczegółowo

Zidentyfikuj związki A i B. w tym celu podaj ich wzory półstrukturalne Podaj nazwy grup związków organicznych, do których one należą.

Zidentyfikuj związki A i B. w tym celu podaj ich wzory półstrukturalne Podaj nazwy grup związków organicznych, do których one należą. Zadanie 1. (2 pkt) Poniżej przedstawiono schemat syntezy pewnego związku. Zidentyfikuj związki A i B. w tym celu podaj ich wzory półstrukturalne Podaj nazwy grup związków organicznych, do których one należą.

Bardziej szczegółowo

Zagadnienia do egzaminu z biochemii (studia niestacjonarne)

Zagadnienia do egzaminu z biochemii (studia niestacjonarne) Zagadnienia do egzaminu z biochemii (studia niestacjonarne) Aminokwasy, białka, cukry i ich metabolizm 1. Aminokwasy, wzór ogólny i charakterystyczne grupy. 2. Wiązanie peptydowe. 3. Białka, ich struktura.

Bardziej szczegółowo

Badanie mechanizmów działania fotouczulaczy - pomiary tlenu singletowego i wolnych rodników

Badanie mechanizmów działania fotouczulaczy - pomiary tlenu singletowego i wolnych rodników Badanie mechanizmów działania fotouczulaczy - pomiary tlenu singletowego i wolnych rodników Marta Kempa Badanie aktywności fotouczulaczy stosowanych w terapii PDT metodami fizykochemicznymi (prof. dr hab.

Bardziej szczegółowo

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I MATERIAŁY POMOCNICZE 1 GDYBY MATURA 00 BYŁA DZISIAJ OKRĘ GOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY Informacje ARKUSZ EGZAMINACYJNY I 1. Przy każdym zadaniu podano

Bardziej szczegółowo

V Małopolski Konkurs Chemiczny dla Gimnazjalistów

V Małopolski Konkurs Chemiczny dla Gimnazjalistów strona 1/5 V Małopolski Konkurs hemiczny dla Gimnazjalistów Etap III (wojewódzki) Poniżej podano treść sześciu zadań problemowych, za rozwiązanie których możesz uzyskać 74 punkty. Rozwiazując zadania rachunkowe,

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH CHEMIA SPALANIA TYPY REAKCJI CHEMICZNYCH Jednocząsteczkowe (I rzędu): A C+D (np. C 2 H 6 CH 3 + CH 3 ) Dwucząsteczkowe (II- rzędu) (np. H + O 2 OH + O) A + B C + D Trójcząsteczkowe (III rzędu) A + B +

Bardziej szczegółowo

BIOTECHNOLOGIA W KOSMETOLOGII SŁAWOMIR WIERZBA

BIOTECHNOLOGIA W KOSMETOLOGII SŁAWOMIR WIERZBA BIOTECHNOLOGIA W KOSMETOLOGII SŁAWOMIR WIERZBA TREŚĆ WYKŁADÓW Budowa i biologia skóry. Typy skóry. Funkcje skóry. Układ odpornościowy skóry. Starzenie się skóry. Przenikanie przez skórę. Absorpcja skórna.

Bardziej szczegółowo

EFEKTEM FOTODYNAMICZNYM.

EFEKTEM FOTODYNAMICZNYM. Dr Agnieszka Wolnicka-Głubisz Zagadnienia do przygotowania: Prawo Lamberta-Beera, absorbancja, stany wzbudzone cząsteczek (diagram Jabłońskiego), stan singletowy, stan tripletowy, zjawisko fosforescencji

Bardziej szczegółowo

podstawami stechiometrii, czyli działu chemii zajmującymi są obliczeniami jest prawo zachowania masy oraz prawo stałości składu

podstawami stechiometrii, czyli działu chemii zajmującymi są obliczeniami jest prawo zachowania masy oraz prawo stałości składu Podstawy obliczeń chemicznych podstawami stechiometrii, czyli działu chemii zajmującymi są obliczeniami jest prawo zachowania masy oraz prawo stałości składu prawo zachowania masy mówi, że w reakcji chemicznej

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

TAF TEMPERATURE ADAPTED FEEDS. - Odpowiednia pasza na daną porę roku TEMPERATURE ADAPTED FEEDS TM

TAF TEMPERATURE ADAPTED FEEDS. - Odpowiednia pasza na daną porę roku TEMPERATURE ADAPTED FEEDS TM TEMPERATURE ADAPTED FEEDS - Odpowiednia pasza na daną porę roku TEMPERATURE ADAPTED FEEDS - Odpowiednia pasza na daną porę roku Ryby to organizmy zmiennocieplne. Temperatura środowiska wpływa na pobieranie

Bardziej szczegółowo

Test kompetencji z chemii do liceum. Grupa A.

Test kompetencji z chemii do liceum. Grupa A. Test kompetencji z chemii do liceum. Grupa A. 1. Atomy to: A- niepodzielne cząstki pierwiastka B- ujemne cząstki materii C- dodatnie cząstki materii D- najmniejsze cząstki pierwiastka, zachowujące jego

Bardziej szczegółowo

VITA-MIN Plus połączenie witamin i minerałów, stworzone z myślą o osobach aktywnie uprawiających sport.

VITA-MIN Plus połączenie witamin i minerałów, stworzone z myślą o osobach aktywnie uprawiających sport. Witaminy i minerały > Model : Producent : Olimp VITAMIN Plus połączenie witamin i minerałów, stworzone z myślą o osobach aktywnie uprawiających sport. DZIAŁA PROZDROWOTNIE WZMACNIA SYSTEM ODPORNOŚCIOWY

Bardziej szczegółowo

Biochemia stresu oksydacyjnego. Wykład 1 Wolne rodniki i reaktywne formy tlenu

Biochemia stresu oksydacyjnego. Wykład 1 Wolne rodniki i reaktywne formy tlenu Biochemia stresu oksydacyjnego Wykład 1 Wolne rodniki i reaktywne formy tlenu Właściwości chemiczne tlenu Tlen: pierwiastek życia - Tlen stanowi ok. 1/4 masy Ziemi (53.8% atomów skorupy Ziemi to atomy

Bardziej szczegółowo

Układ pracy. Wstęp i cel pracy. Wyniki. 1. Ekspresja i supresja Peroksyredoksyny III w stabilnie transfekowanej. linii komórkowej RINm5F

Układ pracy. Wstęp i cel pracy. Wyniki. 1. Ekspresja i supresja Peroksyredoksyny III w stabilnie transfekowanej. linii komórkowej RINm5F The influence of an altered Prx III-expression to RINm5F cells Marta Michalska Praca magisterska wykonana W Zakładzie Medycyny Molekularnej Katedry Biochemii Klinicznej Akademii Medycznej w Gdańsku Przy

Bardziej szczegółowo

Spis treści. Fotosynteza. 1 Fotosynteza 1.1 WĘGLOWODANY 2 Cykl Krebsa 2.1 Acetylokoenzym A

Spis treści. Fotosynteza. 1 Fotosynteza 1.1 WĘGLOWODANY 2 Cykl Krebsa 2.1 Acetylokoenzym A Spis treści 1 Fotosynteza 1.1 WĘGLOWODANY 2 Cykl Krebsa 2.1 Acetylokoenzym A Fotosynteza Jest to złożony, wieloetapowy proces redukcji dwutlenku węgla do substancji zawierających atomy węgla na niższych

Bardziej szczegółowo

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE.

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. 1. Którą mieszaninę można rozdzielić na składniki poprzez filtrację; A. Wodę z octem. B. Wodę z kredą. C. Piasek z cukrem D. Wodę

Bardziej szczegółowo

Chemia analityczna. Redoksymetria. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Chemia analityczna. Redoksymetria. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Chemia analityczna Redoksymetria Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Miareczkowanie redoksymetryczne Oksydymetria - miareczkowanie reduktora utleniaczem (częstsze - utleniacz nie

Bardziej szczegółowo