Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Lista 1. Prawdopodobieństwo klasyczne i geometryczne"

Transkrypt

1 Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty wybierzemy losowo króla kier? (c) w rzucie symetryczną kostką wypadnie 6? (d) liczba wybrana losowo spośród liczb 1,..., 100 jest parzysta? (e) liczba wybrana losowo spośród liczb 1,..., 100 jest podzielna przez 3? (f) wybrany losowo dzień roku przestępnego jest w kwietniu? (g) suma oczek w rzucie dwoma symetrycznymi kostkami jest nieparzysta? (h) w każdym z sześciu rzutów symetryczną monetą wypadnie orzeł? 2. Siedem opon samochodowych zostało ponumerowanych liczbami od 1 do 7 w zależności od ich jakości (1 to najlepsza opona, a 7 najgorsza). Klient wybrał losowo bez zwracania cztery opony. Jakie jest prawdopodobieństwo, ze najlepsza z wybranych opon ma jakość Hasło potrzebne do uzyskania połączenia w sieci komputerowej składa się z dwóch cyfr i następnie czterech dużych liter alfabetu angielskiego. Znaleźć prawdopodobieństwo, że osoba postronna odgadnie hasło, jeśli wiadomo, ze pierwsza cyfra jest nieparzysta, a wsród liter są dokładnie dwie litery A. 4. Z pudełka zawierającego 90 śrub dobrych i 10 wadliwych wyjęto 10 śrub. Jakie jest prawdopodobienstwo, że wszystkie one są dobre? W rozwiązaniu okreslić precyzyjnie przestrzeń probabilistyczną, modelującą podaną sytuację. 5. Z talii kart wyciągnięto cztery karty. Znaleźć prawdopodobieństwo, że będą wśród nich dokładnie dwa asy. 6. W skrzynce znajduje się 47 żarówek dobrych i 3 przepalone. Wyciągamy losowo pięć żarówek. Jakie jest prawdopodobieństwo, że będą wśród nich najwyżej dwie przepalone? 7. Co jest bardziej prawdopodobne: wyrzucenie sumy oczek równej 8 w dwóch czy też w trzech rzutach symetryczną kostką? 8. Winda rusza z siedmioma pasażerami i zatrzymuje się na dziesięciu piętrach. Jakie jest prawdopodobieństwo, że każdy z pasażerów wysiądzie na innym piętrze? 9. Wśród 40 książek stojących na półce w losowej kolejności jest słownik trzytomowy. Obliczyć prawdopodobieństwo tego, że tomy słownika stoją obok siebie w rosnącej kolejności od lewej do prawej. 10. Zakładając, że urodzenia chłopca i dziewczynki są jednakowo prawdopodobne, obliczyć prawdopodobieństwo tego, że w rodzinie z dwójką dzieci jest co najmniej jeden chłopiec.

2 Metody statystyczne. Lista Rzucamy raz trzema kostkami do gry. Obliczyć prawdopodobieństwo tego, że: a) dwa oczka wypadną tylko na jednej kostce, b) trzy oczka wypadną przynajmniej na jednej kostce. 12. Na odcinku [0, 1] umieszczono losowo punkty L i M. Jaka jest szansa, że a) środek odcinka łączącego te punkty należy do [0, 1/3]? b) z L jest bliżej do M niż do zera? 13. Patyk został złamany w dwóch losowych miejscach. Jakie jest prawdopodobieństwo, że z powstałych trzech kawałków można zbudować trójk at. 14. Dwie osoby umawiają się na spotkanie. Każda z nich przychodzi w losowej chwili między godzina 16 a 17 i czeka 15 min. Jakie jest prawdopodobieństwo, że się spotkają? Ile czasu powinna czekać każda z osób, aby prawdopodobieństwo spotkania było większe niż 0.75?

3 Metody statystyczne. Lista 2. 3 Lista 2. Prawdopodobieństwo warunkowe 1. Załóżmy, że E i F są zdarzeniami takimi, że Pr(E) = 1/3, Pr(F ) = 1/2, a Pr(E F ) = 2/5. Znaleźć Pr(F E). 2. Jakie jest prawdopodobieństwo warunkowe, że w w pięciu rzutach symetryczną monetą pojawią się cztery reszki, jesli wiadomo, że w pierwszym rzucie wypadła reszka? 3. Pierwsze pudełko zawiera dwie białe piłki i trzy niebieskie, a w drugim są cztery białe piłki i jedna niebieska. Frida najpierw losuje jedno z dwóch pudełek, a następnie wybiera z niego piłkę. Jakie jest prawdopodobieństwo, że Frida wybrała piłkę z pierwszego pudełka, jeśli wiadomo, że ta piłka jest niebieska? 4. Załóżmy, że 8% kolarzy używa sterydów. Pozytywny wynik testu na doping ma 96% kolarzy zażywających sterydy oraz 9% kolarzy, którzy tego nie robią. Jakie jest prawdopodobieństwo, że losowo wybrany kolarz, który ma pozytywny wynik testu na obecność sterydów, jest na dopingu? 5. Jedna osoba na ludzi ma rzadkie genetyczne uszkodzenie. Test, wykrywający tę chorobę, daje wynik pozytywny u 99.9% pacjentów mających to uszkodzenie i u 0.02 % osób zdrowych. Jakie jest prawdopodobieństwo, że (a) osoba mająca dodatni wynik testu, jest chora? (b) osoba mająca ujemny wynik testu, jest zdrowa? 6. Przypuśćmy, że 5 wiadomości na 7 zawiera spam. Załóżmy ponadto, że prawdopodobieństwo wystąpienia słowa ekscytujący jest równe 0.08, gdy wiadomość jest spamem i w przeciwnym razie. Jakie jest prawdopodobieństwo, że wiadomość zawierająca słowo ekscytujący, zostanie uznana za spam?

4 Metody statystyczne. Lista 3. 4 Lista 3. Niezależność zdarzeń. Schemat Bernoulliego. 1. Załóżmy, że prawdopodobieństwo, że dziecko jest chłopcem wynosi 0.51 i że płcie dzieci urodzonych w rodzinie są niezależne. Jakie jest prawdopodobieństwo, że w rodzinie z pięciorgiem dzieci (a) są dokładnie trzej chłopcy? (b) jest co najmniej jeden chłopiec? (c) jest co najmniej jedna dziewczyna? (d) wszystkie dzieci tej samej płci? 2. Prawdopodobieństwo, że 4 pojawia na pierwszej kostce wynosi 2/7, a prawdopodobieństwo, że 3 pojawia na drugiej kostce to 2/7. Inne wyniki dla każdej z obu kostek pojawiają się z prawdopodobieństwem 1/7. Jakie jest prawdopodobieństwo uzyskania sumy 7 w rzucie tymi dwoma kostkami? 3. Znajdź prawdopodobieństwo, że w rodzinie z pięciorgiem dzieci nie ma chłopca, jeśli płcie dzieci są niezależne i jeśli (a) prawdopodobieństwo, że urodzi się chłopiec jest równe 0.5, (b) prawdopodobieństwo, że urodzi się chłopiec jest równe p, gdzie p jest ustaloną liczbą z przedziału (0, 1). (c) prawdopodobieństwo, że i-te dziecko jest chłopcem jest równe p i (i/100). = Test składa się z 25 pytań. Odpowiadając na każde z nich można wybrać jedną z 4 możliwych odpowiedzi, przy czym trzy z nich są błędne. Zakładając, że student zgaduje odpowiedzi obliczyć prawdopodobieństwo, że odpowie on poprawnie na: (a) co najmniej 20 pytań, (b) mniej niż 5 pytań. 5. Pewne lekarstwo leczy 90% przypadków pewnej choroby. Poddajemy kuracji 20 losowo wybranych chorych. Znajdź prawdopodobieństwo tego, że wyleczymy (a) wszystkich chorych w naszej próbie, (b) wszystkich oprócz jednego, (c) dokładnie 18 chorych, (d) dokładnie 90% chorych w naszej próbie. 6. Pewne lekarstwo uszkadza wątrobę u 1% pacjentów. Testujemy lekarstwo na 50 pacjentach. Oblicz prawdopodobieństwo, że (a) żaden pacjent nie dozna uszkodzenia choroby, (b) co najmniej jeden pacjent dozna uszkodzenia wątroby. 7. Wyznacz prawdopodobieństwo każdego z poniższych zdarzeń w n doświadczeniach ze schematu Bernoulliego z prawdopodobieństwem sukcesu p:

5 Metody statystyczne. Lista 3. 5 (a) nie pojawi się żadna porażka, (b) pojawi się co najmniej jedna porażka, (c) pojawi się co najwyżej jedna porażka, (d) pojawią się dokładnie dwie porażki. 8. Znajdź prawdopodobieństwo, że losowo wygenerowany ciąg bitów długości 10 zaczyna się od 1 i kończy się na 00, jeśli bity są generowane niezależnie i jeśli (a) bity 0 i 1 są równie prawdopodobne, (b) prawdopodobieństwo, że bit jest równy 1 wynosi 0.6. (c) prawdopodobieństwo tego, że jest i-ty bit równy 1 wynosi 1, dla i = 1,..., 10. 2i 9. W meczu piłki nożnej z prawdopodobieństwem 1 6 wygrywają goście, z 1 2 gospodarze, a z prawdopodobieństwem 1 będzie remis. Obliczyć prawdopodobieństwo, że w 14 3 meczach będzie 7 zwycięstw gospodarzy i 3 remisy.

6 Lista 4. Dyskretne zmienne losowe 6 Lista 4. Dyskretne zmienne losowe. 1. Zmienna losowa X przyjmuje wartości 2, 3, 5, 8 z prawdopodobieństwami odpowiednio równymi 2/10, 4/10, 3/10, 1/10. Wyznaczyć dystrybuantę tej zmiennej i obliczyć (a) P (X 3), (b) P (X 2.5), (c) P (2.7 X < 5.1), (d) E(X), (e) Var(X). 2. Zmienna losowa X ma rozkład dwumianowy B(n, p) z n = 10 i p = 1/2. Obliczyć (a) P (X = 5), (b) P (X 9), (c) P (3 X < 6), (d) E(X), (e) Var(X). 3. Jaka jest oczekiwana suma oczek w rzucie trzema symetrycznymi kostkami? 4. Jaka jest oczekiwana liczba orłów w pięciu rzutach symetryczna monetą? 5. Jaka jest oczekiwana liczba szóstek w dziesięciu rzutach symetryczną kostką? 6. Jaka jest oczekiwana suma oczek w dwóch rzutach kostką, która nie jest symetryczna i 3 pojawia się dwa razy częściej od pozostałych liczb? 7. Rzucamy symetryczna kostką tak długo az pojawi się szóstka lub wykonamy 10 rzut. Jaka jest oczekiwana liczba rzutów? 8. Rzucamy symetryczna monetą tak długo az pojawią się dwa orły lub wykonamy szósty rzut. Jaka jest oczekiwana liczba rzutów? 9. Rzucamy symetryczną kostką tak długo, aż wypadnie 6. (a) Jakie jest prawdopodobieństwo, że trzeba będzie wykonać n rzutów? (b) Jaka jest oczekiwana liczba wykonanych rzutów? 10. Jaka jest wariancja liczby orłów, wyrzuconych w 10 rzutach symetryczną monetą? 11. Jaka jest wariancja liczby szóstek, wyrzuconych w 10 rzutach symetryczną kostką?

7 Lista 5. Ciągłe zmienne losowe 7 Lista 5. Ciągłe zmienne losowe. 1. Zmienna losowa X ma rozkład jednostajny na przedziale ( 1, 1). (a) Obliczyć P ( 0, 5 < X 0, 75). (b) Wyznaczyć liczbę x, dla której P ( x < X < x) = Czas potrzebny do przeprowadzenia pewnego testu krwi ma rozkład jednostajny na przedziale (50, 75) s. Jaki procent testów (a) trwa dłużej niż 70 s.? (b) kończy się przed upływem minuty? 3. Zmienna losowa X ma rozkład normalny wykładniczy z parametrem λ = 2. Wyznaczyć prawdopodobieństwa P (X > 1), P (X 3), P (1 X < 3), P ( 5 < X < 2). 4. Zmienna losowa X ma rozkład normalny N(10, 2 2 ). Wyznaczyć prawdopodobieństwa P (X < 13), P (X > 9), P (6 < X < 14), P (2 < X < 4). 5. Wykorzystując odpowiednie tablice wyznaczyć kwantyle rzędu 1 α dla rozkładu (a) N(0, 1); (b) chi-kwadrat z v stopniami swobody; (c) t-studenta z v stopniami swobody. Przyjąć, że α {0.005, 0.025, 0.05} i v {1, 10, 20}.

8 Lista 6. Wstępna analiza danych. 8 Lista 6. Wstępna analiza danych. 1. Zmierzono grubość (w µm) warstwy krzemu nanoszonej przez pewien automat otrzymując: 5.2, 4.6, 6.1, 6.0, 5.0, 5.3, 4.0, 4.0, 5.4, 6.1, 7.2, 5.0, 4.0, 5.4, 6.0, 4.0, 3.5, 6.2, 5.0, 6.2, 5.0, 7.1, 5.0,5.0, 5.1, 5.0, 4.0, 5.0, 6.1, 5.0, 5.2, 5.0, 5.0, 3.0, 6.0, 5.0, 4.0, 6.0, 4.3, 4.0. Dla podanej próby: (a) zbudować szereg rozdzielczy; (b) narysować histogram i dystrybuantę empiryczną; (c) wyznaczyć średnią, wariancję, odchylenie standardowe i współczynnik zmienności w próbie; (d) wyznaczyć medianę, kwartyl dolny i górny, rozstęp miedzykwartylowy i modalną w próbie; (e) sporządzić wykres ramkowy, (f) ocenić symetrię i skośność histogramu. 2. Oblicz odchylenie standardowe, wariancję i średnią z próby dla każdej z poniższych fikcyjnych próbek. Korzystaj z definicji a nie gotowych funkcji na kalkulatorze. a) 16, 13, 18, 13; b) 38, 30, 34, 38, 35; c) 1, 1, 5, 1; d) 4, 6, 1, 4, 2. Jak zmienią się te parametry, gdy każdą z powyższych wartości wyrazimy w nowych jednostkach, przyjmując że dla pewnych ustalonych liczb a i b zachodzi: nowa wartość = a*stara wartość+b. 3. Farmakolog zmierzył ilość dopaminy w mózgu u siedmiu szczurów i otrzymał następujące wyniki w (w molach/g): 6.8, 5.3, 6.0, 5.9, 6.8, 7.4, 6.2. Oblicz (a) średnią i odchylenie standardowe z próby, (b) medianę oraz pierwszy i trzeci kwartyl z próby. Jak zmienią się te parametry, gdy zamiast wartości 6.2 pojawi się wartość 100? 4. Całkowitą ilość protein produkowanych przez krowy mleczne możżna ocenić okresowo badając ich mleko. W tabeli zawarto wartośći całkowitej rocznej produkcji protein (lb.) dla 28 krów rasy Holstein. Dieta i inne warunki były takie same dla wszystkich krów. 425, 481, 477, 434, 410, 397, 438, 545, 528, 496, 502, 529, 500, 465, 539, 408, 513, 496, 477, 445, 546, 471, 495, 445, 565, 499, 508, 426. Wyznacz rozkład częstości i przedstaw go w postaci tabeli, histogramu i wykresu łodyga liście. Za przedziały klasowe przyjmij: [380, 410), [410, 440), [440, 470), [470, 500), [500, 530), [530, 560), [560, 590). 5. Obserwowano przyrost wagi u byków podczas 140 dniowego okresu testowego. Przeciętny dzienny przyrost wagi (lb./dzień) 13 byków na tej samej diecie jest zawarty w poniższej tabeli: 3.89, 3.51, 3.97, 3.31, 3.21, 3.36, 3.67, 3.24, 3.27, 3.48, 3.52, 3.77, Oblicz średnią i medianę tej próby. Ustal kwartyle i wykonaj wykres pudełkowy.

9 Lista 6. Wstępna analiza danych Badanie długości czasu T bezawaryjnej pracy 200 elementów danego typu pewnego urządzenia dało następujące wyniki: przedział liczba przedział liczba obserwacji obserwacji [0,300) 53 [1800,2100) 9 [300, 600) 41 [2100,2400) 7 [600, 900) 30 [2400,2700) 5 [900, 1200) 22 [2700,3000) 3 [1200, 1500) 16 [3000,3300) 2 [1500, 1800) 12 [3300, ) 0 (a) oszacuj wartość oczekiwaną i wariancją zmiennej T, tzn. parametry E(T ) i Var(T ), (b) oszacuj P( T [600, 1200) ), tzn. prawdopodobieństwo tego, że zmienna T przyjmie wartość z przedziału [600, 1200). (c) naszkicuj histogram i porównaj go z wykresem wykresem funkcji { λ exp( λt), t 0, f(t) = 0, t < 0 przyjmując, że nieznany parametr λ ma wartość 1 X. Uwaga. W obliczeniach przyjmij, że wszystkie obserwacje z ustalonego przedziału leżą w środku tego przedziału. Rysunek wykonaj za pomocą pakietu Excel. 7. Suma opadów (w mm) w Warszawie w lipcu w kolejnych latach poczynając od roku 1811 do roku 1960 wynosiła: 35, 82, 48, 75, 77, 123, 117, 75, 92, 101, 116, 113, 42, 44, 36, 71, 9, 74, 114, 49, 83, 94, 223, 28, 57, 46, 33, 86, 85, 74, 72, 104, 37, 229, 41, 50, 73, 40, 76, 100, 171, 41, 160, 120, 144, 46, 143, 105, 29, 92, 138, 44, 26, 80, 50, 84, 78, 74,53, 51, 76, 30, 48, 6, 54, 63, 20, 74, 81, 45, 50, 174, 82, 18, 139, 31, 47, 78, 173, 71, 72, 20, 85, 19, 35, 39, 120, 92, 172, 98, 37, 77, 143, 26, 96, 13, 132, 109, 116, 132, 37, 32, 91, 101, 77, 87, 99, 181, 166, 68, 5, 122, 33, 84, 66, 64, 149, 23, 20, 115, 71, 108, 55, 166, 124, 115, 53, 71, 49, 73, 93, 76, 113, 53, 77, 37, 78, 124, 84, 44, 68, 26, 65, 136, 154, 82, 88, 38, 80, 159. (a) Obliczyć średnią, wariancję, medianę i rozstęp międzykwartylowy w tej próbie. (b) Sporządzić histogram i wykres ramkowy (box-plot). (c) Odrzucić po 15% skrajnych wyników i ponownie wyznaczyć średnią w próbie. 8. Dla danych z poprzedniego zadania rozważyć oddzielnie sumy opadów z lat oraz z lat Wyznaczyć wykresy ramkowe i histogramy dla tych danych i ocenić, czy po 100 latach zmienił się rozkład sumy opadów w lipcu.

10 Lista 7. Przedziały ufności dla średniej i proporcji. 10 Lista 7. Przedziały ufności dla średniej i proporcji. Oznaczenia: Średnia, wariancja i odchylenie standardowe w próbie x 1, x 2,..., x n to x = 1 n x i, s 2 = 1 n (x i x) 2, s = 1 n (x i x) n n 1 n 1 2. i=1 i=1 1. Dla danych 0.1, 0.15, 0.1, 0.05, oszacować na poziomie ufności 1 α = 0.9 wartość oczekiwaną przyjmując, że rozkład jest normalny oraz σ = Z populacji o rozkładzie normalnym N(m, σ 2 ) pobrano próbę pięcioelementową: 2.15, 2.08, 2.17, 1.95, Znaleźć przedział ufności dla wartości oczekiwanej na poziomie ufności 1 α = 0.9, wiedząc że σ = 1/ Średni czas świecenia lampy, obliczony na podstawie próby losowej rozmiaru n = 100, wynosi 1000 godzin. Na poziomie ufności 1 α = 0.95 wyznaczyć przedział ufności dla średniego czasu świecenia lampy z całej partii, jeśli wiadomo, że odchylenie standardowe długości świecenia lampy wynosi σ = 40 godzin. 4. Wytrzymałość pewnego materiału budowlanego ma rozkład normalny N(m, σ 2 ). Próba n = 5 elementowa wylosowanych sztuk tego materiału dała wyniki: x = 20.8 N/cm 2, s = 2.8N/cm 2. (a) Na poziomie ufności 0.99 zbudować przedział ufności dla średniej m. (b) Na poziomie ufności 0.95 zbudować przedział ufności dla wariancji σ Struktura wieku osób zatrudnionych w firmie komputerowej jest następująca: Wiek w latach Liczba osób Zakładając, że wiek osób ma rozkład normalny N(m, σ 2 ), wyznaczyć przedział ufności dla wariancji wieku na poziomie ufności 0, Dokonano pomiarów zawartości pewnego enzymu w tkance 9 grzybów w pewnych ustalonych warunkach eksperymentalnych. Średnia z tych pomiarów wyniosła 5111 jednostek a odchylenie standardowe 818 jednostek. (a) Załóżmy, że zawartość badanego enzymu w populacji grzybów ma rozkład normalny. Skonstruuj 95% przedział ufności dla średniej zawartości tego enzymu w tkance grzybów. (b) Podaj interpretację skonstruowanego przedziału ufności. (c) W jaki sposób można zweryfikować założenie o normalności rozkładu. 7. Oblicz średnią, odchylenie standardowe i błąd standardowy średniej w pięcioelementowej próbie: 10.0, 8.9, 9.1, 11.7, 7.9. Skonstruuj 90% przedział ufności dla µ, przy założeniu, że obserwacje pochodzą z rozkładu normalnego. 8. Zoolog zmierzył długość ogona u 86 myszy leśnych. Średnia długość ogona wyniosła mm a odchylenie standardowe z próby 3.06 mm. 95% przedział ufności dla średniej długości ogona w tej populacji myszy wynosi [59.77, 61.09]. i=1

11 Lista 7. Przedziały ufności dla średniej i proporcji. 11 (a) Prawda czy fałsz (uzasadnij): Mamy 95% pewności, że średnia długość ogona w naszej próbie zawiera się między mm a mm. (b) Prawda czy fałsz (uzasadnij): Mamy 95% pewności, że średnia długość ogona w populacji myszy zawiera się w przedziale między mm a mm. 9. W celu sprawdzenia czy pewien lek obniża ciśnienie krwi u chorych na nadciśnienie, wylosowano n = 20 pacjentów i zmierzono im ciśnienie przed podaniem tego leku i po pewnym czasie po podaniu. Otrzymano następujące wyniki: Przed podaniem Po podaniu Przed podaniem Po podaniu Zakładając normalność odpowiedniego rozkładu skonstruuj 95% przedział ufności dla różnicy miȩdzy średnim ciśnieniem przed i po podaniu leku. 10. Na podstawie danych z dwóch niezależnych próbek o liczności n 1 = 10 i n 2 = 20, wylosowanych z populacji o rozkładach normalnych, otrzymano następujące wartości średnich z prób badanej cechy: x = 14.3 i ȳ = Wariancje cech w obu populacjach są znane i wynoszą σ 2 1 = 22, σ 2 2 = 18. Skonstruuj 99% przedział ufności dla różnicy miȩdzy średnim wartościami tych cech. 11. Cechy X i Y w dwóch populacjach mają rozkłady normalne o tej samej wariancji. Z dwóch niezależnych prób prostych o liczebnościach odpowiednio 100 i 120 obliczono x = 1.15, s 2 x = 2.4 oraz ȳ = 1.05, s 2 y = 2.3. Skonstruuj 95% przedział ufności dla różnicy miȩdzy średnim wartościami tych cech. Czy można twierdzić, że średnie w tych populacjach są takie same? 12. Przeprowadzono badanie krwi u 70 orangutanów i stwierdzono, że 14 z nich ma grupę krwi B. Skonstruuj 95% przedział ufności dla proporcji p wystȩpowania grupy krwi B u orangutanów. 13. Spośród 500 losowo wybranych mieszkańców Kalifornii 302 opowiedziało się za dopuszczalnością kary śmierci. Skonstruuj 99% przedział ufności dla oszacowania proporcji p wszystkich mieszkańców Kalifornii, którzy są za dopuszczalnością kary śmierci. 14. Spośród 296 losowo wybranych kobiet 63 stwierdziło, że przy kupowaniu koszul zwracają uwagę ma markę towaru. Wśród 251 mężczyzn 27 przyznało się do analogicznego zachowania. Skonstruuj 90% przedział ufności dla oszacowania różnicy p K p M między proporcjami kobiet i mężczyzn zwracających uwagę na markę kupowanych koszul.

12 Lista 8. Testy dla średniej i proporcji. 12 Lista 8. Testy dla średniej i proporcji. 1. Pewien automat w fabryce czekolady wytwarza tabliczki czekolady o nominalnej wadze 250 g. Wiadomo, że rozkład wagi produkowanych tabliczek jest normalny N(m, 5 2 ). Kontrola techniczna pobrała w pewnym dniu próbę losową 16 tabliczek czekolady i otrzymała średnią wagę 244 g. Czy można stwierdzić, że automat rozregulował się i produkuje tabliczki czekolady o mniejszej niż przewiduje norma wadze? Na poziomie istotności α = 0.05 zweryfikuj odpowiednią hipotezę. 2. Spośród pacjentów szpitala, leczonych na pewną chorobę, wylosowano próbę 26 chorych, którym następnie zmierzono ciśnienie tętnicze. Okazało się, że średnia i odchylenie standardowe z próby były równe x = 135 i s = 40. Zakładając, że ciśnienie ma rozkład normalny N(m, σ 2 ) zweryfikować hipotezę, że pacjenci pochodzą z populacji o średnim ciśnieniu tętniczym 120. Przyjąć poziom istotności α = Firma doradztwa inwestycyjnego zapewnia, że przeciętny przychód z akcji w pewnej gałęzi przemysłu wynosi 11, 5 %. Inwestor chce sprawdzić tę opinię, więc pobiera próbę złożoną z akcji 100 spółek należących do tej gałęzi i stwierdza, że średni przychód z akcji w próbie wynosi x = 10, 8 % przy odchyleniu standardowym z próby s = 3, 4 %. Czy inwestor ma dostateczne powody do odrzucenia zapewnienia firmy doradczej na poziomie istotności α = 0, 05? 4. W celu sprawdzenia czy pewien lek obniża ciśnienie krwi u chorych na nadciśnienie, wylosowano n = 20 pacjentów i zmierzono im ciśnienie przed podaniem tego leku i po pewnym czasie po podaniu. Otrzymano następujące wyniki: Przed podaniem Po podaniu Przed podaniem Po podaniu Sformułuj hipotezę zerową i hipotezę alternatywną, a następnie zweryfikuj je (a) zakładając normalność rozkładu (o rozkład jakiej zmiennej tu chodzi?), (b) nie zakładając normalności. Przyjmij poziom istotności α = Na podstawie danych z dwóch niezależnych próbek o liczności n 1 = 10 i n 2 = 20, wylosowanych z populacji o rozkładach normalnych, otrzymano następujące wartości średnich z prób badanej cechy: x = 14.3 i ȳ = Wariancje cech w obu populacjach są znane i wynoszą σ 2 1 = 22, σ 2 2 = 18. Na poziomie istotności 0.05 zweryfikować hipotezę o równości średnich, tzn. H : µ 1 = µ 2, wobec hipotezy alternatywnej K : µ 1 µ Cechy X i Y w dwóch populacjach mają rozkłady normalne o tej samej wariancji. Z dwóch niezależnych prób prostych o liczebnościach odpowiednio 100 i 120 obliczono x = 1.15, s 2 x = 2.4 oraz ȳ = 1.05, s 2 y = 2.3. Na poziomie istotności α = 0.05 zweryfikuj hipotezę o równości tych średnich, przyjmując alernatywę jednostronną.

13 Lista 8. Testy dla średniej i proporcji Czy chwasty zmniejszają plony kukurydzy? Spośród 8 poletek obsianych kukurydzą wybrano losowo 4 i całkowicie je wyplewiono. Pozostałych 4 poletka częściowo wyplewiono, pozostawiając po 3 chwasty na m 2 powierzchni. W poniższej tabelce przedstawiono informacje o uzyskanych zbiorach: Liczba chwastów na m 2 plony (w buszlach na akr) Sformułować hipotezę zerową H 0 i hipotezę alternatywną H 1, a następnie zweryfikować je na poziomie istotności α = 0, 05 (a) zakładając normalność rozkładów (o rozkłady jakich zmiennych tu chodzi?), (b) nie zakładając normalności. 8. Z dwóch dużych partii słupków betonowych wybrano próbki o liczebnościach n 1 = 90 oraz n 2 = 110. Średnie wytrzymałości na ściskanie osiowe obliczone z tych próbek wynosiły: x = kg/cm 2, ȳ = kg/cm 2, a odchylenia standardowe odpowiednio s x = 2 kg/cm 2 i s y = 1.7 kg/cm 2. Na poziomie istotności α = 0.05 zweryfikować hipotezę o jednakowej wytrzymałości słupków w obu partiach. 9. Pobrano dwie losowe próby ziaren fasoli dwóch gatunków i zmierzono długości tychże ziaren. Dla gatunku A otrzymano x = 12.3 mm, s x = 1.8 mm, natomiast dla gatunku B otrzymano y = 11.9 mm, s y = 2.1 mm. Wiedząc, że liczebności tych prób wynosiły odpowiednio n = 450 i m = 500, zweryfikować hipotezę o równości średnich długości ziaren obu gatunków fasoli. Przyjąć poziom istotności α = Przeprowadzono badanie krwi u 70 orangutanów i stwierdzono, że 14 z nich ma grupę krwi B. Niech p oznacza nieznaną proporcję wystȩpowania grupy krwi B u orangutanów. Na poziomie istotności α = 0.05 zweryfikować hipotezę że p = 0.25 przy hipotezie alternatywnej p < Spośród 296 losowo wybranych kobiet 63 stwierdziło, że przy kupowaniu koszul zwracają uwagę ma markę towaru. Wśród 251 mężczyzn 27 przyznało się do analogicznego zachowania. Na poziomie istotności α = 0.01 zweryfikuj hipotezę zerową o równości proporcji p K i p M kobiet i mężczyzn zwracających uwagę na markę kupowanych koszul.

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Statystyka i rachunek prawdopodobieństwa. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b)

Bardziej szczegółowo

Lista 6. Wstępna analiza danych.

Lista 6. Wstępna analiza danych. Lista 6. Wstępna analiza danych. 1 Lista 6. Wstępna analiza danych. 1. Zmierzono grubość (w µm) warstwy krzemu nanoszonej przez pewien automat otrzymując: 5.2, 4.6, 6.1, 6.0, 5.0, 5.3, 4.0, 4.0, 5.4, 6.1,

Bardziej szczegółowo

Statystyka stosowana MAP 1079

Statystyka stosowana MAP 1079 MAP 1079 Lista 1a 1 Statystyka stosowana MAP 1079 Lista 1a (powtórka z rachunku prawdopodobieństwa) 1. Zmienna losowa X przyjmuje wartości 2, 3, 5, 8 z prawdopodobieństwami odpowiednio równymi 2/10, 4/10,

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Prawdopodobieństwo Odp. Odp. 6 Odp. 1/6 Odp. 1/3. Odp. 0, 75.

Prawdopodobieństwo Odp. Odp. 6 Odp. 1/6 Odp. 1/3. Odp. 0, 75. Prawdopodobieństwo 2.1. Rzucamy dwukrotnie kostką do gry. Obliczyć prawdopodobieństwo, że suma oczek będzie większa od 9, jeżeli za pierwszym razem wypadło 6 oczek? Odp. 1 2. 2.2. W skrzyni znajduje się

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Rozkłady statystyk z próby. Statystyka

Rozkłady statystyk z próby. Statystyka Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

STATYSTYKA STOSOWANA MAP1079

STATYSTYKA STOSOWANA MAP1079 STATYSTYKA STOSOWANA MAP1079 LISTY ZADAŃ opracowanie W. Wawrzyniak-Kosz Literatura podstawowa 1.J.Koronacki, J.Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Zmienne losowe zadania na sprawdzian

Zmienne losowe zadania na sprawdzian Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

1 Podstawy rachunku prawdopodobieństwa

1 Podstawy rachunku prawdopodobieństwa 1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego

Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego Przedziały ufności Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego czyli P( μ [a,b] ) = 1 α P( μ < a ) = α/2 P( μ > b ) =

Bardziej szczegółowo

1.1 Wstęp Literatura... 1

1.1 Wstęp Literatura... 1 Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

07DRAP - Zmienne losowe: dyskretne i ciągłe

07DRAP - Zmienne losowe: dyskretne i ciągłe 07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Zaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów)

Zaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów) Zaliczenie Ćwiczenia (zaliczenie = min. 15 punktów) Kolokwium (8/10 czerwca) = maks. 30 punktów Dwa zadania z listy pod linkiem = maks. 1 punkt http://www.fuw.edu.pl/~prozanski/ws/upload/20150415-zadania.php

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 11 Anna Skowrońska-Szmer lato 2016/2017 Powtórzenie materiału 2 Zadanie 1 Wykład 1 Eksperyment polega na pojedynczym rzucie symetryczną kostką. Przestrzeń zdarzeń

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Estymatory i testy statystyczne - zadania na kolokwium

Estymatory i testy statystyczne - zadania na kolokwium Estymatory i testy statystyczne - zadania na kolokwium Zad. 1. Cecha X populacji ma rozkład N(µ, σ), gdzie µ jest znane, a σ nieznane. Niech X 1,...,X n będzie n-elementową próbą prostą pobraną z tej populacji.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp. Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Teoria Estymacji. Do Powyżej

Teoria Estymacji. Do Powyżej Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I.

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I. STATYSTYKA zadania do ćwiczeń Weryfikacja hipotez część I Zad 1 W pewnej firmie postanowiono zbadać staż pracy pracowników W tym celu wylosowano prostą próbę losową z populacji pracowników i otrzymano,

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

ESTYMACJA PARAMETRYCZNA I WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

ESTYMACJA PARAMETRYCZNA I WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH ESTYMACJA PARAMETRYCZNA I WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH ZESTAW ZADAŃ ZALECANYCH DO PRZEROBIENIA PRZED PRZYSTĄPIENIEM DO EGZAMINU ZE STATYSTYKI 1 Oznaczenia: E estymacja, W weryfikacja, µ, σ, p, n

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo