Inwestycje i ryzyko na rynku nieruchomości KONCEPCJE RYZYKA. Dr Ewa Kusideł

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inwestycje i ryzyko na rynku nieruchomości KONCEPCJE RYZYKA. Dr Ewa Kusideł"

Transkrypt

1 KONCEPCJE RYZYKA Dr Ewa Kusideł

2 Ryzyko a niepewność Inwestycje różne i ryzyko pojęcia na rynku niepewności nieruchomości Lp. Definicja Źródło Niepewność jest stanem ludzkiego umysłu. Wrażenie czy złudzenie przypadkowości jest wyłącznie efektem niedoskonałości wiedzy ludzkiej o obiektywnych prawach, które rządzą procesami w świecie zewnętrznym. Niepewność sensu stricte jest to niepewność, co do realizacji przedmiotu przewidywania, w tym stopnia lub zakresu jego realizacji, a więc niepewność subiektywną, będącą stanem ludzkiego umysłu. Niepewność jest to sytuacja, w której prawdopodobieństwa wystąpienia zdarzeń nie są znane. Nie wiadomo nawet, jakie są możliwości. Willett, The Economic Theory of Risk and Insurant, Columbia University Studies in Political Science, 1901, Nr. 2. F. H. Knight, Risk, Uncertainty and Profit, University of Boston Press, Boston 1921, s J. A. F. Stoner, Ch. Wankel, Kierowanie, PWE, Warszawa 1996, s. 125 i nast. 4 Niepewność jest immanentną cechą rzeczywistości, wynikającą z wielkiej złożoności i zmienności podmiotów w zależności od zachodzących między nimi, ich otoczeniem zdarzeń oraz ograniczonej możliwości kontrolowania przez ludzi czynników kształtujących rzeczywistość. Występuje niepewność naturalna (obiektywna, zewnętrzna, egzogeniczna, niezależna), której źródłem jest środowisko zewnętrzne i zachodzące w nim procesy wymykające się dokładnemu przewidywaniu i kontroli. K. Jajuga, T. Jajuga, Inwestycje. Instrumenty finansowe, inżynieria finansowa, PWN, Warszawa 1998, s Stan niepewności jest to sytuacja, w której podejmujący decyzję nie zna wszystkich możliwości wyboru, ryzyka związanego z każdą z nich oraz ich możliwości konsekwencji. R. W. Griffin, Podstawy zarządzania organizacjami, PWN, Warszawa 2005, s Niepewność, sytuacja, gdy nie można określić, jakie elementy (lub przynajmniej cześć z nich) składają się na nią, jaka jest ich wartość lub jakie jest prawdopodobieństwo ich wystąpienia. Taka sytuacja często występuje w przypadku problemów, które nie pojawiły się w przeszłości, a charakteryzują się dużym stopniem złożoności. F. Knight jednoznacznie stwierdził, że niepewność była mylona z ryzykiem, tymczasem tylko ryzyko jest mierzalne, natomiast niepewność jest niemierzalna. Praca F. Knight, Risk, Uncertainty and Profit. Dziś niepewność bywa traktowana jako cecha natury, czyli zjawisko obiektywne, egzogeniczne, zaś ryzyko jako zjawisko subiektywne lub na poły subiektywne, które powstaje, gdy pojawia się człowiek gotowy działać w warunkach niepewności. Wysokość ryzyka zależy zarówno od samej niepewności, jaki i od stosunku człowieka do tego zjawiska, dlatego może być różnie oceniane przez różnych ludzi działających w podobnych warunkach. Encyklopedia organizacji i zarządzania, PWE, Warszawa 1981, s T.T Kaczmarek, Ryzyko i zarządzanie, Diffin, Warszawa 2005, s. 30. Z. Madej, Poglądy na ryzyko w europejskim kręgu kulturowym, pod redakcją naukową B. R. Kuca, Zarządzanie ryzykiem wyzwania XXI wieku, Wydawnictwo Wyższej Szkoły Zarządzania i Prawa im. Heleny Chodkowskiej w Warszawie, Warszawa 2007, s.36.

3 Definicje ryzyka Inwestycje wg i różnych ryzyko na rynku źródeł nieruchomości p. L Definicja Źródło 1. Ryzyko jest to niepewność dotycząca wystąpienia określonego zdarzenia, w warunkach istnienia dwóch lub więcej możliwości, przy czym ryzyko odnosi się do osób lub rzeczy. E. Smaga, Ryzyko i zwrot w inwestycjach, Fundacja rozwoju Rachunkowości w Polsce, Warszawa 1995, s Ryzyko odnosi się do decyzji, a właściwie do działania podejmowanego w jej wyniku. Ryzyko decyzji wynika nie tylko z niepewności natury, ale również od stosunku decydenta do ryzyka, tzn. od skłonności do podejmowania decyzji ryzykownych. Na ryzyko decyzji inwestycyjnych mają wpływ zarówno ryzyko wynikające z niepewności natury oraz ryzyko wynikające ze stosunku inwestora do ryzyka. K. Jajuga, T. Jajuga, Inwestycje. Instrumenty finansowe, inżynieria finansowa, PWN, Warszawa 1998, s Stan ryzyka sytuacja, w której dostępność poszczególnych możliwości i związane z każdą z nich potencjalne korzyści i koszty są znane z pewnym szacunkowym prawdopodobieństwem. R. W. Griffin, Podstawy zarządzania organizacjami, PWN, Warszawa 2005, s Ryzyko, sytuacja, gdy co najmniej jeden z elementów składających się na nią nie jest znany, ale znane jest prawdopodobieństwo jego wystąpienia (lub ich jeżeli tych elementów jest więcej). Prawdopodobieństwo to może być wymierne, albo tylko odczuwalne przez podejmującego działanie (decyzję). Warunki ryzyka występują tylko wtedy, kiedy istniejące doświadczenia z przeszłości dotyczące podobnych zdarzeń można porównać z obecną sytuacją. Encyklopedia organizacji i zarządzania, PWE, Warszawa 1981, s R.D. Luce oraz H. Riffy przedstawiają definicje ryzyka, jako: Przypadki, kiedy działanie prowadzi do jakiegoś wyniku z pewnego zbioru możliwych wyników, z których każdy ma znane podmiotowi decyzyjnemu prawdopodobieństwo wystąpienia, Rezultaty działania w warunkach ryzyka mogą być skwantyfikowane za pomocą rachunku prawdopodobieństwa. M. Bratnicki, J. Strużyna, Przedsiębiorczość i kapitał intelektualny, Wydawnictwo Akademii Ekonomicznej w Katowicach, Katowice 2001, s. 52.

4 W naukach ekonomicznych występują dwie koncepcję ryzyka: Inwestycje i ryzyko na rynku nieruchomości negatywna, w której ryzyko traktowane jest jako zagrożenie i oznacza możliwość nieosiągnięcia oczekiwanego efektu; pozytywna, traktująca ryzyko zarówno jako zagrożenie i szansa. W tej koncepcji ryzyko daje możliwość uzyskania efektu różniącego się in plus bądź in minus od oczekiwanego efektu. Źródło: K. Jajuga, Zarządzanie ryzykiem, PWN, Warszawa 2007, s. 13.

5 Pomiar ryzyka stanowi kluczowy etap procesu zarządzania nim. Znalezienie adekwatnych mierników ryzyka odgrywa istotną rolę w jego kontroli. Podział miar ryzyka: miary zmienności (volatility) odzwierciedlają zmiany finansowe cen lub stóp zwrotu; miary wrażliwości (sensitivity) odzwierciedlają wpływ pewnych zmiennych, zwanych czynnikami ryzyka na finansowe ceny czy stopy zwrotu; miary zagrożenia (downside risk) dotyczą niekorzystnych odchyleń od oczekiwanych wartości cen lub stóp zwrotu.

6 Miary zmienności Najbardziej popularnymi miarami ryzyka są statystyczne miary rozproszenia (zmienności), które dzielą się na bezwzględne i względne. Do miar bezwzględnych zalicza się: odchylenie standardowe, wariancję, rozstęp, rozstęp kwartylowy, odchylenie przeciętne, odchylenie ćwiartkowe. Względną miarą rozproszenia jest współczynnik zmienności. Miary zmienności umożliwiają opis zmian finansowych stóp zwrotu lub cen. Obliczając miary z tej grupy, bierze się pod uwagę rozkłady stóp zwrotu lub cen z inwestycji i wyznacza dla nich statystyczne miary rozproszenia rozkładu.

7 Wybrane miary zmienności Inwestycje i ryzyko na rynku nieruchomości Miara Wzór Właściwości Odchylenie standardowe stopy zwrotu σ st = 1 n n t=1 (r t r) 2, gdzie, r 1, r 2,, r n to dany zbiór obserwacji historycznych stóp zwrotu. Określa, o ile przeciętnie na plus (minus) odchylają się możliwe stopy zwrotu od oczekiwanej stopy zwrotu. Ryzyko związane z danym papierem wartościowym jest tym większe, im wyższe jest odchylenie standardowe. Wariancja var = Odchylenie przeciętne d = 1 n n i=1 n i=1 r i r 2 n r i r Określa rozproszenie wokół średniej. Odchylenie ćwiartkowe Współczynnik zmienności Średnia arytmetyczna bezwzględnych odchyleń stóp zwrotu od mediany tych stóp zwrotu Q = 1 2 Q 3 Q 1, gdzie, Q odchylenie ćwiartkowe, Q 3 - kwartyl trzeci (75% stóp zwrotu nie jest wyższa od tej wartości, a 25% nie jest niższa), Q 1 kwartyl pierwszy, wartość dzieląca stopy zwrotu tak, że 75% stóp zwrotu jest wyższa, a 25% jest niższa od tej wartości. V = S r n S Me = 1 r n i=1 i Me, gdzie, me mediana stóp zwrotu Stosuje się celem określenia ryzyka instrumentu, którego rozkład stóp zwrotu ma nieskończoną wariancję lub nie można jej wyznaczyć. Określa zróżnicowanie 50% wartości stóp zwrotu położonych między dwoma kwartynami. Odchylenie ćwiartkowe wnosi niepełne informacje ale jest odporne na wartości nietypowe. Określa on, jakie ryzyko przypada na jednostkową stopę zwrotu. Oblicza się ją w przypadku, gdy miarą dochodu jest mediana stóp zwrotu. Połowa rozstępu σ r = 0,5 r max r min Obliczana gdy miarą dochodu jest średnia z wartości maksymalnej i minimalnej stopy zwrotu. Źródło: W. Tarczyński, M. Mojsewicz, Zarządzanie ryzykiem, PWE, Warszawa 2001, s ; A. Pasztyła,

8 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 8 RYZYKO miara zmienności Występuje wtedy, gdy oczekiwana stopa zwrotu różni się od rzeczywistej. Tak rozumiane ryzyko może być zdefiniowane za pomocą odchylenia standardowego (pierwiastka z wariancji) stopy zwrotu (ang. standard deviation of returns): s n t 1 ( R n R 1 t ) 2

9 Miary wrażliwości Miary wrażliwości odzwierciedlają wpływ różnych czynników ryzyka na finansowe ceny (bądź stopy zwrotu). Im większa jest wrażliwość ceny (stopy zwrotu) papierów wartościowych na działanie czynników ją determinujących, tym większe jest ryzyko. Liczba wyznaczanych miar ryzyka zależy od liczby analizowanych czynników ryzyka, które są podstawą do wyznaczenia wartości krytycznych oraz obszarów bezpieczeństwa inwestycji kapitałowych. E. Ostrowska, Rynek kapitałowy, PWE, Warszawa 2007, s

10 Wśród miar wrażliwości wyróżniamy: duration i zmodyfikowany duration; współczynnik beta (odnośnie akcji i ich portfeli); współczynnik wrażliwości modelu wyceny arbitrażowej (APT); współczynnik zabezpieczenia dla kontraktu terminowego; greckie współczynniki (stosowane w odniesieniu do opcji).

11 Wrażliwość może być określana wartościową lub procentową: W = V X, W % = V/V, X gdzie, W wrażliwość, V wartość, cena instrumentu, Inwestycje i ryzyko na rynku nieruchomości X parametry rynkowe (czynnik ryzyka).

12 Miary zagrożenia Oparte są na koncepcji ryzyka rozumianego negatywnie, czyli niepożądane przez inwestora odchylenia cen lub stóp zwrotu od spodziewanych ich poziomów. Utożsamiane są z sytuacjami zagrożenia stratą i uwzględniają najgorsze możliwe warunki niepewności. Wyróżniamy wśród nich:

13 Miary zagrożenia Semiodchylenie standardowe stopy zwrotu, Semiodchylenie przeciętne stopy zwrotu, Semiwariancja stopy zwrotu, Prawdopodobieństwo nieosiągania poziomu aspiracji, Współczynnik semizmienności stóp zwrotu, Value at risk (VaR). E. Ostrowska, Rynek, op. cit., s. 179 i nast.

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Zarządzanie ryzykiem. Dorota Kuchta

Zarządzanie ryzykiem. Dorota Kuchta Zarządzanie ryzykiem Dorota Kuchta 1 Literatura Krzysztof Jajuga (red.), Zarządzanie ryzykiem, PWN, 2007 Joanna Sokołowska, Psychologia decyzji ryzykownych, Academica, 2005 Iwona Staniec, Janusz Zawiła

Bardziej szczegółowo

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka Pomiar ryzyka Miary obiektywne stosowane w kwantyfikacji ryzyka rynkowego towarzyszącego zaangażowaniu środków w inwestycjach finansowych obejmują: Miary zmienności, Miary zagrożenia, Miary wrażliwości.

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Wykład 1 Sprawy organizacyjne

Wykład 1 Sprawy organizacyjne Wykład 1 Sprawy organizacyjne 1 Zasady zaliczenia Prezentacja/projekt w grupach 5 osobowych. Każda osoba przygotowuje: samodzielnie analizę w excel, prezentację teoretyczną w grupie. Obecność na zajęciach

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu

Bardziej szczegółowo

Postawy wobec ryzyka

Postawy wobec ryzyka Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 5 212 EWA DZIAWGO ANALIZA WŁASNOŚCI OPCJI SUPERSHARE Wprowadzenie Proces globalizacji rynków finansowych stwarza

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Janusz Kotowicz W8 Wydział Inżynierii i Ochrony Środowiska Politechnika Częstochowska Wpływ stopy dyskonta na przepływ gotówki. Janusz Kotowicz

Bardziej szczegółowo

Bezpieczeństwo biznesu - Wykład 8

Bezpieczeństwo biznesu - Wykład 8 Wykład 8. Ryzyko bankowe Pojęcie ryzyka bankowego i jego rodzaje. Ryzyko zagrożenie nieosiągniecia zamierzonych celów Przyczyny wzrostu ryzyka w działalności bankowej. Gospodarcze : wzrost, inflacja, budżet,

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Materiały uzupełniające do

Materiały uzupełniające do Dźwignia finansowa a ryzyko finansowe Przedsiębiorstwo korzystające z kapitału obcego jest narażone na ryzyko finansowe niepewność co do przyszłego poziomu zysku netto Materiały uzupełniające do wykładów

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

RYZYKO FINANSOWE W DZIAŁALNOŚCI PRZEDSIĘBIORSTW

RYZYKO FINANSOWE W DZIAŁALNOŚCI PRZEDSIĘBIORSTW PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEAH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 335 2014 Rachunek kosztów i rachunkowość zarządcza. Teoria i praktyka ISSN 1899-3192 Anna Glińska

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi metodami i technikami analizy finansowej na podstawie nowoczesnych instrumentów finansowych

Bardziej szczegółowo

Bankowość Zajęcia nr 5 i 6

Bankowość Zajęcia nr 5 i 6 Motto zajęć: "za złoty dukat co w słońcu błyszczy" Bankowość Zajęcia nr 5 i 6 Ryzyko bankowe Ryzyko płynności Rola bilansu i cash flow; Metoda luki: Aktywa określonego rodzaju (AOR), Pasywa określonego

Bardziej szczegółowo

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH,

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH, Opcje - wprowadzenie Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony wcześniej kurs terminowy. W dniu rozliczenia transakcji terminowej forward:

Bardziej szczegółowo

Zarządzanie ryzykiem finansowym Kod przedmiotu

Zarządzanie ryzykiem finansowym Kod przedmiotu Zarządzanie ryzykiem finansowym - opis przedmiotu Informacje ogólne Nazwa przedmiotu Zarządzanie ryzykiem finansowym Kod przedmiotu 04.3-WZ-ZarzD-ZRF-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

ćwiczenia 30 zaliczenie z oceną

ćwiczenia 30 zaliczenie z oceną Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: dr Rafał Kusy Poziom studiów (I lub II stopnia): II stopnia Tryb studiów: Stacjonarne

Bardziej szczegółowo

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Autor: Agata Świderska

Autor: Agata Świderska Autor: Agata Świderska Optymalizacja wielokryterialna polega na znalezieniu optymalnego rozwiązania, które jest akceptowalne z punktu widzenia każdego kryterium Kryterium optymalizacyjne jest podstawowym

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR WŁASNOŚCI OPCJI CAPPED.

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR WŁASNOŚCI OPCJI CAPPED. ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 213 EWA DZIAWGO Uniwersytet Mikołaja Kopernika w Toruniu WŁASNOŚCI OPCJI CAPPED Streszczenie W artykule

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Prace magisterskie 1. Założenia pracy 2. Budowa portfela

Prace magisterskie 1. Założenia pracy 2. Budowa portfela 1. Założenia pracy 1 Założeniem niniejszej pracy jest stworzenie portfela inwestycyjnego przy pomocy modelu W.Sharpe a spełniającego następujące warunki: - wybór akcji 8 spółek + 2 papiery dłużne, - inwestycja

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

MATRYCA EFEKTÓW KSZTAŁCENIA

MATRYCA EFEKTÓW KSZTAŁCENIA ZAŁĄCZNIK NR 2 MATRYCA EFEKTÓW KSZTAŁCENIA Studia podyplomowe ZARZĄDZANIE FINANSAMI I MARKETING Przedmioty OPIS EFEKTÓW KSZTAŁCENIA Absolwent studiów podyplomowych - ZARZĄDZANIE FINANSAMI I MARKETING:

Bardziej szczegółowo

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ryzyko i efektywność Ćwiczenia ZPI 1 Stopa zwrotu 2 Zadanie 1. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli.

Bardziej szczegółowo

ANALIZA I ZARZADZANIE PORTFELEM. Specjalista ds. Analiz Giełdowych Łukasz Porębski

ANALIZA I ZARZADZANIE PORTFELEM. Specjalista ds. Analiz Giełdowych Łukasz Porębski ANALIZA I ZARZADZANIE PORTFELEM Specjalista ds. Analiz Giełdowych Łukasz Porębski PLAN PREZENTACJI 1) Efektywnośd rynków finansowych 2) Teoria portfela Markowitza (Nobel w 1990 r.) 3) Dywersyfikacja 4)

Bardziej szczegółowo

OGŁOSZENIE O ZMIANIE STATUTU UNIOBLIGACJE HIGH YIELD FUNDUSZU INWESTYCYJNEGO ZAMKNIĘTEGO Z DNIA 23 CZERWCA 2016 R.

OGŁOSZENIE O ZMIANIE STATUTU UNIOBLIGACJE HIGH YIELD FUNDUSZU INWESTYCYJNEGO ZAMKNIĘTEGO Z DNIA 23 CZERWCA 2016 R. OGŁOSZENIE O ZMIANIE STATUTU UNIOBLIGACJE HIGH YIELD FUNDUSZU INWESTYCYJNEGO ZAMKNIĘTEGO Z DNIA 23 CZERWCA 2016 R. Niniejszym, Union Investment Towarzystwo Funduszy Inwestycyjnych S.A. ogłasza o zmianie

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku.

Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Zakład Ubezpieczeń Społecznych Departament Statystyki Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Warszawa 2010 I. Badana populacja. W marcu 2010 r. emerytury

Bardziej szczegółowo

Projekcja inflacji Narodowego Banku Polskiego materiał edukacyjny

Projekcja inflacji Narodowego Banku Polskiego materiał edukacyjny Projekcja inflacji Narodowego Banku Polskiego materiał edukacyjny Plan prezentacji I. Projekcja inflacji NBP - podstawowe zagadnienia II. Główne założenia projekcji inflacji NBP III. Sposób prezentacji

Bardziej szczegółowo

Rynek akcji. Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PKB globalnie) Źródło: (dn.

Rynek akcji. Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PKB globalnie) Źródło:  (dn. Wykład 3 Rynek akcji nisza inwestorów indywidualnych Rynek akcji Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PK globalnie) Źródło: http://www.marketwatch.com (dn. 2015-02-12) SGH RYNKI

Bardziej szczegółowo

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba 2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną

Bardziej szczegółowo

Wycena klienta i aktywów niematerialnych

Wycena klienta i aktywów niematerialnych Wycena klienta i aktywów niematerialnych Istota wpływu klienta na wartość spółki Strategie marketingowe i zarządzanie nimi Metryki zorientowane na klienta Podatność i zmienność klientów Łączna wartość

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

Analiza porównawcza gotówkowych i pieniężnych FIO w Polsce w latach pod względem

Analiza porównawcza gotówkowych i pieniężnych FIO w Polsce w latach pod względem Dr Iwona Dittmann Uniwersytet Ekonomiczny we Wrocławiu Katedra Finansów Analiza porównawcza gotówkowych i pieniężnych FIO w Polsce w latach 2005 2016 pod względem wybranych parametrów rozkładów stóp zwrotu

Bardziej szczegółowo

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do:

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: Jesteś tu: Bossa.pl Opcje na WIG20 - wprowadzenie Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: żądania w ustalonym terminie dostawy instrumentu bazowego po określonej cenie wykonania

Bardziej szczegółowo

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu Przykład 1 Przedsiębiorca będący importerem podpisał kontrakt na zakup materiałów (surowców) o wartości 1 000 000 euro z datą płatności za 3 miesiące. Bieżący kurs 3,7750. Pozostałe koszty produkcji (wynagrodzenia,

Bardziej szczegółowo

PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI MARCIN FOLTYŃSKI

PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI MARCIN FOLTYŃSKI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI WŁAŚCIWIE PO CO ZAPASY?! Zasadniczą przyczyną utrzymywania zapasów jest występowanie nieciągłości w przepływach materiałów i towarów. MIEJSCA UTRZYMYWANIA ZAPASÓW

Bardziej szczegółowo

ZARZĄDZANIE WYNIKAMI PRZEDSIĘBIORSTWA W WARUNKACH RYZYKA ENTERPRISE PERFORMANCE MANAGEMENT UNDER RISK

ZARZĄDZANIE WYNIKAMI PRZEDSIĘBIORSTWA W WARUNKACH RYZYKA ENTERPRISE PERFORMANCE MANAGEMENT UNDER RISK PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 389 2015 Rachunek kosztów rachunkowość zarządcza i controlling ISSN 1899-3192 e-issn 2392-0041

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Strategie inwestycyjne na rynku kapitałowym dr Dominika Kordela Uniwersytet Szczeciński 31 marzec 2016 r. Plan wykładu Rynek kapitałowy a rynek finansowy Instrumenty rynku kapitałowego

Bardziej szczegółowo

Wykład 8 Rynek akcji nisza inwestorów indywidualnych Rynek akcji Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PK globalnie) Źródło: http://www.marketwatch.com (dn. 2015-02-12) SGH, Rynki

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

Podstawowe definicje dotyczące zarządzania portfelowego

Podstawowe definicje dotyczące zarządzania portfelowego Podstawowe definicje dotyczące zarządzania portfelowego Prof. SGH, dr hab. Andrzej Sobczak Kurs: Zarządzanie portfelem IT z wykorzystaniem modeli Zakres tematyczny kursu Podstawowe definicje dotyczące

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY

MATERIAŁ INFORMACYJNY MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe powiązane z indeksem S&P 500 ze 100% gwarancją zainwestowanego kapitału w Dniu Wykupu Emitent Bank BPH SA Numer Serii Certyfikatów Depozytowych

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY

MATERIAŁ INFORMACYJNY MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe Lokata inwestycyjna powiązana z rynkiem akcji ze 100% ochroną zainwestowanego kapitału w Dniu Wykupu Emitent Bank BPH SA Numer Serii Certyfikatów

Bardziej szczegółowo

Ekonometria dynamiczna i finansowa Kod przedmiotu

Ekonometria dynamiczna i finansowa Kod przedmiotu Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY

MATERIAŁ INFORMACYJNY MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe Lokata inwestycyjna powiązana z ceną ropy naftowej ze 100% ochroną zainwestowanego kapitału w Dniu Wykupu ( Certyfikaty Depozytowe ) Emitent

Bardziej szczegółowo

Ocena kondycji finansowej organizacji

Ocena kondycji finansowej organizacji Ocena kondycji finansowej organizacji 1 2 3 4 5 6 7 8 Analiza płynności Analiza rentowności Analiza zadłużenia Analiza sprawności działania Analiza majątku i źródeł finansowania Ocena efektywności projektów

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,

Bardziej szczegółowo

Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym

Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym Jacek Batóg Uniwersytet Szczeciński Analiza porównawcza koniunktury gospodarczej w województwie zachodniopomorskim i w Polsce w ujęciu sektorowym Warunki działania przedsiębiorstw oraz uzyskiwane przez

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r.

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. w sprawie szczegółowego sposobu obliczania podstawowego

Bardziej szczegółowo

Miary oceny efektów działalności inwestycyjnej OFE

Miary oceny efektów działalności inwestycyjnej OFE Sugerowany przypis: Chybalski F., Miary oceny efektów działalności inwestycyjnej OFE, Wiadomości Statystyczne, nr 10/2006, Warszawa, Październik 2006, s. 22 35. STUDIA METODOLOGICZNE Filip CHYBALSKI Miary

Bardziej szczegółowo

Beata Stolorz. Słowa kluczowe: opcje, miary wrażliwości, gamma, zomma, model wyceny opcji Blacka Scholesa.

Beata Stolorz. Słowa kluczowe: opcje, miary wrażliwości, gamma, zomma, model wyceny opcji Blacka Scholesa. Zomma współczynnik wrażliwości opcji Beata Stolorz Zomma współczynnik wrażliwości opcji Streszczenie: Jednym z najlepszych narzędzi pomiaru ryzyka opcji są miary wrażliwości. Odzwierciedlają one wpływ

Bardziej szczegółowo

H. Sujka, Wroclaw University of Economics

H. Sujka, Wroclaw University of Economics H. Sujka, Wroclaw University of Economics Zarządzanie ryzykiem w tworzeniu wartości na przykładzie spółki z branży włókienniczej i tekstylnej Working paper Słowa kluczowe: Zarządzanie wartością i ryzykiem

Bardziej szczegółowo

Ekonomia II stopień ogólnoakademicki stacjonarne wszystkie Katedra Ekonomii i Zarządzania dr hab. Jan L. Bednarczyk. kierunkowy. obowiązkowy polski

Ekonomia II stopień ogólnoakademicki stacjonarne wszystkie Katedra Ekonomii i Zarządzania dr hab. Jan L. Bednarczyk. kierunkowy. obowiązkowy polski KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-EKO2-503 Nazwa modułu Rynki finansowe Nazwa modułu w języku angielskim Financial markets Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

Systematyka ryzyka w działalności gospodarczej

Systematyka ryzyka w działalności gospodarczej Systematyka ryzyka w działalności gospodarczej Najbardziej ogólna klasyfikacja kategorii ryzyka EFEKT Całkowite ryzyko dzieli się ze względu na kształtujące je czynniki na: Ryzyko systematyczne Ryzyko

Bardziej szczegółowo

Zarządzanie ryzykiem finansowym

Zarządzanie ryzykiem finansowym Zarządzanie projektami Wrocław, 30 października 2013 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie Po co analizować ryzyko na rynkach finansowych?

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Strategie inwestycyjne na rynku kapitałowym Inwestowanie na rynku Dr Paweł Porcenaluk Uniwersytet Ekonomiczny we Wrocławiu 4 kwietnia 2016 r. Inwestowanie co to jest? Inwestowanie

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często

Bardziej szczegółowo

INTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM. Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski

INTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM. Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski INTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski RYZYKO możliwy negatywny wynik przedsięwzięcia, z którym łączy się uszczerbek, strata,

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Konstrukcja uśmiechu zmienności. Dr Piotr Zasępa

Konstrukcja uśmiechu zmienności. Dr Piotr Zasępa Konstrukcja uśmiechu zmienności Dr Piotr Zasępa Rynek opcji FX Rynek Międzybankowy Market Makerów Klientowski (bank/klient) (bank makler/bank user) Rynek opcji waniliowych Opcje egzotyczne I generacji

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY

MATERIAŁ INFORMACYJNY MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe Lokata inwestycyjna powiązana z rynkiem akcji ze 100% ochroną zainwestowanego kapitału w Dniu Wykupu Emitent Bank BPH SA Numer Serii Certyfikatów

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia

Bardziej szczegółowo

KURS DORADCY FINANSOWEGO

KURS DORADCY FINANSOWEGO KURS DORADCY FINANSOWEGO Przykładowy program szkolenia I. Wprowadzenie do planowania finansowego 1. Rola doradcy finansowego Definicja i cechy doradcy finansowego Oczekiwania klienta Obszary umiejętności

Bardziej szczegółowo

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów. Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo