Analizy wariancji ANOVA (analysis of variance)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analizy wariancji ANOVA (analysis of variance)"

Transkrypt

1 ANOVA

2 Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup).

3 Model jednoczynnikowy analiza wariancji z klasyfikacją pojedynczą Jednoczynnikowa ANOVA. Jest to technika badania wyników (doświadczeń, obserwacji), które zależą od jednego czynnika np. metody leczenia, metody produkcji, rodzaju zastosowanych materiałów itp. Czynniki te nazywane są: predyktorami jakościowymi czynnikami grupującymi, lub klasyfikacyjnymi.

4 ANOVA Założenia: Danych jest k populacji o rozkładzie normalnym N(m i, i ). Zakłada się, że wariancje wszystkich k populacji są równe tzn. 1 2 = 2 2 =... n 2 (lecz nie muszą być znane). Z każdej z tych populacji wylosowano niezależne próby o liczebnościach wynoszących odpowiednio n i. Wyniki prób oznaczone są przez x ij.

5 Hipotezy H 0 : m 1 = m 2 =... = m r (średnie we wszystkich populacjach są identyczne) H 1 : m i m j dla co najmniej jednej pary wskaźników i, j.

6 Obliczamy średnią x~ dla wszystkich grup - ze wszystkich wartości x i,j k i n i x~ 1 x i n ij n i 1 j 1 k i 1 n i

7 1. Dla poszczególnych prób oblicza się średnie dla każdej grupy x i 1 n i n i j 1 x ij

8 Międzygrupowa suma kwadratów Sumy kwadratów odchyleń średnich poszczególnych grup od średniej globalnej Jest miarą całkowitego zróżnicowania średnich - zmienność międzygrupowa. SS m k i 1 ( x i ~ x ) 2 n i

9 Zmienność wewnątrz grup Zmienność wynikająca z błędu, czyli tej części odchylenia standardowego, której nie możemy przypisać różnicy między grupami SS b k n i i 1 j 1 ( x ij x i 2 )

10 Tablica analizy wariancji ANOVA Źródło Zmienności Suma kwadratów (SS) Stopnie swobody (df) Wariancja (MS) F Między populacja mi (grupami) SS m k-1 sˆ 2 1 SS m k 1 ŝ ŝ Wewnątrz grup SS b n-k sˆ 2 2 SS n b k

11 Z tablic rozkładu F Fishera (Snedecora) odczytuje się wartość krytyczną F dla ustalonego poziomu istotności oraz dla odpowiedniej liczby k-1 oraz n-k stopni swobody. Obszar krytyczny prawostronny wyznaczony przez relację P( F F ) = Jeśli F < F oznacza to, że nie ma podstaw do odrzucenia hipotezy zerowej czyli wartości średnie badanych populacji są takie same.

12 ANOVA w Statistica Dane Zmn1 Zmn

13 ANOVA w Statistica

14 Definicja zmiennych

15 Kody zmiennych grupujących

16 Pojedyncze tabele

17 Analiza średnich i odchyleń Przed rozpoczęciem właściwej analizy należy: wyświetlić wartości średnich i odchyleń standardowych w poszczególnych podgrupach - Tabele statystyk, utworzyć Wykresy interakcji, wykresy ramkawąsy, Sprawdzić założenia

18 Tabela statystyk Dla metody 4 - średnia różni się znacznie od średniej dla pozostałych metod.

19 Założenia AVOVY 1. Mierzalność zmiennych losowych 2. Normalność zmiennych losowych w każdej z rozważanych k populacji 3. Niezależnośc zmiennych losowych 4. Jednorodność wariancji w grupach.

20 Testy normalności rozkładu Test chi-kwadrat Test W Shapiro i Wilka Test Kołmogorowa i Smirnowa Test zgodności chi-kwadrat Pearsona Wykres normalności Wykresy ramka-wąsy

21 Test W Shapiro i Wilka Test Shapiro-Wilka jest preferowanym testem normalności ze względu na jego dużą moc w porównaniu z innymi testami. Można go stosować do małych prób.

22 Test Kołmogorowa i Smirnowa Test ten opiera się na porównaniu procentów skumulowanych zaobserwowanych z oczekiwanymi. Jako wartość testu podawana jest maksymalna różnica bezwzględna pomiędzy zaobserwowanymi i oczekiwanymi procentami skumulowanymi. Test ten wymaga znajomości parametrów rozkładu (średniej i odchylenia standardowego całej populacji). Gdy ich nie znamy, a tak jest najczęściej, stosujemy test Kołmogorowa i Smirnowa z poprawką Lillieforsa

23 Wykresy normalności Wybrana zmienna jest wykreślona na wykresie rozrzutu względem wartości "oczekiwanych dla rozkładu normalnego". Jeśli obserwowane dane podlegają rozkładowi normalnemu, wtedy wszystkie wartości powinny układać się wzdłuż linii prostej (tutaj dystrybuanta rozkładu normalnego). Jeśli nie podlegają rozkładowi normalnemu, wówczas będą odchylać się od prostej.

24 2.0 Wykres normalności Zmn1 (Arkusz3 2v*10c) Oczekiwana normalna Wartość obserwowana

25 Wykresy ramkowe 1. Mediana/kwartyle/rozstęp : punkt centralny - mediana, ramka - kwartyle, wąsy - rozstęp 2. Średnia/Bł.std/Odch.std: punkt centralny - średnia, ramka - błąd standardowy, wąsy - odchylenie standardowe 3. Średnia/Odch.Std/1.96*odch.std.: punkt centralny - średnia, ramka - odchylenie standardowe, wąsy - 95% przedział ufności dla poszczególnych obserwacji wokół średniej 4. Średnia/ Bł.std /1.96* Bł.std.: punkt centralny - średnia, ramka - błąd standardowy, wąsy - 95% przedział ufności dla wartości średniej

26

27 270 Wykres ramka-wąsy Zmn1 wzglzmn Zmn1 Zmn2 Średnia ±Błąd std ±1.96*Błąd std

28 320 Wykres ram ka-wąsy Zmn1 wzglzmn Zmn1 Zmn2 Mediana 25%-75% Min.-Maks. Interpretacja: niesymetryczne położenie mediany zmiennej Zmn1" wskazujące na asymetrię prawostronną. Asymetria taka wyklucza rozkład normalny. Rozkład normalny jest bowiem idealnie symetryczny.

29 280 Wykres ramka-wąsy Zmn1 wzglzmn Zmn1 Zmn2 Średnia ±Błąd std ±Odch.std

30 270 Wykres ramka-wąsy Zmn1 wzglzmn Zmn1 Zmn2 Średnia ±Błąd std ±1.96*Błąd std Interpretacja: Ponieważ przedziały ufności zachodzą na siebie, średnie nie różnią się istotnie

31 320 Wykres ramka-wąsy: Zmn Zmn1 Średnia ±Błąd std ±1.96*Błąd std Interpretacja: wąsy ramek nie zachodzą na siebie, zatem można odrzucić hipotezę o równości średnich

32 Punkty odstające 32 Wykres ramka-wąsy (testt-studenta - ozon.sta 2v*12c) Zmn1 Średnia = ±Błąd std = ( , ) ±1.96*Błąd std = ( , ) Ekstremalne

33 Jednorodność wariancji Test F Test Levene a Test Browna-Forsya tha

34 Sprawdzenie warunków

35 Test Levene a

36 Wyniki analizy wariancji Możemy odrzucić hipotezę o równości średnich, i to na poziomie równym 0,017.

37 Wykres interakcji 13 W ykres średnich i przedz. ufności (95.00% ) Zmn W artości Zmn1

38 Wykres interakcji Na tym wykresie liniowym mamy przedstawione punkty odpowiadające wartościom średnich w poszczególnych podgrupach. Wykres ten potwierdza wniosek o odrzuceniu hipotezy zerowej.

39 Testy post-hoc Jeżeli analiza wariancji wykaże istotności różnic między rozpatrywanymi średnimi, to należy wtedy koniecznie przeprowadzić dokładniejsze badania różnic między średnimi z poszczególnych grup. Wykorzystujemy do tego celu specjalne testy post-hoc zwane też testami wielokrotnych porównań.

40 Przykład 2. Badano zawartość kofeiny w 4 gatunkach kawy zielonej (% wagi). Kawa arabica Kawa robusta Kawa kongijska Kawa liberyjska 1,46 1,52 1,54 1,52 1,51 1,48 1,49 1,53 1,52 1,50 1,48 1,47 1,50 1,49 1,53 1,48 1,52 1,52 1,51 1,51

41

42 Gatunek Kofeina 1 Arabica 1,46 2 Arabica 1,51 3 Arabica 1,52 4 Arabica 1,50 5 Arabica 1,52 6 Robusta 1,52 7 Robusta 1,48 8 Robusta 1,50 9 Robusta 1,49 10 Robusta 1,52 11 Kongijska 1,54 12 Kongijska 1,49 13 Kongijska 1,48 14 Kongijska 1,53 15 Kongijska 1,51 16 Liberyjska 1,52 17 Liberyjska 1,53 18 Liberyjska 1,47 19 Liberyjska 1,48 20 Liberyjska 1,51

43 1. Tabele statystyk. Analiza danych

44 Analiza przedziałów ufności dla średnich - skategoryzowane wykresy ramka-wąsy 109 Skategor. wykres ramka-wąsy: Kofeina Kofeina Arabica Robusta Gatunek Kongijska Liberyjska Średnia ±Błąd std ±1.96*Błąd std

45 Wykresy interakcji analiza średnich i przedziałów ufności 112 Wykres średnich i przedz. ufności (95.00%) Kofeina Wartości Arabica Robusta Kongijska Liberyjska Gatunek Kofeina

46 2. Normalność rozkładu Skategoryzowane wykresy ramka-wąsy 110 Skategor. wykres ramka-wąsy: Kofeina Kofeina Arabica Robusta Gatunek Kongijska Liberyjska Mediana 25%-75% Min.-Maks.

47 Skategoryzowane histogramy 3 Histogram: Kofeina Gatunek: Arabica Kofeina = 5*1*normal(x; 103.2; ) Gatunek: Robusta Kofeina = 5*1*normal(x; 102.2; ) Gatunek: Kongijska Kofeina = 5*1*normal(x; 105.4; ) Gatunek: Liberyjska Kofeina = 5*1*normal(x; 105.2; ) 2 1 Liczba obs ,52 1,48 1,50 1,46 1,54 1,49 1,51 Gatunek: Arabica 1,53 1,47 1,52 1,48 1,50 1,46 1,54 1,49 1,51 Gatunek: Robusta 1,53 1, ,52 1,48 1,50 1,49 1,46 1,51 1,54 1,53 1,47 1,52 1,48 1,50 1,49 1,46 1,51 1,54 1,47 1,53 Gatunek: Kongijska Kofeina Gatunek: Liberyjska

48 Skategoryzowane wykresy normalności Oczekiwana normalna Wykres prawdopodob Kofeina Oczekiwana normalna Gatunek: Arabica Gatunek: Robusta Gatunek: Kongijska Gatunek: Liberyjska

49 Test Levene a Badanie jednorodności wariancji

50 Test Browna-Forsythe a

51 Analiza wariancji Ponieważ p > alfa, zatem nie ma podstaw do odrzucenia hipotezy zerowej o równości średnich. Badania są zakończone.

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Analiza wariancji i kowariancji

Analiza wariancji i kowariancji Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14 Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANOVA

JEDNOCZYNNIKOWA ANOVA Analizę ANOVA wykorzystujemy do wykrycia różnic pomiędzy średnimi w więcej niż dwóch grupach/więcej niż w dwóch pomiarach JEDNOCZYNNIKOWA ANOVA porównania jednej zmiennej pomiędzy więcej niż dwoma grupami

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że kilka średnich dla analizowanej zmiennej grupującej mają jednakowe wartości średnie.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Testy post-hoc. Wrocław, 6 czerwca 2016

Testy post-hoc. Wrocław, 6 czerwca 2016 Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji

Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.48 WIESŁAWA MALSKA Wykorzystanie testu Levene a i testu Browna-Forsythe

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1.

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1. Weryfikacja hipotez Każde badanie naukowe rozpoczyna się od sformułowania problemu badawczego oraz najbardziej prawdopodobnego (na gruncie wiedzy badającego) ogólnego rozwiązania, czyli hipotezy badawczej.

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności.

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie... Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy Ćwiczenie: Analiza zmienności prosta Przykład w MS EXCEL Sprawdź czy genotyp jagniąt wpływa statystycznie na cechy użytkowości rzeźnej? Obliczenia wykonaj za pomocą modułu Analizy danych (jaganova.xls).

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Analiza wariancji (ANalysis Of Variance - ANOVA)

Analiza wariancji (ANalysis Of Variance - ANOVA) Analiza wariancji (ANalysis Of Variance - ANOVA) W poprzednim rozdziale przedstawiono sposób porównywania dwóch wartości średnich. Często jednak zachodzi potrzeba porównywania większej liczby średnich

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11 Testy zgodności Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej 27. Nieparametryczne testy zgodności Weryfikacja

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

ZARZĄDZANIE DANYMI W STATISTICA

ZARZĄDZANIE DANYMI W STATISTICA Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Ścieżki dostępu do STATISTICA

Ścieżki dostępu do STATISTICA Ścieżki dostępu do STATISTICA Spis treści Sprawdzanie zgodności z rozkładem normalnym test Shapiro-Wilka:... 2 Test t-studenta w modelu zmiennych niezależnych:... 3 Test t-studenta w modelu zmiennych powiązanych...

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych. Laboratorium VI: Testy nieparametryczne

Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych. Laboratorium VI: Testy nieparametryczne 1 Laboratorium VI: Testy nieparametryczne Spis treści Laboratorium VI: Testy nieparametryczne... 1 Testy nieparametryczne... 2 1. Tablica wielorozdzielcza... 3 2. Test χ 2 niezależności zmiennych... 3

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby 1. Wstęp teoretyczny Prezentowane badanie dotyczy analizy wyników uzyskanych podczas badania grupy rodziców pod kątem wpływu ich przekonań

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo