Ciała przewodzące prąd elektryczny

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ciała przewodzące prąd elektryczny"

Transkrypt

1 Ogniwa paliwowe

2 Ciała przewodzące prąd elektryczny Przewodniki I klasy (elektryczność przenoszona Jest przez elektrony) Przewodniki II klasy (elektryczność przenoszona jest przede wszystkim przez jony)

3 Elektroliza Procesem elektrolizy nazywamy wszystkie reakcje elektrochemiczne zachodzące pod wpływem przepływu prądu z zewnętrznego źródła. Układ, w którym zachodzi elektroliza obejmuje dwie elektrody (katoda, anoda) zanurzone w elektrolicie (roztwór wodny, elektrolit stopiony) i połączone przewodnikami metalicznymi z biegunami zewnętrznego źródła prądu stałego.

4 Reakcja utleniania i redukcji Procesy chemiczne, podczas których atomy lub jony zmieniają swój stopień utlenienia na skutek pobierania lub oddawania elektronów nazywają się odpowiednio reakcjami utleniania i redukcji, czyli redoks. Reakcje te są nierozerwalnie ze sobą związane, czyli żadna z reakcji nie może przebiegać samodzielnie. Utlenianie (dezelektronacja) jest procesem chemicznym, podczas którego obojętne atomy, cząsteczki lub jony (reduktor) tracą elektrony, na skutek czego wzrasta ich stopień utlenienia. Redukcja (elektronacja) jest procesem chemicznym, podczas którego obojętne atomy, cząsteczki lub jony (utleniacz) pobierają elektrony, co powoduje zmniejszenie ich stopień utlenienia.

5 Przepływ prądu przez elektrolit wymusza ruch jonów: kationów w kierunku katody oraz anionów w kierunku anody. Jednocześnie na elektrodach zachodzą reakcje na katodzie biegnie proces redukcji (pobieranie elektronów z elektrody): Q x1 n+ + ne Red 1 na anodzie proces utleniania (dostarczanie elektronów do elektrody): Red 2 ne Q x2 n+ Reakcje elektrochemiczne zachodzą wyłącznie na granicy faz elektrolit-elektroda.

6 Elektroliza HCl Cząsteczki HCl rozpadają się w wodzie HCl H + + Cl Dodatnie jony wodoru dążą do elektrody ujemnej, gdzie przejmują elektrony, zobojętniają się i łączą w pary tworząc cząsteczki H 2. Wodór ulatnia się w postaci pęcherzyków: 2H + + 2e H 2 Ujemne jony chloru po dotarciu do elektrody dodatniej oddają jej swe nadmiarowe elektrony, zobojętniają się elektrycznie i łączą się w pary, tworząc cząsteczki Cl 2 2Cl + 2e Cl 2

7 I prawo Faradaya wyraża związek między ilością substancji wydzielającej się na elektrodzie, natężeniem prądu i czasem przepływu prądu przez elektrolit. Masa jakiejkolwiek substancji odłożonej, wydzielonej lub rozpuszczonej na elektrodzie jest wprost proporcjonalna do ilości elektryczności, jaka przepłynęła przez elektrolit m = k q = k I t k - równoważnik elektrochemiczny (współczynnik proporcjonalności), który zależy tylko od rodzaju wydzielającej się substancji i składu elektrolitu [kg/as] (k = M/nF)

8 I prawo Faradaya e II I H 2 SO 4 H 2 SO 4 H 2 SO 4 III

9 II prawo Faradaya Na odłożenie, wydzielenie lub rozpuszczenie na elektrodach 1 gramorównoważnika jakiejkolwiek substancji zużywa się zawsze tę samą ilość elektryczności 1F. F = N W e 0 F- stała Faradaya [A. s] N liczba Avogadra (liczba atomów w gramoatomie) 6.02 x mol -1 e 0 ładunek elementarny W wartościowość pierwiastka

10 Ogniwo galwaniczne Układ składający się z fazy metalicznej i otaczającego ją roztworu elektrolitów nosi nazwę elektrody (półogniwa). W zależności od zdolności metalu do przechodzenia do roztworu w postaci jonów oraz stężenia jonów w roztworze - ładuje się on względem roztworu ujemnie lub dodatnio. Z chwilą połączenia dwóch elektrod wskutek występującej różnicy potencjałów popłynie w obwodzie zewnętrznym prąd elektryczny. Taki układ zbudowany z dwóch elektrod połączonych poprzez elektrolit tworzy ogniwo galwaniczne. Przyczyną przepływu elektronów z jednego półogniwa do drugiego przez obwód jest różnica potencjałów wewnętrznych, która powstaje pomiędzy półogniwami (elektrodami) takiego ogniwa.

11 Luigi Gavani

12 Ogniwo Alessandro Volty

13 Historia ogniw paliwowych Christian F. Schoenbein 1839 donosi o powstawaniu prądu w reakcji wodoru z tlenem. Sir William R. Grove 1842 pierwsze ogniwo paliwowe Wilhelm Ostwald i Walther H. Nerst 1905 zaprezentowali teorię ogniwa paliwowego. Ogniwo paliwowe jest większym wynalazkiem dla cywilizacji niż maszyna parowa i wkrótce umieści generator Siemens'a w muzeum."

14 Historia ogniw paliwowych Lata 60 - Amerykański program kosmiczny Gemini 5 pierwszy statek kosmiczny z ogniwem Apollo, lądowanie na Księżycu również z ogniwem Drugi kryzys paliwowy Systematyczny wzrost zainteresowania i badań nad ogniwami

15 Historia ogniw paliwowych Etienne Lenoir 1860 r Profesor Karl Kordesch z Uniwersytetu Graz w Austrii był jednym z pierwszych badaczy ogniw paliwowych. Wraz z współpracownikami skonstruował w 70 motocykl i samochód z alkalicznym ogniwem paliwowym

16 Problematyczny WODÓR?? Katastrofa 1937 r. sterowca "Hidenburg"

17 WODÓR Najbardziej rozpowszechniony pierwiastek na kuli ziemskiej Nie występuje na ziemi w postacie wolnej Wartość opałowa wodoru jest wysoka 120 MJ/kg (węgiel 25MJ/kg, benzyna47mj/kg) W temperaturze pokojowej występuje w postaci gazowej < -263 o C ciało stałe, ρ = 70,6 kg/m 3 > -253 o C gaz; przy 0 o C ρ = 0, kg/m o C, punkt potrójny, ρ = 70,8 kg/m 3

18 1. The Merck Index, Thirteenth Edition ; Merck Research Laboratories, Division of MERCK & CO.,INC. 2. CRC Handbook of Chemistry and Physics, 83 rd Edition ; CRC Press. 3. IWT INTECH - Wodór Paliwem Przyszłości

19 Dr. Michael R. Swain; Fuel Leak Simulation.

20 Zasada działania ogniw paliwowych Ogniwa paliwowe umożliwiają produkcję prądu elektrycznego w procesach chemicznych podobnych do spalania, ale zachodzących izotermicznie i bez płomienia Wodorowe ogniwa paliwowe są urządzeniami elektrochemicznymi, w których następuje łączenie wodoru (pochodzącego z paliwa) z tlenem (pochodzącym z powietrza). Produktami reakcji są: energia elektryczna oraz ciepło i woda. Zasada działania oparta jest na procesie elektrochemicznym, który odpowiada odwrotnej elektrolizie wody i pozwala na kontrolowaną reakcję łączenia wodoru i tlenu. Gazy reakcyjne (wodór i powietrze) są dostarczane do odpowiedniej strony elektrody poprzez system kanałów wykonanych w płycie ogniwa.

21 Budowa ogniwa paliwowego Dwie elektrody: anoda i katoda Elektrolit: ciecz lub ciało stałe Elektrolit umożliwia przepływ kationów natomiast uniemożliwia przepływ elektronów

22 Elektrolit Przewodnik jonów Izolator dla elektronów Separuje reagentu anodowe i katodowe

23 Elektrody Elektrody są wykonane z materiałów będących dobrymi przewodnikami elektryczności (przewodniki I rodzaju - elektronowe) i najczęściej są porowate, aby zwiększyć wielkość powierzchni aktywnej biorącej udział w reakcji elektrochemicznej, a także ułatwić transport gazów do elektrolitu. W przypadku ogniw nisko- i średniotemperaturowych w materiale elektrod umieszczone są odpowiednie katalizatory (np. platyna, pallad, nikiel) w celu przyspieszenia reakcji elektrodowych. Elektrody sterują jedynie procesami elektrochemicznymi, nie biorąc w nich bezpośredniego udziału.

24 Zasada działania ogniwa paliwowego

25 Przemiana energii w ogniwie Energia wodoru Energia tlenu Fuel cell ciepło Moc i energia P = U I E = P t = U I t

26 Alkaliczne Ogniwo Paliwowe - Alkaline Fuel Cell (AFC) AFC było pierwszym nowoczesnym ogniwem paliwowym rozwijanym na początku lat sześćdziesiątych. Elektrolit to roztwór zasadowy (wodorotlenek potasu). W ogniwach AFC temperatura pracy zależy od stężenia KOH, im wyższe stężenie tym wyższa temperatura pracy Redukcja tlenu w środowisku zasadowym jest dużo szybsza niż w kwaśnym, np. w PEMFC. Tak więc, jest możliwe wykorzystanie Reakcje elektrodowe ukazano poniżej: Utlenienie wodoru na anodzie: H 2 + 2OH 2H 2 O + 2e - Redukcja tlenu na katodzie: ½O 2 + H 2 O + 2e 2OH - Sumaryczna reakcja w AFC: H 2 + ½O 2 H 2 O

27 Ogniwo paliwowe ze stopionymi węglanami - Molten carbonate fuel cell (MCFC) Elektrolit w postaci stopionego węglanu to zazwyczaj węglan litu i potasu (Li 2 CO 3 /K 2 CO 3 ) lub litu i sodu (Li 2 CO 3 /Na 2 CO 3 ) w osnowie ceramicznej z ceramiki na bazie aluminium (LiAlO 3 ). Z powodu bardzo wysokich temperatur pracy ( C) kinetyka katody (szybkość reakcji) jest drastycznie poprawiona w porównaniu do PEMFC i PAFC, więc nie potrzeba szlachetnych metali jako katalizatorów. Na katodzie jest zazwyczaj tlenek niklu, ale bada się również materiały na bazie tlenku litu. W anodzie wykorzystuje się zazwyczaj stopy niklowo aluminiowe lub niklowo chromowe. Reakcje elektrodowe i sumaryczne są ukazane poniżej. Utlenienie wodoru na anodzie: H2 + (CO3)2- H2O + CO2 + 2e- Redukcja tlenu na katodzie: CO2 + ½O2 + 2e- (CO3)2- Sumaryczna reakcja w MCFC: H2 + ½O2 H2O

28 Ogniwo paliwowe oparte na kwasie fosforowym - Phosphoric-acid fuel cells (PAFC) W ogniwie tego typu wykorzystuje się w roli elektrolitu stężony kwas fosforanowy umieszczony w osnowie z węglika krzemu i teflonu. Elektrody zbudowane z takiego samego materiału jak w PEMFC - z platyny na podkładzie z węgla. Również tutaj wymagane jest zastosowanie większej ilości katalizatora na katodzie niż na anodzie. Jeśli ogniwo działa na wodorze uzyskanym z reformingu paliw kopalnych ruten (Ru) jest dodawany do Pt na anodzie. Dzięki Ru w roli drugiego katalizatora tlenek węgla z paliwa jest łatwiej utleniany. Ponieważ ogniwo zasila wodór ( lub reformowane węglowodory) i powietrze, reakcje na elektrodach s takie same jak w PEMFC. Utlenienie wodoru na anodzie: H2 2H+ + 2e- Redukcja tlenu na katodzie: ½O2 + 2H+ + 2e- H2O Sumaryczna reakcja w PAFC: H2 + ½O2 H2O

29 Ogniwo z membraną do wymiany protonów - Polymer Electrolyte Membrane Fuel Cells (PEMFC) Elektrolitem jest spolimeryzowany fluorkowany kwas sulfonowy w postaci jonowymiennej membrany, która wyróżnia te ogniwa spośród innych. Strumień wodoru jest kierowany na anodową stroną membrany. Na niej jest katalitycznie rozdzielany na protony i elektrony. Nowo uformowane protony przenikają przez membranę nas stronę katodowa. Elektrony przechodzą poprzez zewnętrzne obciążenie na stronę katodową powodując przez to przepływ prądu. W międzyczasie strumień tlenu kierowany jest na katodowa stronę membrany. następnie tlen reaguje z protonami przenikającymi przez membranę oraz elektronami przychodzącymi z zewnętrznego obwodu i tworzy się w ten sposób woda. Reakcje redoks w ogniwie PFMEC: Utlenienie wodoru na anodzie: H2 2H+ + 2e- Redukcja tlenu na katodzie: ½O2 + 2H+ + 2e- H2O Sumaryczna reakcja w PEMFC: H2 + ½O2 H2O

30 Ogniwo paliwowe z zestalonym elektrolitem tlenkowym - Solid-oxide fuel cells (SOFC) Elektrolitem w SOFC jest zestalony, nieporowaty tlenek metalu, zazwyczaj Y2O3 stabilizowany 8-10 % molowymi ZrO2. Przewodnictwo jonowe w elektrolicie jest zapewnione przez jony tlenu (O2-). Wykorzystanie substancji stałej jako elektrolitu czyni system stabilniejszym i bezpieczniejszym niż w przypadku MCFC. Nie powstają przecieki, a ogniwu można nadać różne kształty, jak rurowy, planarny, monolityczny. Zazwyczaj temperatura pracy wynosi około 1000 C, ale jest pożądane skonstruowanie ogniwa pracującego w niższej temperaturze, około 650 C. To oczywiście obniża przewodność obecnie stosowanych materiałów elektrolitycznych. Tak jak w MCFC nie potrzeba drogich metali na elektrody, bo kinetyka jest wystarczająco szybka w tych temperaturach. Utlenienie wodoru na anodzie: H2 + O2 H2O + 2e- Redukcja tlenu na katodzie: ½O2 + 2e O2- Sumaryczna reakcja w SOFC: H2 + ½O2 H2O

31 Ogniwo paliwowe (nazwa) Elektrolit Elektrody Paliwo Temperatura pracy i zastosowanie ogniwa Ogniwo alkaliczne (zasadowe) AFC (Alkaline Fuel Cell) Roztwór wodorotlenku potasu: stężony 85% (temp pracy < 250 O C), rozcieńczony 35-40% (temp pracy <120 O C) Zastosowanie różnych metali Wodór H 2, hydrazyna N 2 H 4, metan CH 4 Paliwo i utleniacz muszą być pozbawione CO 2 Temp. pracy: O C Zast technika kosmiczna i wojskowa (łodzie podwodnne i pojazdy pancerne), transport Ogniwo polimerowe (membranowe) SPFC (Solid Polymer Fuel Cell) Jonowymienna membrana z polimeru sulfono fluoro - węglowego Platynowe Wodór H 2, metanol CH 3 OH Paliwo musi być pozbawione CO Temp. pracy: <120 O C Zast- głównie transport, pojazdy kosmiczne i wojskowe Ogniwa kwasu fosforowego PAFC (Phosphoric Acid Fuel Cell) Stężony kwas fosforowy (100%) Platyna naniesiona na podłoże węglowe spajane teflonem Wodór H 2, gaz ziemny, nafta, metanol CH 3 OH, biogaz. Paliwo musi być odsiarczone i pozbawione CO Temp. pracy: O C Zast- jako źródło energii elektrycznej i cieplnej w obiektach użyteczności publicznej (szpitale, biura, hotele, niewielkie osiedla mieszkaniowe) Ogniwa węglanowe (stopionych węglanów) MCFC (Molten Carbonate Fuel Cell) Mieszanina węglanów alkaicznych (Li, K, Na) Anoda porowaty nikiel z dodatkiem chromu. Katoda porowaty tlenek niklu dotowany litem Gaz ziemny,metanol CH 3 OH, biogaz. Paliwo musi być konwertorowane na gaz zawierający wodór H 2 w odrębnym urządzeniu- reforming zewnętrzny lub reforming wewnętrzny z wykorzystaniem ciepła reakcji elektrochemicznej. Utleniacz to powietrze z dodatkiem CO 2 Temp. pracy: O C Wysokotemperaturowe ogniwa węglanowe umożliwiają wykorzystanie produkowanego ciepła do celów grzewczych i w procesach technologicznych. Ogniwa tlenkowe SOFC (Solid Oxide Fuei Cell) Nieporowaty stały tlenek metalu najczęściej cyrkonu ZrO 2 stabilizowany tlenkiem itru Y 2 O 3 Gaz ziemny,biogaz. Paliwo musi być konwertorowane na gaz zawierający wodór H 2 w odrębnym urządzeniu- reforming zewnętrzny lub reforming wewnętrzny z wykorzystaniem ciepła reakcji elektrochemicznej. Temp. pracy: O C Ogniwa te znajdują się w fazie prac badawczych i ich zastosowanie w większej skali jest jeszcze odległe.

32 Termodynamika ogniw paliwowych Maksymalny współczynnik sprawności konwersji, obliczony w oparciu o prawa termodynamiki, tzw. sprawność termiczna OP wynosi

33 I zasada termodynamiki Zmiana energii ]. wewnętrznej układu zamkniętego jest równa energii, która przepływa przez jego granice na sposób ciepła lub pracy [2 U Q L Entalpia swobodna H U pv Przyrost entalpii H H prod H subs U pv Q L pv Przyrost entalpii molowej układu H jest równy różnicy przyrostów entalpii molowej produktów reakcji H prod oraz substratów H subs

34 Termodynamik ogniw paliwowych Procesy w ogniwie paliwowym zachodzą w warunkach izotermiczno-izobarycznych Potencjał termodynamiczny jako funkcja stanu G H T S Ilość energii uwalnianej podczas reakcji zachodzących w ogniwie paliwowym G H T S H TS G prod Gsubs

35 Termodynamik ogniw paliwowych G H T S H TS G prod Gsubs W OP po stronie katody H 2 O Q 1 2H 2e O 2 2 Entalpia molowa dla reakcji G prod G, H O G G H G O2 2 subs 2 2 1

36 Termodynamika ogniwa paliwowego G H T S H TS G prod Gsubs H H prod H subs U pv Q L pv G H TS Q L pv TS

37 Praca ogniwa paliwowego Praca ogniwa paliwowego jest sumą pracy prądu elektrycznego i pracy ekspansji L Lel Leks Praca prądu elektrycznego pozyskiwanego przez ogniwo L el, jest równa entalpii swobodnej reakcji ΔG, tak więc można zapisać: L el n F E n F e( V V ) r K A G Praca ekspansji ładunków elektrycznych wytwarzających różnicę potencjałów elektrod ogniwa Leks pv

38 Warunki pracy ogniwa paliwowego Straty Polaryzacja aktywacji Polaryzacja stężeniowa Polaryzacja omowa

39 Straty Obszar strat kinetycznych spadek napięcia związany z procesami aktywacyjnymi, które są związane z powolnością procesów zachodzących na elektrodach Obszar strat omowych wzrost gęstości prądu generowanego przez OP jest proporcjonalny do spadku napięcia (linia prosta) Jest następstwem rezystancji elementów ogniwa oraz elektrolitu Obszar strat transportu masy stosunkowy duży spadek napięcia na elektrodach ogniwa. Związany jest z spowolnieniem szybkości dyfuzji reagentów i produktów reakcji przez warstwy gazowo-dyfuzyjne.

40 Dla przemiany izotermiczno-izobarycznej maksymalna praca nieobjętościowa L, a więc w przypadku ogniw paliwowych praca elektryczna L el, jest równa entalpii swobodnej reakcji ΔG, L gdzie: n liczba elektronów uczestniczących w procesie [-], F stała Faraday a [F=96485 C/mol], E r napięcie odwracalne (równowagowe) ogniwa [V]. ΔG zmiana entalpii swobodnej Gibbsa [J/mol], L el, max n F E r G Miarą efektywności ogniwa jest teoretyczna sprawność energetyczna (zwana również sprawnością teoretyczną, termodynamiczną, termiczną), η th. W warunkach izotermiczno izobarycznych maksymalna teoretyczna sprawność ogniwa wynosi: theor H ciepło reakcji procesu chemicznego (zmiana entalpii) [J/mol], T temperatura reakcji [K], ΔS zmiana entropii w wyniku reakcjii chemicznej [J/K mol]. Lel,max H T S T S 1 H H H

41 Sprawność konwersji ogniwa paliwowego Sprawność rzeczywistego ogniwa jest mniejsza od teoretycznej, co jest powodowane m.in. polaryzacją elektrod, stratami substancji czynnych, itp. Uwzględnia się to poprzez wprowadzenie sprawności elektrochemicznej (napięciowej). Sprawność elektrochemiczna ech ter E F U

42 Sprawność termiczna i napięciowa ogniwa e ter maksymalna sprawność uzyskana z doskonałego ogniwa paliwowego ter G H e E związana ze zjawiskiem polaryzacji napięciowej obciążonego ogniwa i optymalnych warunkach pracy (0,6 0.8) E r - napięcie odwracalne, równowagowe - maksymalne napięcie ogniwa w przypadku przebiegu procesów odwracalnych w ogniwie. E E E r

43 Sprawność Faradaya Sprawność Faraday a, η f stosunek ładunku elektrycznego wytworzonego przez ogniwo do ładunku elektronów zawartych w zużytym paliwie. Część ładunku elektrycznego atomów paliwa bierze udział w reakcjach ubocznych zachodzących w ogniwie, z tego powodu ładunek elektryczny uzyskany na wyjściu ogniwa jest zawsze mniejszy od ładunku elektronów paliwa dostarczonego do ogniwa. t F I F n z I I t I rzeczywisty prąd czerpany z ogniwa [A], I t prąd, który byłby czerpany z ogniwa w sytuacji, gdy nie byłoby żadnych innych procesów pobocznych, zachodzących w trakcie pracy ogniwa i paliwo w całości służyłoby wytworzeniu prądu [A}, t czas [s], n liczba moli substratu zużyta w czasie t [-], F stała Faradaya [C/mol], z z liczba elektronów wymienianych w elementarnej reakcji połówkowej [-].

44 Zalety ogniw paliwowych - Produkty uboczne jak H 2 O, CO 2, N 2 są czyste i bez zapachu, - Emisja SO 2, NO X, węglowodorów, tlenków węgla i cząstek stałych ekstremalnie mała, - Niski poziom hałasu, - Praktycznie dowolna i zajmująca mało miejsca lokalizacja, - System modułowy łatwość, szybkość i ekonomiczność budowy, - Łatwość rozbudowy w miarę rosnących potrzeb, - Ogniwa paliwowe mogą pracować bez przerwy o ile tylko doprowadzane jest paliwo i utleniacz, - Brak ruchomych części pracujących w trudnych warunkach (brak ścierania elementów, brak drgań, małe problemy wytrzymałościowe). -Do produkcji ogniw paliwowych (oprócz elektrod) nie jest wymagana precyzja, - Mogą być zasilane różnymi rodzajami paliwa (gaz ziemny ulega konwersji w samym ogniwie), - Mogą być szybko dostosowywane do zmiennego zapotrzebowania na energię, - Łatwe instalowanie i całkowita automatyzacja pracy.

45 Wady ogniw paliwowych - Niskie napięcie prądu uzyskiwane z pojedynczej celi < 1 V, - Produkcja prądu stałego (czasami jest to zaletą), - Stosunkowo wysoki koszt inwestycyjny - drogie materiały na katalizatory, - Stosunkowo niewielkie moce uzyskiwane z modułu, - Ograniczony czas pracy ogniwa (do około h), -Wrażliwość na zanieczyszczenie paliwa (w różnym stopniu, zależnie od typu ogniw). -Problem z transportem i magazynowaniem paliwa - Wytwarzanie wodoru

46 Magazynowanie wodoru Mimo że wodór jest najbardziej obfitym pierwiastkiem w całym wszechświecie, praktycznie nie występuje w środowisku Ziemi, ani w stanie stałym, ani w ciekłym.. Wodór trzeba wyprodukować

47 Wytwarzanie wodoru źródła wodoru źródła energii do odseparowania gazu. W obecnej chwili 48% produkowanego wodoru powstaje w efekcie reformingu metanu przy użyciu pary wodnej, 30% z ropy naftowej głównie w rafineriach, 18% z węgla a pozostałe 4% z elektrolizy wody

48 Wytwarzanie wodoru Proces reformingu benzyny Reforming benzyny polega na zwiększeniu liczby oktanowej w procesie odwodornienia węglowodorów nasyconych i otrzymaniu aromatycznych. C 6 H 12 C 6 H 6 + 3H 2 C 6 H 14 C 6 H 6 + 4H 2

49 Reforming metanu parą wodą Konwersja metanu lub innego węglowodoru przeprowadza się w rurkach ceramicznych wzbogaconych niklem odgrywającym rolę katalizatora. Reforming metanu parą wodną jest obecnie najpowszechniejszą przemysłową metodą otrzymywania wodoru. CH 4 + H 2 O CO + 3H 2 CO + H 2 O CO 2 + H 2

50 Wytwarzanie wodoru Metody biologiczne Wodór może być produkowany przez najróżniejsze mikroorganizmy jako produkt uboczny procesu fotosyntezy. Jednym z przykładów takiego mikroorganizmu może być glon Chlamydomonas reinhardtii, który w momencie usunięcia siarczanów z pożywki zaczyna wytwarzać wodór w efekcie działania enzymu hydrogenaza. Gazowy wodór generowany jest w ilości 4 ml/h z litra kultury tych alg. Metoda Habera-Boscha Rozkład pary wodnej przy użyciu rozgrzanego do 1200oC koksu prowadzi do powstania wodoru mocno zanieczyszczonego tlenkiem węgla. W trakcie tego procesu, tlenek węgla może być usunięty poprzez przeprowadzenie reakcji katalitycznej w obecności związków Fe 2 O 3 i Cr 2 O 3. C + H 2 O CO + H 2 CO + H 2 + H 2 O CO 2 + H 2

51 Wodór - magazynowanie Sprężony w postaci gazowej Do sprężenia wodoru potrzebne są duże nakłady energii a mała gęstość wodoru sprawia, iż nawet pod dużymi ciśnieniami zgromadzona jest mała ilość energii użytecznej. To natomiast prowadzi do dużych objętości zbiorników, jak i wysokich kosztów materiałów. Wodór przechowywany jest w temperaturze ok. 298 K i w zakresie ciśnień od 150 do 800 bar.

52 Wodór - magazynowanie W postaci ciekłej Skroplenie wodoru wymaga znacznie wyższych nakładów energii niż jego sprężenie. Musi być on przechowywany w temperaturze 20 K, co prowadzi do wysokich kosztów materiałowych. Nie nadaje się do pracy ciągłej

53 Wodór- magazynowanie Chemiczne wodorki metali Wodór może być również magazynowany w postaci związków chemicznych takich jak CaH 2, KH, LiH, NaH, LiBH 4, NaBH 4. Reakcja odzysku wodoru stosunkowo prosta NaBH 4 + 2H 2 O 4H 2 + NaBO 2

54 Wodór - magazynowanie Fizyczne wodorki metali Wodór może być zaadsorbowany na powierzchni stopów niklu (np. LaNi 5 ) i chromu (np. ZrCr 2 ). Podczas napełniania zbiorników wodorem wydziela się energia w postaci ciepła, która najczęściej jest tracona. Analogicznie, do odzyskania wodoru potrzebne jest dostarczenie ciepła do zbiornika, a prędkość wydzielania się wodoru jest uzależniona od ilości dostarczonej energii.

55 Wytwarzanie wodoru

56 Problem Wodór ma 2700 razy mniejszą gęstość energetyczną, niż klasyczne paliwo.. 1.kompresja 2. skroplenie 3. użycie związków chemicznych Wodór jest najtrudniejszym gazem do kompresji, sprawność wynosi 55%. Wymaga bardzo silnych i ciężkich cystern i pojemników do przechowywania Skroplony wodór (zamiana w stan ciekły) ma tę zaletę, że nie wymaga tak ciężkich pojemników (chociaż nadal jest to około 3 razy więcej przestrzeni, niż zajmuje benzyna), jednak wówczas sprawność wynosi 40%. Część ciekłego wodoru nieuchronnie "ucieka" z pojemnika samochodu w tempie 3-4% dziennie. Gaz można wymieszać z wodorkami metali, które pełnią rolę gąbki. Jeśli nie liczyć strat energii przy produkcji elektryczności, sprawność wynosi około 60%.

57 Zastosowanie

58 Zjawiska termoelektryczne

59 Przepływ prądu w przewodnikach Gęstość prądu J e env en e e e Natężenie strumienia ciepła Q qnv q e J e J e

60 Zjawiska termoelektryczne Efekt bezpośredniej konwersji napięcia elektrycznego występującymi na styku dwóch ciał na różnicę temperatur między tymi punktami lub odwrotnie różnicy temperatur na napięcie elektryczne termopara

61 Zjawiska termoelektryczne W zależności od kierunku transformacji Zjawisko Seebecka Zjawisko Thomsona Zjawisko Peltiera

62 Zjawiska termoelektryczne A + - B n a > n b Zetknięcie metalu A (o większym zagęszczeniu elektronów swobodnych) z metalem B (o mniejszym zagęszczeniu elektronów swobodnych) powoduje wytworzenie po obu stronach powierzchni granicznej S podwójnej warstwy ładunków

63 Zjawisko Seebecka układ zawiera dwa różne metale lub półprzewodniki - jeden z niedoborem elektronów, a drugi z ich nadmiarem - zwykle w postaci przewodów połączonych ze sobą przez lutowanie (tzw. termoelement); występuje gradient temperatury T 2 B A T 1 B V + - Siła termoelektryczna U AB T 2 T 1 Thomas Seebeck

64 Zjawisko Peltiera 1834 roku francuski fizyk zauważa, że po utworzeniu obwodu z dwóch rodzajów drutu (bizmut i miedź) oraz po podłączeniu ich do źródła energii elektrycznej, jedno złącze się ogrzewa a drugie ochładza T 2 B A I Strumień ciepła Peltiera Jean Charles Peltier B Q I T 1

65 Zjawisko Thomsona Jeżeli między końcami odcinka jednorodnego przewodnika, przez który płynie prąd, istnieje różnica temperatur T, to na odcinku tym jest wydzielane lub pochłaniane ciepło z szybkością proporcjonalnej do I dq dt γ IT Wiliam Thomson Przyjęto umownie, że g > 0, jeżeli przepływowi dodatniego prądu w kierunku spadku temperatury (T < 0 ) towarzyszy wydzielanie się ciepła (Q < 0).

66 Moduł Peltiera Zimna strona pochłanianie ciepła Elementy półprzewodnikowe p i n Płytki ceramiczne Miedziane łączniki Gorąca strona ciepło odprowadzane Słupki pod względem elektrycznym połączone są ze sobą szeregowo, a pod względem cieplnym równolegle

67 Zastosowanie modułów termoelektrycznych przechowywaniu i transporcie tkanek oraz preparatów biologicznych, komorach klimatycznych, chłodzeniu nagrzewających się elementów elektronicznych, w tym m.in. procesorów i kart graficznych komputerów, chłodzeniu generatorów wysokiej mocy, chłodzeniu diod laserowych, termostatach do akwarium i terrarium, przenośnych lodówkach, komorach do przechowywania win, innych procesach i urządzeniach wymagających precyzyjnej regulacji temperatury

68 Zastosowanie modułów termoelektrycznych w OŹE termoelektrogeneratory na energię słoneczną termoelektrogeneratory na energię geotermalną spalarnie śmieci odsalanie wody

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,

Bardziej szczegółowo

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839 Historia IDEA WYKONANIE Jeżeli przepływ prądu powoduje rozkład wody na tlen i wodór to synteza wody, w odpowiednich warunkach musi prowadzić do powstania różnicy potencjałów. Christian Friedrich Schönbein,

Bardziej szczegółowo

CHP z ogniwem paliwowym Przegląd rynku

CHP z ogniwem paliwowym Przegląd rynku Piotr Stawski IASE CHP z ogniwem paliwowym Przegląd rynku ENERGYREGION - Efektywny rozwój rozproszonej energetyki odnawialnej w połączeniu z konwencjonalną w regionach. Zalety gospodarki skojarzonej K.Sroka,

Bardziej szczegółowo

STAN OBECNY I PERSPEKTYWY WYKORZYSTANIA OGNIW PALIWOWYCH

STAN OBECNY I PERSPEKTYWY WYKORZYSTANIA OGNIW PALIWOWYCH XIV Konferencja Naukowo-Techniczna Rynek Energii Elektrycznej: Przesłanki Nowej Polityki Energetycznej - Paliwa, Technologie, Zarządzanie STAN OBECNY I PERSPEKTYWY WYKORZYSTANIA OGNIW PALIWOWYCH Józef

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 2-OP BADANIE OGNIW PALIWOWYCH

INSTRUKCJA LABORATORYJNA NR 2-OP BADANIE OGNIW PALIWOWYCH LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR -OP BADANIE OGNIW PALIWOWYCH Cel i zakres ćwiczenia

Bardziej szczegółowo

OGNIWA PALIWOWE SPOSOBY NA KRYSYS ENERGETYCZNY

OGNIWA PALIWOWE SPOSOBY NA KRYSYS ENERGETYCZNY Martyna Ćwik Politechnika Częstochowska OGNIWA PALIWOWE SPOSOBY NA KRYSYS ENERGETYCZNY W dobie wyczerpujących się źródeł paliw kopalnych, ogniwa paliwowe zajmują istotną rolę wśród nowatorskich sposobów

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5

Laboratorium odnawialnych źródeł energii. Ćwiczenie nr 5 Laboratorium odnawialnych źródeł energii Ćwiczenie nr 5 Temat: Badanie ogniw paliwowych. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Fizyka i technika konwersji energii VI semestr

Bardziej szczegółowo

JEDNOKOMOROWE OGNIWA PALIWOWE

JEDNOKOMOROWE OGNIWA PALIWOWE JEDNOKOMOROWE OGNIWA PALIWOWE Jan Wyrwa Katedra Chemii Analitycznej, Wydział Inżynierii Materiałowej i Ceramiki, AGH Al. Mickiewicza 30, 30-059 Kraków Światowe zapotrzebowanie na energię-przewidywania

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

1. BUDOWA I ZASADA DZIAŁANIA OGNIWA PALIWOWEGO

1. BUDOWA I ZASADA DZIAŁANIA OGNIWA PALIWOWEGO OGNIWA PALIWOWE Ogniwa paliwowe są urządzeniami generującymi prąd elektryczny dzięki odwróceniu zjawiska elektrolizy. Pierwszy raz zademonstrował to w 1839 r William R. Grove w swoim doświadczeniu które

Bardziej szczegółowo

Ogniwo paliwowe typu PEM (ang. PEM-FC)

Ogniwo paliwowe typu PEM (ang. PEM-FC) OPRACOWALI: MGR INŻ. JAKUB DŁUGOSZ MGR INŻ. MARCIN MICHALSKI OGNIWA PALIWOWE I PRODUKCJA WODORU LABORATORIUM I- ZASADA DZIAŁANIA SYSTEMU OGNIW PALIWOWYCH TYPU PEM NA PRZYKŁADZIE SYSTEMU NEXA 1,2 kw II-

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Badanie ogniw paliwowych. Michał Stobiecki, Michał Ryms Grupa 5; sem. VI Wydz. Fizyki Technicznej

Bardziej szczegółowo

OGNIWA PALIWOWE. Zapewniają ekologiczne sposoby wytwarzania energii w dobie szybko wyczerpujących sięźródeł paliw kopalnych.

OGNIWA PALIWOWE. Zapewniają ekologiczne sposoby wytwarzania energii w dobie szybko wyczerpujących sięźródeł paliw kopalnych. Ogniwa paliwowe 1 OGNIWA PALIWOWE Ogniwa te wytwarzają energię elektryczną w reakcji chemicznej w wyniku utleniania stale dostarczanego do niego z zewnątrz paliwa. Charakteryzują się jednym z najwyższych

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

LABORATORIUM PRZEMIAN ENERGII

LABORATORIUM PRZEMIAN ENERGII LABORATORIUM PRZEMIAN ENERGII BADANIE OGNIWA PALIWOWEGO TYPU PEM I. Wstęp Ćwiczenie polega na badaniu ogniwa paliwowego typu PEM. Urządzenia tego typy są obecnie rozwijane i przystosowywane do takich aplikacji

Bardziej szczegółowo

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz

Bardziej szczegółowo

teoretyczne podstawy działania

teoretyczne podstawy działania Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko

Bardziej szczegółowo

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, Ćw.2 Elektroliza wody za pomocą ogniwa paliwowego typu PEM Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, A także określenie wydajności tego urządzenia, jeśli

Bardziej szczegółowo

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE SEMINARIUM Termoelektryczne urządzenia chłodnicze Teoretyczne podstawy działania Anna Krzesińska I M-M sem. 2 1 Spis treści Termoelektryczność...3 Efekt Seebecka...4

Bardziej szczegółowo

Stanowisko do badania ogniwa paliwowego Nexa 1,2 kw

Stanowisko do badania ogniwa paliwowego Nexa 1,2 kw BIULETYN WAT VOL. LV, NR 3, 2006 Stanowisko do badania ogniwa paliwowego Nexa 1,2 kw LESZEK SZCZĘCH Wojskowa Akademia Techniczna, Wydział Mechaniczny, Instytut Pojazdów Mechanicznych i Transportu, 00-908

Bardziej szczegółowo

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1 Elektrochemia elektroliza Wykład z Chemii Fizycznej str. 4.3 / 1 ELEKTROLIZA POLARYZACJA ELEKTROD Charakterystyka prądowo-napięciowa elektrolizy i sposób określenia napięcia rozkładu Wykład z Chemii Fizycznej

Bardziej szczegółowo

Laboratorium ogniw paliwowych i produkcji wodoru

Laboratorium ogniw paliwowych i produkcji wodoru Instrukcja System ogniw paliwowych typu PEM, opr. M. Michalski, J. Długosz; Wrocław 2014-12-03, str. 1 Laboratorium ogniw paliwowych i produkcji wodoru System ogniw paliwowych typu PEM Instrukcja System

Bardziej szczegółowo

NIEKONWENCJONALNE ŹRÓDŁA ENERGII OGNIWA PALIWOWE

NIEKONWENCJONALNE ŹRÓDŁA ENERGII OGNIWA PALIWOWE NIEKONWENCJONALNE ŹRÓDŁA ENERGII OGNIWA PALIWOWE ZARYS HISTORYCZNY W roku 1839 fizyk brytyjski William R. Grove zademonstrował, że podczas elektrochemicznej reakcji łączenia wodoru z tlenem powstaje prąd

Bardziej szczegółowo

Elektrochemia - prawa elektrolizy Faraday a. Zadania

Elektrochemia - prawa elektrolizy Faraday a. Zadania Elektrochemia - prawa elektrolizy Faraday a Zadania I prawo Faraday a Masa substancji wydzielonej na elektrodach podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy q

Bardziej szczegółowo

MATERIAŁY W BUDOWIE OGNIW PALIWOWYCH

MATERIAŁY W BUDOWIE OGNIW PALIWOWYCH MATERIAŁY W BUDOWIE OGNIW PALIWOWYCH OGNIWO PALIWOWE Ogniwo paliwowe jest urządzeniem służącym do bezpośredniej konwersji energii chemicznej zawartej w paliwie w energię elektryczną za pośrednictwem procesu

Bardziej szczegółowo

VII Podkarpacki Konkurs Chemiczny 2014/2015

VII Podkarpacki Konkurs Chemiczny 2014/2015 II Podkarpacki Konkurs Chemiczny 2014/2015 ETAP I 12.11.2014 r. Godz. 10.00-12.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Który z podanych zestawów zawiera wyłącznie

Bardziej szczegółowo

Wykład VII. Ogniwa paliwowe

Wykład VII. Ogniwa paliwowe Wykład VII Ogniwa paliwowe Ogniwo paliwowe Ogniwo paliwowe jest urządzeniem pozwalającym na ciągłą przemianą energii chemicznej paliwa w energię oraz ciepło, tak długo jak, dostarczane jest paliwo i utleniacz

Bardziej szczegółowo

ĆWICZENIE 1. Ogniwa paliwowe

ĆWICZENIE 1. Ogniwa paliwowe ĆWICZENIE 1 Ogniwa paliwowe Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis wykonania ćwiczenia 4. Sposób przygotowania sprawozdania 5. Lista pytań do kolokwium

Bardziej szczegółowo

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część V Wydział Chemii UAM Poznań 2011 POJĘCIA PODSTAWOWE Reakcjami utleniania i redukcji (oksydacyjno-redukcyjnymi) nazywamy reakcje,

Bardziej szczegółowo

TŻ Wykład 9-10 I 2018

TŻ Wykład 9-10 I 2018 TŻ Wykład 9-10 I 2018 Witold Bekas SGGW Elementy elektrochemii Wiele metod analitycznych stosowanych w analityce żywnościowej wykorzystuje metody elektrochemiczne. Podział metod elektrochemicznych: Prąd

Bardziej szczegółowo

Schemat ogniwa:... Równanie reakcji:...

Schemat ogniwa:... Równanie reakcji:... Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,

Bardziej szczegółowo

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną

Bardziej szczegółowo

Podstawy elektrochemii

Podstawy elektrochemii Podstawy elektrochemii Elektrochemia bada procesy zachodzące na granicy elektrolit - elektroda Elektrony można wyciągnąć z elektrody bądź budując celkę elektrochemiczną, bądź dodając akceptor (np. kwas).

Bardziej szczegółowo

Bezemisyjna energetyka węglowa

Bezemisyjna energetyka węglowa Bezemisyjna energetyka węglowa Szansa dla Polski? Jan A. Kozubowski Wydział Inżynierii Materiałowej PW Człowiek i energia Jak ludzie zużywali energię w ciągu minionych 150 lat? Energetyczne surowce kopalne:

Bardziej szczegółowo

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au WSTĘP DO ELEKTROCHEMII (opracowanie dr Katarzyna Makyła-Juzak Elektrochemia jest działem chemii fizycznej, który zajmuje się zarówno reakcjami chemicznymi stanowiącymi źródło prądu elektrycznego (ogniwa

Bardziej szczegółowo

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1. Zasada oznaczania polega na wydzieleniu analitu w procesie elektrolizy w postaci osadu na elektrodzie roboczej (katodzie lub anodzie) i wagowe oznaczenie masy osadu z przyrostu masy elektrody Zalety: -

Bardziej szczegółowo

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII O G N I W A Zadanie 867 (2 pkt.) Wskaż procesy, jakie zachodzą podczas pracy ogniwa niklowo-srebrowego. Katoda Anoda Zadanie 868* (4 pkt.) W wodnym roztworze

Bardziej szczegółowo

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych. Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 22 listopada 2005 roku Temat lekcji: Elektroliza roztworów wodnych. Cel ogólny lekcji: Wprowadzenie pojęcia

Bardziej szczegółowo

Otrzymywanie wodoru M

Otrzymywanie wodoru M Otrzymywanie wodoru M Własności wodoru Wodór to najlżejszy pierwiastek świata, składa się on tylko z 1 protonu i krążącego wokół niego elektronu. W stanie wolnym występuje jako cząsteczka dwuatomowa H2.

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

Elektrochemia - szereg elektrochemiczny metali. Zadania

Elektrochemia - szereg elektrochemiczny metali. Zadania Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości

Bardziej szczegółowo

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne Karta pracy III/1a Elektrochemia: ogniwa galwaniczne I. Elektroda, półogniwo, ogniowo Elektroda przewodnik elektryczny (blaszka metalowa lub pręcik grafitowy) który ma być zanurzony w roztworze elektrolitu

Bardziej szczegółowo

UZUPEŁNIENIE DO WYKŁADÓW

UZUPEŁNIENIE DO WYKŁADÓW UZUPEŁNIENIE DO WYKŁADÓW Idea ogniwa paliwowego 1839 r. (demonstracja). Praktyczne zastosowanie ogniwa paliwowego statki termiczne. Ogólne zastosowanie ogniw paliwowych: - napęd samochodu, by zastąpić

Bardziej szczegółowo

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Możliwości magazynowania energii elektrycznej z OZE

Możliwości magazynowania energii elektrycznej z OZE Możliwości magazynowania energii elektrycznej z OZE Grzegorz Lota Politechnika Poznańska, Instytut Chemii i Elektrochemii Technicznej Instytut Metali Nieżelaznych Oddział w Poznaniu Centralne Laboratorium

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego.

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Obwody prądu stałego Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Podstawowe prawa elektrotechniki w zastosowaniu do obwodów elektrycznych: Obwód elektryczny

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Jony dodatnie - kationy: atomy pozbawione elektronów walencyjnych, np. Li +, Na +, Ag +, Ca 2+,

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

Samochody na wodór. Zastosowanie. Wodór w samochodach. Historia. Przechowywanie wodoru

Samochody na wodór. Zastosowanie. Wodór w samochodach. Historia. Przechowywanie wodoru Samochody na wodór Zastosowanie Wodór w samochodach Historia Przechowywanie wodoru Wodór ma szanse stać się najważniejszym nośnikiem energii w najbliższej przyszłości. Ogniwa paliwowe produkują zeń energię

Bardziej szczegółowo

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na

Bardziej szczegółowo

Ogniwa paliwowe - zasada działania

Ogniwa paliwowe - zasada działania Artykuł pobrano ze strony eioba.pl Ogniwa paliwowe - zasada działania OGNIWA PALIWOWE W roku 1839 fizyk brytyjski William R. Grove zademonstrował, że podczas elektrochemicznej reakcji łączenia wodoru z

Bardziej szczegółowo

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu.

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. ELEKTRODY i OGNIWA Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. Me z+ + z e Me Utl + z e Red RÓWNANIE NERNSTA Walther H. Nernst

Bardziej szczegółowo

(1) Przewodnictwo roztworów elektrolitów

(1) Przewodnictwo roztworów elektrolitów (1) Przewodnictwo roztworów elektrolitów 1. Naczyńko konduktometryczne napełnione 0,1 mol. dm -3 roztworem KCl w temp. 298 K ma opór 420 Ω. Przewodnictwo właściwe 0,1 mol. dm -3 roztworu KCl w tej temp.

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach HYDROMETALURGIA METALI NIEŻELAZNYCH 1 Ć W I C Z E N I E 6 Nadnapięcie wydzielania wodoru na metalach WPROWADZENIE ażdej elektrodzie, na której przebiega reakcja elektrochemiczna typu: x Ox + ze y Red (6.1)

Bardziej szczegółowo

Stany równowagi i zjawiska transportu w układach termodynamicznych

Stany równowagi i zjawiska transportu w układach termodynamicznych Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.

Bardziej szczegółowo

wykład 6 elektorochemia

wykład 6 elektorochemia elektorochemia Ogniwa elektrochemiczne Ogniwo elektrochemiczne składa się z dwóch elektrod będących w kontakcie z elektrolitem, który może być roztworem, cieczą lub ciałem stałym. Elektrolit wraz z zanurzona

Bardziej szczegółowo

Co to są ogniwa paliwowe

Co to są ogniwa paliwowe Ogniwa paliwowe Co to są ogniwa paliwowe Ogniwa paliwowe są urządzeniami elektro - chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii, pozwalają na uzyskanie energii elektrycznej i ciepła bezpośrednio

Bardziej szczegółowo

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 -

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 - Jak nazwa działu wskazuje będę tu umieszczał różne rozwiązania umożliwiające pozyskiwanie energii elektrycznej z niekonwencjonalnych źródeł. Zaczniemy od eksperymentu, który każdy może wykonać sobie w

Bardziej szczegółowo

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające Ćwiczenie nr 37 NAPIĘCIE ROZKŁADOWE I. Cel ćwiczenia Celem ćwiczenia jest: przebadanie wpływu przemian chemicznych zachodzących na elektrodach w czasie elektrolizy na przebieg tego procesu dla układu:

Bardziej szczegółowo

Główne zagadnienia: - mol, stechiometria reakcji, pisanie równań reakcji w sposób jonowy - stężenia, przygotowywanie roztworów - ph - reakcje redoks

Główne zagadnienia: - mol, stechiometria reakcji, pisanie równań reakcji w sposób jonowy - stężenia, przygotowywanie roztworów - ph - reakcje redoks Główne zagadnienia: - mol, stechiometria reakcji, pisanie równań reakcji w sposób jonowy - stężenia, przygotowywanie roztworów - ph - reakcje redoks 1. Która z próbek o takich samych masach zawiera najwięcej

Bardziej szczegółowo

MODUŁ. Elektrochemia

MODUŁ. Elektrochemia MODUŁ Warsztaty badawczo-naukowe: Elektrochemia 1. Zakładane efekty kształcenia modułu Poznanie podstawowych pojęć z zakresu elektrochemii takich jak: przewodnictwo, półogniwo (elektroda), ogniwo, elektroliza,

Bardziej szczegółowo

Chemia - laboratorium

Chemia - laboratorium Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 01/1 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii

Bardziej szczegółowo

Ogniwa paliwowe (fuel cells)

Ogniwa paliwowe (fuel cells) 18/04/2008 Spis tresci Ogniwa paliwowe są urządzeniami elektro - chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii, pozwalają na uzyskanie energii elektrycznej i ciepła bezpośrednio z zachodzącej

Bardziej szczegółowo

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tytuł i numer rozdziału w podręczniku Nr lekcji Temat lekcji Szkło i sprzęt laboratoryjny 1. Pracownia chemiczna.

Bardziej szczegółowo

Ogniwo paliwowe zasilane ciekłym metanolem Direct Methanol Fuel Cell

Ogniwo paliwowe zasilane ciekłym metanolem Direct Methanol Fuel Cell Ogniwo paliwowe zasilane ciekłym metanolem Direct Methanol Fuel Cell Grzegorz Słowiński Podsumowanie 7 miesięcznego pobytu na stypendium Marii Curie na Newcastle University w Anglii Plan prezentacji Wprowadzenie

Bardziej szczegółowo

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ

IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ IV. PREFEROWANE TECHNOLOGIE GENERACJI ROZPROSZONEJ Dwie grupy technologii: układy kogeneracyjne do jednoczesnego wytwarzania energii elektrycznej i ciepła wykorzystujące silniki tłokowe, turbiny gazowe,

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72

Spis treści. Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp Odnawialne źródła energii 72 Spis treści Wykaz ważniejszych oznaczeń i jednostek 13 Przedmowa 17 Wstęp 19 1_ Charakterystyka obecnego stanu środowiska 21.1. Wprowadzenie 21.2. Energetyka konwencjonalna 23.2.1. Paliwa naturalne, zasoby

Bardziej szczegółowo

VIII Podkarpacki Konkurs Chemiczny 2015/2016

VIII Podkarpacki Konkurs Chemiczny 2015/2016 III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem

Bardziej szczegółowo

NOWOCZESNE ŹRÓDŁA ENERGII

NOWOCZESNE ŹRÓDŁA ENERGII NOWOCZESNE ŹRÓDŁA ENERGII Kierunki zmian układów napędowych (3 litry na 100 km było by ideałem) - Bardziej efektywne przetwarzanie energii (zwiększenie sprawności cieplnej silnika z samozapłonem do 44%)

Bardziej szczegółowo

Historia elektrochemii

Historia elektrochemii Historia elektrochemii Luigi Galvani (1791): elektryczność zwierzęca Od żab do ogniw Alessandro Volta (około 1800r): weryfikacja doświadczeń Galvaniego Umieszczenie dwóch różnych metali w ciele żaby może

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Zarządzanie i Inżynieria Produkcji Chemia procesów pozyskiwania energii Chemistry of energy receiving processes Kod przedmiotu: ZIP.PK.O.4.4. Rodzaj przedmiotu: przedmiot z

Bardziej szczegółowo

Wysoka sprawność ogniwa paliwowego zasilanego metanolem

Wysoka sprawność ogniwa paliwowego zasilanego metanolem WOLFGANG FECHNER* ), KLAUS THEWS, WŁODZIMIERZ KOTOWSKI** ) i ZBIGNIEW BUDNER Wyższa Szkoła Techniczna w Wurzburgu i Instytut Ciężkiej Syntezy Organicznej w Kędzierzynie-Koźlu Wysoka sprawność ogniwa paliwowego

Bardziej szczegółowo

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra

Bardziej szczegółowo

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego

CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja)

Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja) Jon w otoczeniu dipoli cząsteczkowych rozpuszczalnika utrzymywanych siłami elektrycznymi solwatacja (hydratacja) Jon w otoczeniu chmury dipoli i chmury jonowej. W otoczeniu jonu dodatniego (kationu) przewaga

Bardziej szczegółowo

Część 3. Magazynowanie energii. Akumulatory Układy ładowania

Część 3. Magazynowanie energii. Akumulatory Układy ładowania Część 3 Magazynowanie energii Akumulatory Układy ładowania Technologie akumulatorów Najszersze zastosowanie w dużych systemach fotowoltaicznych znajdują akumulatory kwasowo-ołowiowe (lead-acid batteries)

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: KOROZJA I OCHRONA PRZED KOROZJĄ ĆWICZENIA LABORATORYJNE Temat ćwiczenia: OGNIWA GALWANICZNE Cel

Bardziej szczegółowo

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA 1 OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA PRZEMIANY CHEMICZNE POWODUJĄCE PRZEPŁYW PRĄDU ELEKTRYCZNEGO. PRZEMIANY CHEMICZNE WYWOŁANE PRZEPŁYWEM PRĄDU. 2 ELEKTROCHEMIA ELEKTROCHEMIA dział

Bardziej szczegółowo

... Nazwisko, imię zawodnika; Klasa Liczba punktów. ... Nazwa szkoły, miejscowość. I Podkarpacki Konkurs Chemiczny 2008/09

... Nazwisko, imię zawodnika; Klasa Liczba punktów. ... Nazwa szkoły, miejscowość. I Podkarpacki Konkurs Chemiczny 2008/09 ......... Nazwisko, imię zawodnika; Klasa Liczba punktów KOPKCh... Nazwa szkoły, miejscowość I Podkarpacki Konkurs Chemiczny 2008/09 ETAP III 28.02.2009 r. Godz. 10.00-13.00 Zadanie 1 (10 pkt.) ( postaw

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K RÓWNOWAGI W ROZTWORACH Szwedzki chemik Svante Arrhenius w 1887 roku jako pierwszy wykazał, że procesowi rozpuszczania wielu substancji towarzyszy dysocjacja, czyli rozpad cząsteczek na jony naładowane

Bardziej szczegółowo

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto Zadanie 1. (3 pkt) Nadtlenek litu (Li 2 O 2 ) jest ciałem stałym, występującym w temperaturze pokojowej w postaci białych kryształów. Stosowany jest w oczyszczaczach powietrza, gdzie ważna jest waga użytego

Bardziej szczegółowo

Najbardziej rozpowszechniony pierwiastek we Wszechświecie, Stanowi główny składnik budujący gwiazdy,

Najbardziej rozpowszechniony pierwiastek we Wszechświecie, Stanowi główny składnik budujący gwiazdy, Położenie pierwiastka w UKŁADZIE OKRESOWYM Nazwa Nazwa łacińska Symbol Liczba atomowa 1 Wodór Hydrogenium Masa atomowa 1,00794 Temperatura topnienia -259,2 C Temperatura wrzenia -252,2 C Gęstość H 0,08988

Bardziej szczegółowo

Reakcje utleniania i redukcji

Reakcje utleniania i redukcji Reakcje utleniania i redukcji Stopień utlenienia Stopniem utlenienia pierwiastka, wchodzącego w skład określonej substancji, nazywamy liczbę dodatnich lub ujemnych ładunków elementarnych, jakie przypisalibyśmy

Bardziej szczegółowo

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro

Bardziej szczegółowo

Fe +III. Fe +II. elektroda powierzchnia metalu (lub innego przewodnika), na której zachodzi reakcja wymiany ładunku (utleniania, bądź redukcji)

Fe +III. Fe +II. elektroda powierzchnia metalu (lub innego przewodnika), na której zachodzi reakcja wymiany ładunku (utleniania, bądź redukcji) Elektrochemia przedmiotem badań są m.in. procesy chemiczne towarzyszące przepływowi prądu elektrycznego przez elektrolit, którym są stopy i roztwory związków chemicznych zdolnych do dysocjacji elektrolitycznej

Bardziej szczegółowo

Reakcje utleniania i redukcji

Reakcje utleniania i redukcji Reakcje utleniania i redukcji Reguły ustalania stopni utlenienia 1. Pierwiastki w stanie wolnym (nie związane z atomem (atomami) innego pierwiastka ma stopień utlenienia równy (zero) 0 ; 0 Cu; 0 H 2 ;

Bardziej szczegółowo

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu? 1. Oblicz, ilu moli HCl należy użyć, aby poniższe związki przeprowadzić w sole: a) 0,2 mola KOH b) 3 mole NH 3 H 2O c) 0,2 mola Ca(OH) 2 d) 0,5 mola Al(OH) 3 2. Podczas spalania 2 objętości pewnego gazu

Bardziej szczegółowo

Ćwiczenie nr 2 Ogniwa paliwowe

Ćwiczenie nr 2 Ogniwa paliwowe AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Nieorganicznej Laboratorium z Elektrochemii Ciała Stałego Ćwiczenie nr 2 Ogniwa paliwowe

Bardziej szczegółowo

Technologia ogniw paliwowych w IEn

Technologia ogniw paliwowych w IEn Technologia ogniw paliwowych w IEn Mariusz Krauz 1 Wstęp Opracowanie technologii ES-SOFC 3 Opracowanie technologii AS-SOFC 4 Podsumowanie i wnioski 1 Wstęp Rodzaje ogniw paliwowych Temperatura pracy Temperatura

Bardziej szczegółowo