Sterowanie wirnikiem łożyskowanym magnetycznie w obróbce powierzchni n-falowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie wirnikiem łożyskowanym magnetycznie w obróbce powierzchni n-falowych"

Transkrypt

1 Pomiry Automtyk Rootyk /5 Sterownie wirnikiem łożyskownym mgnetycznie w oróce powierzchni n-flowych Zdzisłw Gosiewski Arkdiusz Mystkowski * Przedstwiono wyniki dń n-flowego ruchu nieorcjącego się wirnik łożyskownego mgnetycznie. Pondto zostło przenlizowne i symulowne zchownie się wirnik dl regultorów zudownych według metod: przesuwni iegunów, LQR orz predykcyjnej, w szerokim zkresie prędkości orotowych wirnik od do tys. or/min. W osttnich ltch ktywne łożysk mgnetyczne są stosowne również w przemyśle jko nrzędzie oróki skrwniem dl uzyskni większych prędkości orotowych orz lepszej dynmiki skrwni [ 5]. Klsyczn szlifierk lu frezrk m mechnizm do wytczni orit kołowych. Jednk w niektórych przypdkch zchodzi potrze oróki powierzchni nieokrągłych, np. powierzchni o n-flowym przekroju nłożonym n koło. Funkcje nlityczne, tkie jk epicykloid lu hipocykloid, opisują tego typu n-flowe ority. k orók skrwniem może yć zrelizown z pomocą elektrowrzecion łożyskownych mgnetycznie, z możliwością progrmowego sterowni położeniem włk wrzecion, ez wprowdzni jkichkolwiek zmin w mechnizmie szlifierki lu frezrki. Niekołow orit włu wirnik z punktu widzeni systemu sterowni generuje zmienny punkt prcy łożysk, który jest zdną funkcją czsu i położeni kątowego. W związku z tym, że łożysk mgnetyczne są ukłdmi nieliniowymi, prmetry zlineryzownego modelu ukłdu otwrtego są silnie uzleżnione od przyjętego punktu prcy [6]. W [7] jest przedstwiony ukłd sterowni pojedynczą osią łożysk mgnetycznego z możliwością progrmowej zminy prmetrów punktu prcy. Ze wspomninych prc wynikją wnioski:. Dl uzyskni punktu prcy, w którym występujące siły elektromgnetyczne równowżą się, nleży nie tylko sterowć położeniem włk, le również prądem we wszystkich cewkch elektromgnesów. Wymg to pomiru zrówno przemieszczeni włk, jk i prądów płynących w cewkch * prof. dr h. inż. Zdzisłw Gosiewski, mgr inż. Arkdiusz Mystkowski Ktedr echniki Automtyzcji, Wydził Mechniczny, Politechnik Biłostock. Progrmowne przemieszczenie wirnik nie powinno przekrczć połowy szczeliny nominlnej łożysk mgnetycznego. Dl większych przemieszczeń prmetry ukłdu sterowni ulegją pogorszeniu. W tkim wypdku niezędne jest wprowdzenie do ukłdu czsochłonnych lgorytmów sterowni dptcyjnego relizownych przez mikroprocesor. Ruch po trjektorii w płszczyznch łożysk Do opisu dowolnego n-flowego ksztłtu orinej powierzchni w płszczyźnie ruchu nrzędzi stosuje się nstępujące równni prmetryczne [7]: r (r + R)/r. xs ( R r)cosj lrcos r j y ( R r)sinj lrsin rj s + ( ) + ( ) Korzystjąc z zleżności () orz zkłdjąc, że nrzędzie m przekrój kołowy o średnicy d orz że jego środek geometryczny jest położony wzdłuż linii pionu w odległości d/ od orinej powierzchni, równni prmetryczne trjektorii możn zpisć w nstępującej postci [7]: d d f xc xs ±, yc ys () ± f + f + () gdzie nchylenie linii pionu do orinej powierzchni jest określone zleżnością: sin j lsin r j f cos j lcos r j ( ) ( ) (3) Znki w równnich () opisujących proces frezowni są zleżne od kwdrntu orinej powierzchni, n której znjduje się nrzędzie. Zleżą również od tego, czy nrzędzie jest wewnątrz, czy n zewnątrz ority. 6

2 Pomiry Automtyk Rootyk /5 Przyjęto, że podstwowy ruch kołowy wykonuje mechnizm szlifowni lu frezowni, ntomist ruch flowy relizuje zwieszenie mgnetyczne. Dltego też, trjektori nrzędzi ze względu n linię środkową (oś symetrii) łożysk mgnetycznego przyjmuje postć: xc xc ( R+ r± d/ )cos j, y y ( R+ r± d/ )sinj c c () Oczywistym jest, że ruchy wykonywne przez mechnizmy oróki skrwniem orz przez łożysk mgnetyczne powinny yć zsynchronizowne. Znk plus w równnich () odpowid fzie procesu oróki, gdy nrzędzie znjduje się n zewnątrz orinej powierzchni, ntomist znk minus gdy nrzędzie operuje wewnątrz orinej powierzchni. Zkłdmy ukłd współrzędnych Oxyz z początkiem pokrywjącym się ze środkiem msy wirnik orz osią z skierowną wzdłuż osi orotu, tk jk to przedstwi rys.. Przyjęto, że oś orotu pokryw się z linią środkową (osią symetrii) ou promieniowych łożysk mgnetycznych. Model modlny wirnik sztywnego Rozwżmy symetryczny wirnik sztywny poprzecznie zwieszony w dwóch ktywnych łożyskch mgnetycznych, tk jk to przedstwi rys.. Ruch wirnik możn opisć współrzędnymi modlnych [6, 7], tj. opisującymi trnslcyjny ruch środk msy, x, y, orz ruch rotcyjny (nchylenie włu),. N podstwie prw Newton wyprowdzmy równni ruchu trnslcyjnego: mx Fx + Fx (7) my Fy + Fy równni ruchu rotcyjnego zostły wyprowdzone z równń Euler i mją postć: I x WIz Fx + Fx (8) I WI F + F x z y y F siły elektromgnetyczne; indeksy (, ), ( x, y ) wskzują odpowiednio: włściwą płszczyznę łożyskową i włściwą oś w tej płszczyźnie, m ms,, odległości środk msy od płszczyzn łożyskowych, W prędkość kątow wirnik, I x I y, I z momenty ezwłdności odpowiednio względem osi: x, y, z; e mimośród środk msy reprezentujący niewywżenie sttyczne. Równni ruchu orcjącego się włk są rozprzężone dl geometrii włk opisnej jko: I x m (9) Rys.. Położenie włu wirnik względem linii środkowej łożysk;, odległości pomiędzy środkiem msy wirnik płszczyznmi łożyskowymi, c odległość nrzędzi od prwej płszczyzny łożyskowej, F xc sił skrwni, F x, F x siły rekcji łożysk Istnieje nieogrniczon licz rozwiązń dl ruchu włk w łożyskch mgnetycznych, umożliwijąc umiejscowienie środk nrzędzi w zprogrmownym punkcie. N przykłd, poprzez minimlizcję przemieszczeń zgodnie z -normą otrzymujemy nstępujący punkt prcy dl wlcowego ruchu włk: x x x c, y y y c (5) lu dl stożkowego ruchu (dl wrtości ezwzględnych,, c): x c x x ( + ) ( + ) c, c x c, (6) y ( + ) c y ( + ) c, y + + c y c + + Gdy wrunek (9) jest spełniony tylko w przyliżeniu, równni ruchu wirnik możn ndl trktowć jko rozprzęgnięte. W tym wypdku możn zstosowć metodę sterowni dl pojedynczej osi łożysk mgnetycznego, przedstwioną w prcy [7], orz sprwdzić n etpie dń lortoryjnych wpływ efektu żyroskopowego n dynmikę systemu. Sterownie w ukłdzie ze sprzężeniem zwrotnym Do zudowni prw sterowni zostną wykorzystne nstępujące równni: Nleży zwrócić uwgę, że w drugim przypdku x / x c < i x /x c < orz nlogicznie dl osi y, co wskzuje, że ruch nrzędzi nie może przekroczyć szerokości szczeliny łożysk mgnetycznego. () 7

3 Pomiry Automtyk Rootyk /5 ( m+ Ix)/ mix ( m+ Ix)/ mix mr mr ntomist siły elektromgnetyczne otrzymno w wyniku lineryzcji ukłdu w punkcie prcy. Wszystkie ww. zmienne orz prmetry zostną opisne w kolejnych punktch. Równni dynmiki dl poszczególnych cewek elektromgnesów powinny yć sprzęgnięte z modelem () w celu zrelizowni npięciowego ukłdu sterowni. W rezultcie otrzymujemy model ukłdu otwrtego dl kżdej osi łożysk mgnetycznego [7]: inne prmetry mogą yć otrzymne przez porównnie równń () i (). Punkt prcy dl pojedynczej osi łożysk jest opisny nstępującymi prmetrmi: () które oznczją, że dl kżdej osi mierzymy przemieszczenie orz prądy w ou cewkch. W ukłdzie sterowni od wektor stnu prwo sterowni opisuje zleżność: ẋ Acx+ Bcu+ Fc, y Cx () A c n n n B n 3 n c n 5 n3 n n5 F F C c jest wektorem sterowni, ntomist F lw [ dr3 cos( r3wt ) + ( r + d) r cos( r wt)] + + c u Kx (3) u u uz+ U, u uz U x X x x X x i i + I i i I z z z jest wektorem stnu. Dl modelu, którego punkt prcy jest położony w środku osiowo symetrycznego łożysk mgnetycznego, mcierz wzmocnieni przyjmuje dorze znną postć, minowicie: k k ( kz + k3)/ ( kz k3)/ K k k k k k + k ( z 3)/ ( z 3)/ () Gdy punkt prcy x z jest usytuowny poz środkiem łożysk mgnetycznego, prwo sterowni możn przeksztłcić [7] do nstępującej dptcyjnej postci: (5) Dl uzyskni prw sterowni w postci () lu (5) nleży ukłd () podzielić n podukłdy powiązne z ruchem msy orz punktem prcy dl poszczególnych cewek. Przyjmijmy, że prw sterowni oprte n sterowniu od wektor stnu dl wyodręnionych podsystemów mją postć: U k k k X X I 3 u z k z i z (6) u z k z i z Różne metody sterowni możn zstosowć dl zrelizowni powyższych prw sterowni. W [7] zstosowno metodę wyznczni miejsc położeni iegunów dl uzyskni mcierzy wzmocnień regultor (6). Metod LQR jest przedstwion n przykłd w oprcowniu [8]. Sterownie predykcyjne W dlszej części oprcowni dl uzyskni mcierzy wzmocnieni () zostnie zstosown metod sterowni predykcyjnego o czsie skończonym [9]. Mcierz () zostnie nstępnie przeksztłcon dptcyjnie do postci (5). W tym celu zostnie zmieniony model ciągły w czsie () n odpowidjący mu model dyskretny: x(k+) Ax(k) + Bu(k) (7) y(k) Cx(k) Zestwijąc równni stnu dl kolejnych próek q >n, otrzymujemy model predykcyjny: u( k) q q x( k+ q) A x( k) + [ A B,..., AB, B] (8) u( k+ q ) u( k+ q ) Jesteśmy zinteresowni rozwiązniem, które minimlizuje ilość energii niezędnej do sterowni, które możn uzyskć z modelu predykcyjnego o czsie skończonym: u( k) q + q [ A B,..., AB, B] A x( k u( k+ q ) u( k+ q ) (9) [ ] + pseudoodwrotność mcierzy ojętej nwismi, q grnic predykcji. 8

4 Pomiry Automtyk Rootyk /5 Mcierz wzmocnieni () możn trktowć jko podmcierz zudowną z pierwszych r wierszy mcierzy[a q B,..., AB, B] + AB q, gdzie r jest liczą wejść. W celu otrzymni zerowego uchyu w stnie ustlonym, nleży pondto w ukłdzie zstosowć dodtkową pętlę z częścią cłkującą. Sterownie w ukłdzie ze sprzężeniem do przodu W celu wyeliminowni uchyu regulcji możemy kompensowć wpływ zkłóceń z wyprzedzeniem poprzez odpowiednią korektę sterowni. rnsmitncj otwrtego ukłdu sterowni jest nstępując: X(s) G UX (s)u(s)+g FX (s)f (s) () () Zewnętrzne zkłóceni możemy wyeliminowć poprzez przyjęcie prw sterowni jko superpozycję sterowni ze sprzężeniem zwrotnym U f i sterowni ze sprzężeniem do przodu U : U U f + U () Do zprojektowni sterowni ze sprzężeniem zwrotnym (6) możemy użyć metody przesuwni iegunów. Dl wyznczonych iegunów p, p, i p 3 otwrtego podukłdu III, otrzymujemy: n( p+ p+ p3)+ ppp3 k nn 5 n+ nn3+ pp + pp 3+ pp 3 k (3) nn W dziedzinie czsu mmy: () Poniewż F (t) jest znną funkcją czsu, sterownie ze sprzężeniem do przodu jest również znną funkcją czsu. Korzystjąc ze wzoru n F (t), dostjemy: G G UX FX nn 5 ( s) ( s n)( s+ n) + nn3s s + n ( s) ( s n)( s+ n) + nn 3 s U ( ) k n p p p / n df () t () t n nn dt nn 5 5 F () t U () t A cos( r wt + j ) + A cos( rwt + j ) d lr3 w A3 n + r 3 w, nn 5( + + c) ( r+ d) lr w A n + r w, nn 5( + + c) r3 w r w tgj3, tgj. n n (5) Wyniki dń doświdczlnych i symulcyjnych Orin powierzchni jest opisn przez skrócone -flowe epicykloidy o nstępujących prmetrch orinej powierzchni: R,8 m, r, m, l,. Średnic nrzędzi: d, m, wymiry włk:,8 m,,55 m, c,7 m. Zrówno trjektori środk nrzędzi, jk i ruch włk w łożyskch mgnetycznych nie zkreślją sinusoidlną trjektorię, kżd z czterech fl mjących miejsce podczs ruchu w rmch jednej ority jest przedstwion n rys.. y (m) x -5,5,5 -,5 - strt -,5 -,5 - -,5,5,5 (m) x -5 Rys.. rjektori środk włk w płszczyźnie lewego łożysk mgnetycznego podczs skrwni n. oricie N rys. 3 jest przedstwion odpowiedź ukłdu zmkniętego z regultorem zprojektownym metodą przesuwni iegunów n impulsową zminę jednego z sygnłów wejściowych (npięcie u x ). X (m) x W rev/s W rev/s -,,,6,8,,,,6,8, Rys. 3. Odpowiedź impulsow ukłdu zmkniętego z regultorem zprojektownym z pomocą metody rozmieszczeni iegunów dl dwóch prędkości wirnik x 9

5 Pomiry Automtyk Rootyk /5 Odpowiedź ukłdu zmkniętego (przemieszczenie x ) n wejściowy impuls npięciowy u x, dl dwóch prędkości W or/s orz or/s dl ukłdu z regultorem LQG, zostł pokzn n rys.. X (m) x W rev/s W rev/s - -,,,6,8,,,,6,8, Rys.. Odpowiedź impulsow ukłdu zmkniętego z regultorem LQG dl dwóch różnych prędkości orotowych wirnik Odpowiedź ukłdu zmkniętego (przemieszczenie x ) n impulsową zminę jednego z sygnłów wejściowych (npięcie u x ) dl regultor predykcyjnego przedstwi rys. 5 dl poziomu predykcji q 5. X (m) x -5 3,5 3,5,5,5 -,5,,,6,8,,,,6,8, Z pomirów dl różnej prędkości nrzędzi i różnych mplitud wynik, że im mniejsz mplitud fl (l) tym lepsze pokrywnie się trjektorii relizownych przez włek. Podsumownie W rev/s W rev/s Rys. 5. Odpowiedź impulsow ukłdu zmkniętego z regultorem predykcyjnym dl dwóch prędkości wirnik, W or/s (krótszy czs regulcji) orz W or/s Przeprowdzone dni eksperymentlne pokzły wpływ msy wirnik, sił odśrodkowych spowodownych ruchem wirnik wzdłuż trjektorii, psm ukłdu zmkniętego orz wzmocnieni (stłej czsowej) w pę- tli z częścią cłkującą n ksztłt i mplitudę mierzonej trjektorii. Ogólnie mówiąc, zdn trjektori jest lepiej odtwrzn dl powolnego ruchu nrzędzi wzdłuż trjektorii, większego wzmocnieni w części cłkującej, mniejszego ociążeni łożysk mgnetycznego orz dl szerszego psm ukłdu zmkniętego. Regultor predykcyjny zużyw njmniej energii n sterownie, le jego jkość nie jest tk dor jk regultor LQR orz regultor zudownego metodą przesuwni iegunów. Czs regulcji jest dłuższy, przeregulownie większe w ukłdzie z predykcyjnym regultorem w porównniu z pozostłymi dwom rozwżnymi rozwiąznimi. Jkość regulcji zmniejsz się wrz ze skróceniem horyzontu predykcji. Biliogrfi. R. Siegwrt, R. Lrsonneur nd A. rxler, Design nd Performnce of High Speed Milling Spindle in Digitlly Controlled Active Mgnetic Berings, Proc. nd Interntionl Symp. on Mgnetic Berings, okyo, Jpn, pp. 97, 99.. M. Kim,. Higuchi,. Mizuno nd H. Hr, Appliction of Mgnetic Bering Spindle to Non-Circulr Fine Boring, Proc. 6th Interntionl Symp. on Mgnetic Berings, Cmridge, MA 998, pp A. Shimd, Y. Horiuchi nd K. Shmoto, A Study of Active Mgnetic Berings for Mchine ool s High Speed Spindle, Proc. 7th Interntionl Symp. on Mgnetic Berings, Zurich, Switzerlnd, pp S. Strssurger nd R. Nordmnn, Dignosis nd Optimiztion of the Internl Grinding Process y Mens of n AMB High Speed Spindle, Proc. 7th Interntionl Symp. on Mgnetic Berings, Zurich, Switzerlnd, pp M. Muller nd W.L. Weingertner, Process Monitoring for Mchine ool Spindle with Mgnetic Berings, Proc. 7th Interntionl Symp. on Mgnetic Berings, Zurich, Switzerlnd, pp Z. Gosiewski, K. Flkowski nd J.. Swicki, Introduction to Smrt Mgnetic Berings Design, Proc. 7th Interntionl Symp. on Mgnetic Berings, Zurich, Switzerlnd, pp Z. Gosiewski, J.. Swicki nd K.R. Bischof, Control of Mgnetic Bering Spindles During n-wved Mchining. Proc. ASME Design Engineering echnicl Conferences, Septemer 9, Pittsurgh PA. 8. MALAB, Control System oolox he User s Guide, he MthWorks Inc M.Q. Phn, J-N. Jung, Predictive Controllers for Feedck Stilistion, Journl of Guidnce, Control nd Dynmics, Vol., No 5, 998, pp

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego - projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego

Bardziej szczegółowo

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

10.3. Przekładnie pasowe

10.3. Przekładnie pasowe 0.0. Przekłdnie 0.3. Przekłdnie psowe Przekłdni psow przekłdni kołow ciern z elementmi pośrednimi w postci elstycznych cięgieł, njczęściej o konstrukcji wielodrożnej. Przekłdnie psowe Ps klinowy Ps płski

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp Rdek N.,* Szlpko J.** *Ktedr Inżynierii Eksplotcji Politechnik Świętokrzysk, Kielce, Polsk **Khmelnitckij Uniwersytet Nrodowy, Khmelnitckij, Ukrin Wstęp 88 POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne.

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne. Opis i nliz metod pomiru prędkości kątowej. Prądnice tcometryczne. Prądnice tcometryczne są to młe prądnice elektryczne, któryc npięcie wyjściowe zwier informcję o prędkości obrotowej, w niektóryc przypdkc

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Metoda kropli wosku Renferta

Metoda kropli wosku Renferta Metod kropli wosku Renfert Metod Renfert zwn jest tkże techniką K+B. Jej podstwowym złożeniem jest dążenie do prwidłowego odtworzeni powierzchni żujących zęów ocznych podczs rtykulcji. Celem jest uzysknie

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem. KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek

Bardziej szczegółowo

Narożnik MIRAGE Mini. Wygląd mebla. Okucia i poduszki. Instrukcja montażu. Poduszka oparciowa 3szt. Poduszka ozdobna 2szt. ver.3/07.

Narożnik MIRAGE Mini. Wygląd mebla. Okucia i poduszki. Instrukcja montażu. Poduszka oparciowa 3szt. Poduszka ozdobna 2szt. ver.3/07. Instrukcj montżu Spółdzielni Melrsk RAMETA ZPCH 47-400 Rciórz, ul. Królewsk 50; Centrl:+48 (0) 3-453 9 50; Sprzedż:+48(0) 3-453 9 89; Serwis:+48(0) 3-453 9 80; www.rmet.com.pl Wygląd mel 4 5 3 Okuci i

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne Lbortorium nr 11 Temt: Elementy elektropneumtycznych ukłdów sterowni 1. Cel ćwiczeni: Opnownie umiejętności identyfikcji elementów elektropneumtycznych n podstwie osprzętu FESTO Didctic. W dużej ilości

Bardziej szczegółowo

ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007 ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE KOMPUTEROWEJ

ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007 ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE KOMPUTEROWEJ ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seri: Technologie Informcyjne 007 Tomsz Dobrowolski Ktedr Algorytmów i Modelowni Systemów Politechnik Gdńsk ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE

Bardziej szczegółowo

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r.

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r. złącznik nr 3 do uchwły nr V-38-11 Rdy Miejskiej w Andrychowie z dni 24 lutego 2011 r. ROZSTRZYGNIĘCIE O SPOSOBIE ROZPATRZENIA UWAG WNIESIONYCH DO WYŁOŻONEGO DO PUBLICZNEGO WGLĄDU PROJEKTU ZMIANY MIEJSCOWEGO

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 16 grudnia 2004 r. Typ/orgn wydjący Rozporządzenie/Minister Infrstruktury Tytuł w sprwie szczegółowych wrunków i trybu wydwni zezwoleń n przejzdy pojzdów nienormtywnych Skrócony opis pojzdy nienormtywne Dt wydni 16 grudni

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Samouczek Metody Elementów Skończonych dla studentów Budownictwa

Samouczek Metody Elementów Skończonych dla studentów Budownictwa Grzegorz Dzierżnowski Mrt Sitek Smouczek Metody Elementów Skończonych dl studentów Budownictw Część I Sttyk konstrukcji prętowych OFICYNA WYDAWNICZA POLITECHNIKI WARSZAWSKIEJ WARSZAWA 2012 Preskrypt n

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw AMME 1 1th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Zstosownie nlizy widmowej sygnłu ultrdwikowego do okreleni gruboci cienkich wrstw A. Kruk Wydził Metlurgii i Inynierii Mteriłowej, Akdemi Górniczo-Hutnicz

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

WSTĘP CHARAKTERYSTYKA WZORNICTWA

WSTĘP CHARAKTERYSTYKA WZORNICTWA Annls of Wrsw University of Life Sciences SGGW Forestry nd Wood Technology No 74, 2011: 199-205 (Ann. WULS-SGGW, Forestry nd Wood Technology 74, 2011 Chrkterystyk ozdobnych drewninych posdzek w Muzeum

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Lista 4 Deterministyczne i niedeterministyczne automaty

Lista 4 Deterministyczne i niedeterministyczne automaty Uniwersytet Zielonogórski Instytut Sterowni i Systemów Informtycznych Teoretyczne Podstwy Informtyki List 4 Deterministyczne i niedeterministyczne utomty Wprowdzenie Automt skończony jest modelem mtemtycznym

Bardziej szczegółowo

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB Mteriły szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA Serwis internetowy BEZPIECZNIEJ CIOP-PIB 1. Wprowdzenie Drgnimi nzywne są procesy, w których chrkterystyczne dl nich wielkości fizyczne

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

Racjonalne oczekiwania w polityce podatkowej możliwości aplikacji

Racjonalne oczekiwania w polityce podatkowej możliwości aplikacji Jnusz Kudł Uniwersytet Wrszwski Rcjonlne oczekiwni w polityce podtkowej możliwości plikcji Wprowdzenie Jednym z njwżniejszych problemów polityki podtkowej jest ogrniczenie zjwisk nieleglnego unikni podtków.

Bardziej szczegółowo

INTELIGENTNE STEROWANIE RUCHEM ROBOTA MANIPULACYJNEGO Z WIĘZAMI GEOMETRYCZNYMI

INTELIGENTNE STEROWANIE RUCHEM ROBOTA MANIPULACYJNEGO Z WIĘZAMI GEOMETRYCZNYMI MODELOWANIE INŻYNIERSKIE nr 5 ISSN 1896-771X INTELIGENTNE STEROWANIE RUCHEM ROBOTA MANIPULACYJNEGO Z WIĘZAMI GEOMETRYCZNYMI Piotr Gierlk 1 Mgdlen Mszyńsk 1b 1 Ktedr Mechniki Stosownej i Robotyki Politechnik

Bardziej szczegółowo

ULTRADŹWIĘKOWE BADANIE ODLEWÓW STALIWNYCH WYMAGANIA NORMY EN 12680-1

ULTRADŹWIĘKOWE BADANIE ODLEWÓW STALIWNYCH WYMAGANIA NORMY EN 12680-1 Dr inż. MAREK ŚLIWOWSKI NDTEST Sp. z o.o. Wrszw WSTĘP W rmch prc Komitetu Technicznego CEN/TC 190 Wyroy odlewne we współprcy z CEN/TC 190/WG4.10 Wdy wewnętrzne oprcowywne są nstępujące normy wyrou: EN

Bardziej szczegółowo

Mocowanie na stołach roboczych obrabiarek

Mocowanie na stołach roboczych obrabiarek Mocownie n stołch roboczych obrbirek Szybkość, sił i pewność mocowni n przyrządch BESSEY oferuje tkże bogty wybór prktycznych docisków mszynowych, które sprwdzją się doskonle do mocowni podczs montżu,

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW 1 Nzw progrmu opercyjnego Regionlny Progrm Opercyjny Województw Łódzkiego n lt 2007-2013. 2 Numer i nzw osi priorytetowej Oś priorytetow III: Gospodrk,

Bardziej szczegółowo

Ochrona przed przepięciami w sieciach ISDN

Ochrona przed przepięciami w sieciach ISDN OGANICZANIE PZEPIĘĆ W YEMACH PZEYŁ YGNAŁÓW Ochron przed przepięcimi w siecich IDN Andrzej ow Wstęp Wzrost zpotrzeowni n usługi odiegjące od klsycznego przekzu telefonicznego spowodowł gwłtowny rozwój sieci

Bardziej szczegółowo

Z600 Series Color Jetprinter

Z600 Series Color Jetprinter Z600 Series Color Jetprinter Podręcznik użytkownik system Windows Rozwiązywnie prolemów związnych z instlcją Wykz czynności kontrolnych przy rozwiązywniu typowych prolemów podczs instlcji. Podstwowe informcje

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH Krzysztof Górecki Akdemi orsk w Gdyni Klin Detk Pomorsk Wyższ Szkoł Nuk Stosownych w Gdyni ODELOWANIE CHARAKTERYSTYK RDZENI FERROAGNETYCZNYCH Artykuł dotyczy modelowni chrkterystyk rdzeni ferromgnetycznych.

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych z przedmiotu matematyka w PLO nr VI w Opolu MATEMATYKA Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych z przedmiotu mtemtyk w PLO nr VI w Opolu Zkres podstwowy WyróŜnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS Ann Mlrsk sttystyczn nliz dnych wspomgn progrmem SPSS SPSS Polsk Krków 2005 Sttystyczn nliz dnych wspomgn progrmem SPSS 1.2 Grficzne formy prezentcji dnych 1.2.1 Wykres słupkowy, histogrm Częstości relizcji

Bardziej szczegółowo

Równania nieliniowe. x i 1

Równania nieliniowe. x i 1 MN 08 Równni nieliniowe Wprowdzenie Podstwowe pytni 1. Pytnie: Czy komputer umie rozwiązywć równni nieliniowe f(x) = 0? Odpowiedź (uczciw): nie. 2. P: To jk on to robi? O: Dokłdnie tk, jk przy cłkowniu

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO. Póz. 2919 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU REGULACJI ENERGETYKI

DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO. Póz. 2919 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU REGULACJI ENERGETYKI DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO, dlll 10 listopd 2014 r. Elektronicznie podpisn Jnusz Włdysłw Olech Póz. 2919 Dt: 2014-11-10 14:08:59 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005 ZEZYTY NAUKOWE UNIWERYTETU ZCZECIŃKIEGO NR 424 PRACE INTYTUTU KULTURY FIZYCZNEJ NR 22 2005 MARIA MAKRI PRAWNOŚĆ FIZYCZNA I AKTYWNOŚĆ RUCHOWA KOBIET W WIEKU 20 60 LAT 1. Wstęp Dobr sprwność fizyczn jest

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH

NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH Szykoieżne Pojzdy Gąsienicowe (19) nr 1, 2004 Sylwester MARKUSIK Tomsz ŁUKASIK NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH Streszczenie: Połączeni spwne w konstrukcjch stlowych

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl Rok złożeni 1994 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, RADPOR 81-854-2860 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, 81-854-2860 www.rdpor.pl Ceny spirl introligtorskic DOUBLE-LOOP

Bardziej szczegółowo

Gry czasowe. Tadeusz Radzik (Wrocław) (artykuł wspomnieniowy o prof. Stanisławie Trybule)

Gry czasowe. Tadeusz Radzik (Wrocław) (artykuł wspomnieniowy o prof. Stanisławie Trybule) MATEMATYKA STOSOWANA TOM 11/52 2010 Tdeusz Rdzik (Wrocłw) Gry czsowe (rtykuł wspomnieniowy o prof. Stnisłwie Trybule) Streszczenie. Prc jest rtykułem wspomnieniowym o prof. Stnisłwie Trybule. Wprowdz on

Bardziej szczegółowo