Techniki świetlne. Wykład 3. Geometryczne systemy prezentacji właściwości fotometrycznych źródeł światła i opraw oświetleniowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Techniki świetlne. Wykład 3. Geometryczne systemy prezentacji właściwości fotometrycznych źródeł światła i opraw oświetleniowych"

Transkrypt

1 Techniki świetlne Wykład 3 Geometryczne systemy prezentacji właściwości fotometrycznych źródeł światła i opraw oświetleniowych Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej Miejsce konsultacji: pokój 18/11 bud. A-1

2 Kierunki FAKT I: W technice świetlnej istnieją podstawowe wielkości, takie jak światłość, luminancja, które ze swej istoty są zależne od kierunku. Mówi się: światłość kierunkowa, luminancja w kierunku. FAKT II: Istnieją utarte kanony dotyczące naturalnych kierunków w przestrzeni, z uwzględnieniem Ziemi jako układu odniesienia: pionowy, poziomy. FAKT III: Pojęcie kierunków naturalnych nie musi się zgadzać z kierunkowością źródeł światła/opraw oświetleniowych. WNIOSEK: należy stworzyć system geometryczny prezentacji właściwości fotometrycznych opraw oświetleniowych.

3 Pojęcia pierwotne Podstawą do definicji systemów geometrycznych, używanych w technice świetlnej, są pojęcia pierwotne: Środek świetlny charakterystyczny punkt oprawy oświetleniowej, tożsamy ze środkiem geometrycznym źródła światła lub środkiem symetrii płaszczyzny otworu wyjściowego oprawy oświetleniowej. To znaczy GDZIE to jest? Dużo zależy od wagi źródła i odbłyśnika w danym elemencie

4 Pojęcia pierwotne Podstawą do definicji systemów geometrycznych, używanych w technice świetlnej, są pojęcia pierwotne: Oś optyczna charakterystyczna prosta, przechodząca przez środek świetlny oprawy lub źródło światła, której kierunek utożsamiany jest z kierunkiem maksymalnej światłości i/lub kierunkiem osi symetrii układu geometrycznego oprawy. Czasem jest to po prostu kierunek normalny do otworu wyjściowego oprawy. A więc również pojęcie niejednoznaczne, ale pożyteczne!

5 Pojęcia pierwotne Podstawą tworzenia systemów geometrycznych określania kierunków w technice świetlnej jest wyodrębnienie w oprawie oświetleniowej osi optycznej, osi wzdłużnej i osi poprzecznej. Powinny one tworzyć lokalny, kartezjański układ odniesienia, związany z oprawą oświetleniową, zaczepiony w środku świetlnym oprawy. Przykład: oświetlenie uliczne zakwalifikowanie danego kierunku jako osi wzdłużnej wynika z wyraźnej dysproporcji wymiarów gabarytowych lampy i jej ustawienia w stosunku do osi drogi.

6 System C-γ Spostrzeżenie: w większości praktycznych zastosowań opraw oświetleniowych oś optyczna skierowana jest pionowo do dołu. Założenie: system będzie opierał się pęku półpłaszczyzn o wspólnej prostej (osi optycznej). Dowolny kierunek w przestrzeni określony będzie za pomocą dwóch kątów (C i γ). Opis: Kąt C to kąt dwuścienny pomiędzy półpłaszczyzną uznaną za wyjściową (Oyz) a półpłaszczyzną, zawierającą dany kierunek. Kąt γ to kąt płaski między prostą o bieżącym kierunku i osią optyczną.

7 System A-α Obowiązuje nadal zasada określania kierunku w przestrzeni za pomocą jednego kąta płaskiego α i jednego dwuściennego A. Opis: Kąt A tworzy bieżąca półpłaszczyzna zawierająca dany kierunek z półpłaszczyzną, określoną jako wyjściowa (A=0). Kąt α wyznaczony jest przez kąt płaski w bieżącej półpłaszczyźnie, między danym kierunkiem a obróconą razem z półpłaszczyzną osią optyczną.

8 System B-β Jako wspólną, obiera się tym razem oś wzdłużną. Opis: Płaszczyzna wyjściowa B=0 jest utworzona przez dwie osie: optyczną i wzdłużną (Oxz) Kąt β to kąt bieżącego kierunku z obróconą osią poprzeczną oprawy.

9 Systemy geometryczne w technice świetlnej Istnieje możliwość wzajemnych przeliczeń pomiędzy zaprezentowanymi układami. System fotometryczny Kąt dwuścienny Kąt płaski wejściowy szukany A-α B-β tg B = tg α/cos A sin β = sin A cos α A-α C-γ tg C = sin A/tg α cos γ = cos A cos α B-β A-α tg A = tg β /cos B sin α = sin B cos β B-β C-γ tg C = tg β /sin B cos γ = cos B cos β C-γ A-α tg A = sin C tg γ sin α = cos C sin γ C-γ B-β tg B = cos C tg γ sin β = sin C sin γ Kłania się trygonometria sferyczna! Patrz: sfera Poincarego

10 Systemy geometryczne w technice świetlnej Przedstawione systemy płaszczyzn jednoznacznie identyfikują kierunek w przestrzeni. Za pomocą par kątów, w ramach każdego systemu, można jednoznacznie opisać np. równanie prostej o danym kierunku, przechodzącej przez zadany punkt P(x 0,y 0,z 0 ). Może to być np. postać kierunkowa prostej (parametryczna): x = x 0 + kv x k dowolny parametr y = y 0 + kv y z = z 0 + kv z v x, v y, v y składowe wektora kierunkowego (rzuty wektora kierunku na osie układu Oxyz) v x = sinγ sinc v y = sinγ cosc v z = cosγ Hm, gdzieś to widziałem parametry wektora Stokesa!

11 Systemy geometryczne w technice świetlnej System określania kierunków A-B dla lamp sygnałowych jest nieco inny, dostosowany zwłaszcza do lamp samochodowych. Ich podstawowy kierunek świecenia (a więc oś optyczna) jest poziomy, a innym charakterystycznym kierunkiem jest pion (w stosunku do osi Ziemi, a tak naprawdę do osi samochodu). Zamiast osi wzdłużnej i poprzecznej wyróżnia się więc kierunek pionowy i kierunek prostopadły do płaszczyzny, utworzonej przez kierunek poziomy i oś optyczną.

12 Zasadniczym sposobem prezentacji właściwości fotometrycznych oprawy oświetleniowej (źródła) jest pokazanie jej bryły fotometrycznej. Bryła fotometryczna jest to powierzchnia zamknięta, utworzona przez zakończenia odcinków o wspólnym początku w środku świetlnym oprawy, których długość i kierunek przestrzenny odpowiada wartości światłości w tym kierunku. Bryła fotometryczna punktowego źródła światła jest sferą o środku w punkcie źródła światła. W każdym kierunku ze środka sfery można poprowadzić odcinek takiej samej długości: I(C,γ)=const.

13 Bryła fotometryczna ciała (doskonale) czarnego jest sferą styczną do powierzchni ciała czarnego w jego środku świetlnym. Maksymalna światłość I m odpowiada kierunkowi normalnemu do płaszczyzny ciała czarnego, a w każdym innym kierunku światłość może być obliczona jako: I(C,γ)= I m cos γ [Prawo Lamberta]

14 Bryła fotometryczna liniowej świetlówki to powierzchnia torusa, którego tzw. duży promień R jest równy małemu promieniowi r. Jest to powierzchnia symetryczna obrotowo. Oś obrotu bryły pokrywa się z osią wzdłużną świetlówki i w tym kierunku światłość jest równa zeru. Maksymalna światłość występuje w kierunkach położonych w płaszczyźnie prostopadłej do kierunku osi świetlówki. W dowolnym kierunku odchylonym od osi obrotu bryły o kąt γ światłość wynosi: I(C,γ)= I m sin γ

15 Bryła fotometryczna reflektora zwierciadlanego to również powierzchnia symetryczna obrotowo. Takie powierzchnie maja duży stopień symetrii i nie sprawia kłopotu wyobrażenie sobie kształtu w widoku z dowolnej strony bryły.

16 Bryły fotometryczne opraw rzeczywistych nie mają jednak zwykle symetrii obrotowej. Bywają oprawy, które mają układ dwóch wzajemnie prostopadłych płaszczyzn symetrii (np. oprawa oświetlenia ulicznego).

17 Bryły fotometryczne wielu źródeł/opraw pozbawione są jakiejkolwiek symetrii i widok 3D takiej bryły, który pokazałby jej pełny kształt, jest niemożliwy. Ponadto odczytywanie wartości światłości (jako długości odcinków) z rysunku trójwymiarowego jest w ogólnym przypadku niemożliwe. Bryłą fotometryczna jest więc znakomitą wizualizacją, ale jest niepraktyczna w użyciu Tu jeszcze ciągle jest symetria

18 Bryła fotometryczna, jeżeli ma ona symetrię obrotową, może być przedstawiona jako krzywa profilowa płaski wykres światłości. Taki sposób prezentacji dotyczy tylko jednej, wybranej płaszczyzny, ale jest to sposób praktyczny i często stosowany. W języku polskim używa się zamiennie na to pojęcie innych nazw: rozsył światłości, rozsył strumienia świetlnego, krzywa światłości. Wykres światłości to zależność światłości w danym kierunku od kąta tego kierunku w stosunku do osi optycznej dla określonej płaszczyzny przekroju bryły fotometrycznej, zawierającej oś optyczną.

19 Wykres światłości to zależność światłości w danym kierunku od kąta tego kierunku w stosunku do osi optycznej dla określonej płaszczyzny przekroju bryły fotometrycznej, zawierającej oś optyczną. Wykres światłości punktowego źródła światła Wykres światłości elementu powierzchniowego promieniującego zgodnie z prawem Lamberta

20 Wykresy światłości można sporządzać we współrzędnych biegunowych lub prostokątnych (kartezjańskich). Wykresy biegunowe są bliższą rzeczywistości formą prezentacji, bardziej intuicyjną, ze względu na biegunowy charakter rozchodzenia się światła w rzeczywistych układach opraw oświetleniowych. Wykresy światłości: źródła lambertowskiego i świetlówki

21 Wykresy światłości przedstawiają najczęściej zależność światłości od kąta dla odniesieniowej wartości strumienia świetlnego 1000 lm. Wykres taki jest bardziej uniwersalny, bo może być stosowany dla danej oprawy w połączeniu ze źródłami o różnej mocy.

22 Jeśli wykres światłości jest dość wąski, jak to ma miejsce w przypadku źródeł/opraw mocno kierunkowych (np. reflektory), to odczytywanie poszczególnych wartości, szczególnie dla kierunków mocno oddalonych od osi optycznej, jest utrudnione (lub obarczone dużym błędem). W takim przypadku sporządza się wykres światłości we współrzędnych prostokątnych.

23 Jeśli bryła fotometryczna oprawy oświetleniowej nie jest symetryczna obrotowo, to jeden wykres światłości nie wystarczy do scharakteryzowania właściwości świetlnych tej oprawy. W takim przypadku sporządza się kilka wykresów, których liczba zależy od ich zróżnicowania w poszczególnych płaszczyznach.

24 Wykres światłości informował o tym, jaką światłość kierunkową ma badana oprawa/źródło w danym kierunku dla danego przekroju brył fotometrycznej. Często jednak przedstawia się własności fotometryczne oprawy/źródła w inny sposób. Izokandela jest to linia zamknięta, łącząca punkty na powierzchni sfery, której środek położony jest w środku świetlnym oprawy/źródła, charakteryzujące się tym, że w ich kierunku oprawę/źródło cechuje jednakowa światłość. Linie izokandeli mogą być integralną częścią powierzchni brył fotometrycznej, ale niekoniecznie Można bowiem oprawę/źródło otoczyć dowolną inną powierzchnią zamkniętą i na niej wykreślić linie izokandeli.

25 Izokandela jest to linia zamknięta, łącząca punkty na powierzchni sfery, której środek położony jest w środku świetlnym oprawy/źródła, charakteryzujące się tym, że w ich kierunku oprawę/źródło cechuje jednakowa światłość. W technice świetlnej umówiono się, że powierzchnią taką będzie sfera, w środku której umieszczona jest oprawa/źródło. Układ geometryczny południków i równoleżników sfery odpowiada systemowi C-γ.

26 Izokandela jest to linia zamknięta, łącząca punkty na powierzchni sfery, której środek położony jest w środku świetlnym oprawy/źródła, charakteryzujące się tym, że w ich kierunku oprawę/źródło cechuje jednakowa światłość. Korzystanie z trójwymiarowego obrazu sfery jest utrudnione, gdy oprawa/źródło rozsyła światło w szerokim kącie wokół osi symetrii. Stworzono więc inny sposób prezentacji izokandeli na płaskim obrazie sfery rozciętym wzdłuż południków (płaszczyzn C) Jest to tzw. sinusoidalna siatka Benforda.

27 Przykład: System PAPI (Precision Approach Path Indicator) dostarcza pilotowi samolotu pewne wzrokowe wskazanie położenia statku powietrznego odnośnie optymalnej ścieżki podejścia w jego ostatnim etapie. Na lotnisku system PAPI składa się z 2/4 jednostek zlokalizowanych w linii, poprzecznie do osi, każda z dwoma lub trzema źródłami 200W. Jednostki PAPI rozsyłają wiązkę światła z górną częścią barwy białej a dolną czerwonej. Podczas zmiany pozycji pionowej statku powietrznego następuje ciągła zmiana koloru widocznego przez pilota.

28 Kolejną wielkością fotometryczną, której prezentacja graficzna jest stosowana, jest natężenie oświetlenia. Tym razem jest to wielkość formalnie związana z oświetlanym obiektem fragmentem oświetlonej powierzchni, który zwykle bywa płaszczyzną. Tym niemniej, zakładając powtarzalność warunków użycia jakiejś oprawy/źródła (np. stała odległość oprawa-obiekt), można operować rozkładem natężenia oświetlenia na powierzchni oświetlanego obiektu i w ten sposób charakteryzować oprawę/ źródło. Przykłady: reflektory samochodowe; lampy oświetlenia ulicznego. Izoluksa jest to krzywa, której każdy punkt reprezentuje identyczną wartość natężenia oświetlenia na płaszczyźnie. Zamiast rozkładu przestrzennego światłości można więc analizować oprawę na podstawie obrazu rozkładu natężenia oświetlenia wygoda!

29 Izoluksa jest to krzywa, której każdy punkt reprezentuje identyczna wartość natężenia oświetlenia na płaszczyźnie. Wykres izoluksów na powierzchni jezdni, oświetlonej dwiema latarniami

30 Bryła fotometryczna i wykresy światłości służą dziś raczej do oceny przydatności konkretnej oprawy/źródła do zadanego celu i wstępnej oceny możliwości zastosowania danej oprawy niż do obliczania efektów oświetlenia. Rozwój technik komputerowych spowodował, że punkt ciężkości analiz/obliczeń przeniósł się na wizualny obraz oświetlonego obiektu. Zamiast oceniać wartości światłości czy kąty wypromieniowywania strumienia świetlnego, dokonuje się oceny luminancji i jej rozkładu na modelu komputerowym obiektu. Dwie podstawowe formy wizualizacji: 1) Komputerowy obraz oświetlonego obiektu, którego każdy punkt ma taką luminancję i barwę, jaka została obliczona; 2) Nałożony na obraz obiektu rozkład luminancji, pokazany w przyjętej skali barw.

31 Dwie podstawowe formy wizualizacji: 1) Komputerowy obraz oświetlonego obiektu, którego każdy punkt ma taką luminancję i barwę, jaka została obliczona; 2) Nałożony na obraz obiektu rozkład luminancji, pokazany w przyjętej skali barw.

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH 6-965 Poznań tel. (-61) 6652688 fax (-61) 6652389 STUDIA NIESTACJONARNE II STOPNIA wersja z dnia 2.11.212 KIERUNEK ELEKTROTECHNIKA SEM 3. Laboratorium TECHNIKI ŚWIETLNEJ TEMAT: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ

Bardziej szczegółowo

Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ STUDIA NIESTACJONARNE I STOPNIA, wersja z dn. 15.10.018 KIERUNEK ELEKTROTECHNIKA, SEM.5 Podstawy Techniki Świetlnej Laboratorium Ćwiczenie nr 4 Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

Bardziej szczegółowo

Techniki świetlne. Wykład 4. Obliczenia podstawowych wielkości fotometrycznych

Techniki świetlne. Wykład 4. Obliczenia podstawowych wielkości fotometrycznych Techniki świetlne Wykład 4 Obliczenia podstawowych wielkości fotometrycznych Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej

Bardziej szczegółowo

Techniki świetlne. Wykład 6

Techniki świetlne. Wykład 6 Techniki świetlne Wykład 6 Kształtowanie przestrzennego rozsyłu strumienia świetlnego przez oprawy oświetleniowe Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity

Bardziej szczegółowo

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 29.03.2016 aboratorium Techniki Świetlnej Ćwiczenie nr 5. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓŻYCH WŁASOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ 60-965 Poznań Grupa: Elektrotechnika, sem 3., Podstawy Techniki Świetlnej Laboratorium wersja z dn. 03.11.2015 Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ Opracowanie wykonano na podstawie

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Technika świetlna Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Wykonał: Borek Łukasz Tablica rejestracyjna tablica zawierająca unikatowy numer (kombinację liter i cyfr),

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria 12. (współrzędne i składowe trójchromatyczne promieniowania monochromatycznego; układ bodźców fizycznych RGB; krzywa barw widmowych; układ barw CIE 1931 (XYZ); alychne; układy CMY i CMYK). http://www.if.pwr.wroc.pl/~wozniak/

Bardziej szczegółowo

Ćwiczenie Nr 11 Fotometria

Ćwiczenie Nr 11 Fotometria Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Kryteria oceniania z matematyki Klasa III poziom podstawowy Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

Materiały dydaktyczne. Zaawansowane systemy informatyczne. Semestr VI. Laboratoria

Materiały dydaktyczne. Zaawansowane systemy informatyczne. Semestr VI. Laboratoria Materiały dydaktyczne Zaawansowane systemy informatyczne Semestr VI Laboratoria 1 Temat 17 (6 godzin): Modyfikacje brył. Student powinien poznać: Sposoby kolorowania powierzchni. Sposoby obracania i przesuwania

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Krzywe stożkowe Lekcja VI: Parabola

Krzywe stożkowe Lekcja VI: Parabola Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α

Bardziej szczegółowo

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 18.03.2011 aboratorium Techniki Świetlnej Ćwiczenie nr 2. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓśYCH WŁAŚCIWOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

Cele pracy Badania rozsyłu wiązek świetlnych lamp sygnałowych stosowanych we współczesnych pojazdach samochodowych Stworzenie nowego ćwiczenia laborat

Cele pracy Badania rozsyłu wiązek świetlnych lamp sygnałowych stosowanych we współczesnych pojazdach samochodowych Stworzenie nowego ćwiczenia laborat PRACA DYPLOMOWA INŻYNIERSKA Rumiński Dariusz Badania wybranych elementów optycznoświetlnych oświetlenia sygnałowego pojazdu samochodowego 1 Cele pracy Badania rozsyłu wiązek świetlnych lamp sygnałowych

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony Trygonometria. wie, co to jest miara łukowa kąta; potrafi stosować miarę łukową i stopniową kąta

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe

FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe 1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie

Bardziej szczegółowo

TYCZENIE OSI TRASY W 2 R 2 SŁ KŁ W 1 W 3

TYCZENIE OSI TRASY W 2 R 2 SŁ KŁ W 1 W 3 TYCZENIE TRAS W procesie projektowania i realizacji inwestycji liniowych (autostrad, linii kolejowych, kanałów itp.) materiałem źródłowym jest mapa sytuacyjno-wysokościowa w skalach 1:5 000; 1:10 000 lub

Bardziej szczegółowo

VII. WYKRESY Wprowadzenie

VII. WYKRESY Wprowadzenie VII. WYKRESY 7.1. Wprowadzenie Wykres jest graficznym przedstawieniem (w pewnym układzie współrzędnych) zależności pomiędzy określonymi wielkościami. Ułatwia on interpretację informacji (danych) liczbowych.

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom rozszerzony

Kryteria oceniania z matematyki Klasa III poziom rozszerzony Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

PRZEKROJE RYSUNKOWE CZ.1 PRZEKROJE PROSTE. Opracował : Robert Urbanik Zespół Szkół Mechanicznych w Opolu

PRZEKROJE RYSUNKOWE CZ.1 PRZEKROJE PROSTE. Opracował : Robert Urbanik Zespół Szkół Mechanicznych w Opolu PRZEKROJE RYSUNKOWE CZ.1 PRZEKROJE PROSTE Opracował : Robert Urbanik Zespół Szkół Mechanicznych w Opolu IDEA PRZEKROJU stosujemy, aby odzwierciedlić wewnętrzne, niewidoczne z zewnątrz, kształty przedmiotu.

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

1 Geometria analityczna

1 Geometria analityczna 1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,

Bardziej szczegółowo

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety

Bardziej szczegółowo

Zasady oświetlania przejść dla pieszych

Zasady oświetlania przejść dla pieszych Zasady oświetlania przejść dla pieszych dr hab. inż. Piotr Tomczuk Politechnika Warszawska Wydział Transportu 1 Plan wystąpienia 1. Wstęp. 2. Wymagania oświetleniowe. 3. Propozycja zaleceń dotyczących

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017 Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej

Bardziej szczegółowo

Badania oświetlenia na przejściu dla pieszych na ulicy Walerego Sławka w Warszawie

Badania oświetlenia na przejściu dla pieszych na ulicy Walerego Sławka w Warszawie Badania oświetlenia na przejściu dla pieszych na ulicy Walerego Sławka w Warszawie Wyniki opracował: Dr inż. Piotr Tomczuk Wydział Transportu Politechniki Warszawskiej Zakład Systemów Informatycznych i

Bardziej szczegółowo

Oświetlenie przejść dla pieszych

Oświetlenie przejść dla pieszych Oświetlenie przejść dla pieszych mgr inż. Jan Jakiel Zarząd Dróg Miejskich w Warszawie współpraca: dr hab. inż. Piotr Tomczuk Politechnika Warszawska, Wydział Transportu Raport o stanie brd 2016 sytuacja

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Grafika inżynierska. Ćwiczenia. mgr inż. Kamil Wróbel. Poznań 2017

Grafika inżynierska. Ćwiczenia. mgr inż. Kamil Wróbel. Poznań 2017 Grafika inżynierska Ćwiczenia mgr inż. Kamil Wróbel Poznań 2017 Wydział Inżynierii Zarządzania Katedra Ergonomii i Inżynierii Jakości asystent Kamil.wrobel@put.poznan.pl p.214 ul. Strzelecka 11, Poznań

Bardziej szczegółowo