Bazy danych Algebra relacji Wykład dla studentów matematyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bazy danych Algebra relacji Wykład dla studentów matematyki"

Transkrypt

1 Bazy danych Algebra relacji Wykład dla studentów matematyki 8 marca 2015

2 Algebra relacji Model teoretyczny do opisywania semantyki relacyjnych baz danych, zaproponowany przez T. Codda (twórcę koncepcji relacyjnych baz danych). Algebra, której dziedzinę stanowia relacje, tzn. zmienne występujace w wyrażeniach reprezentuja relacje. Operatory dobrane tak, aby odpowiadały typowym operacjom występujacym w zapytaniach podczas wyszukiwania informacji z tabel w bazie danych. Miała być językiem zapytań (query language) dla relacyjnych baz danych.

3 Relacje Relacje reprezentowane ich nazwami. Z nazwa każdej relacji jest zwiazany jej schemat ciag nazw atrybutów (odpowiadajacych kolumnom modelowanej tabeli), np. R(A, B, C) Student(indeks, imię, nazwisko) Nazwy atrybutów w schemacie relacji musza być różne.

4 Podstawowe operacje Typowe operacje teoriomnogościowe: suma zbiorów ( ), iloczyn zbiorów ( ) i różnica zbiorów ( ), ale oba argumenty musza mieć ten sam schemat Iloczyn kartezjański R S Ponieważ argumenty moga mieć atrybuty o tych samych nazwach, nazwy atrybutów w schemacie wyniku trzeba czasem poprzedzać nazwami relacji, z których pochodza Np. dla relacji R(A, B, C) i S(C, D, E) schematem ich iloczynu kartezjańskiego będzie R S(A, B, R.C, S.C, D, E) Lepiej jednak użyć przemianowania. Selekcja (wybór) σ warunek (R): wybieramy z relacji tylko te krotki, dla których jest spełniony podany warunek.

5 Podstawowe operacje Rzutowanie (projekcja) π atrybut1,...,atrybut n (R): wybieramy tylko wskazane atrybuty z relacji Przemianowanie ρ S (R): zmiana nazwy relacji lub zmiana nazw jej atrybutów ρ R(X,Y,Z ) R, czasem jedno i drugie ρ S(X,Y,ZX) R. Złaczenie R S: podobne do iloczynu kartezjańskiego, θ ale łaczy się ze soba tylko pary krotek spełniajace podany warunek.

6 Selekcja Relacja Zwierzaki: gatunek imię waga Papuga Kropka 3,50 Papuga Lulu 5,35 Papuga Hipek 3,50 Lis Fufu 6,35 Krokodyl Czako 75,00 σ gatunek= Papuga Zwierzaki: gatunek imię waga Papuga Kropka 3,50 Papuga Lulu 5,35 Papuga Hipek 3,50

7 Rzutowanie Duplikaty sa eliminowane (bo to relacje!) π gatunek,waga Zwierzaki: gatunek waga Papuga 3,50 Papuga 5,35 Lis 6,35 Krokodyl 75,00

8 Uogólnione rzutowanie Oprócz nazw atrybutów sa dozwolone dowolne wyrażenia na atrybutach, np. arytmetyczne. Trzeba je wtedy nazwać: A + B C Atrybuty moga wystapić wielokrotnie.

9 Uogólnione rzutowanie R = A B π A+B C,A,A A1 R = C A A

10 Iloczyn kartezjański R1 = A B R2 = B C R1 R2 = A R1.B R2.B C

11 Złaczenie theta R θ S = σ θ (R S) θ oznacza dowolny warunek na atrybuty łaczonych relacji, np. A < C. Złaczenie theta, w którym warunek jest prosta równościa pary atrybutów, nazywa się złaczeniem równościowym. Pojęcie porzuconej krotki (dangling tuple): krotki z jednej z relacji, do której nie pasuje żadna krotka z drugiej relacji. Taka krotka nie pojawi się w wyniku.

12 Złaczenie theta Zwierzaki gatunek imię waga Papuga Kropka 3,50 Papuga Lulu 5,35 Papuga Hipek 3,50 Lis Fufu 6,35 Krokodyl Czako 75,00 Gatunki nazwa Papuga Lis Krokodyl kontynent Ameryka Europa Afryka Zwierzaki gatunek=nazwa gatunek imię waga nazwa kontynent Papuga Kropka 3,50 Papuga Ameryka Papuga Lulu 5,35 Papuga Ameryka Papuga Hipek 3,50 Papuga Ameryka Lis Fufu 6,35 Lis Europa Krokodyl Czako 75,00 Krokodyl Afryka

13 Złaczenie naturalne Notacja: R S. Łaczone relacje musza mieć co najmniej jeden wspólny atrybut o tej samej nazwie (w przeciwnym razie otrzymamy iloczyn kartezjański). Warunkiem złaczenia jest równość dla wszystkich par atrybutów o tych samych nazwach. W wyniku pozostaje tylko jeden atrybut z każdej pary atrybutów o tych samych nazwach.

14 Złaczenie naturalne Zwierzaki gatunek imię waga Papuga Kropka 3,50 Papuga Lulu 5,35 Papuga Hipek 3,50 Lis Fufu 6,35 Krokodyl Czako 75,00 Gatunki gatunek Papuga Lis Krokodyl Zwierzaki Gatunki gatunek imię waga kontynent Papuga Kropka 3,50 Ameryka Papuga Lulu 5,35 Ameryka Papuga Hipek 3,50 Ameryka Lis Fufu 6,35 Europa Krokodyl Czako 75,00 Afryka kontynent Ameryka Europa Afryka

15 Przemianowanie Pozwala na nazywanie relacji wynikowych: ρ RS(A,B,X,C,D,E) (R S). Uproszczona notacja: R1(A1, B, X, C, D, E) := (R S).

16 Wyrażenia złożone Ponieważ jest to algebra, więc operacje można składać otrzymujac wyrażenia złożone. Równoważność wyrażeń można wykorzystać przy optymalizacji, zastępujac dane wyrażenie równoważnym mu, lecz bardziej efektywnym.

17 Wyrażenia złożone: samozłaczenie Zwierzaki gatunek imię waga Papuga Kropka 3,50 Papuga Lulu 5,35 Papuga Hipek 3,50 Lis Fufu 6,35 Krokodyl Czako 75,00 Znajdź pary zwierzaków (imiona) tego samego gatunku π Z 1.imie,Z 2.imie (ρ Z 1 Zwierzaki Z 1.gatunek=Z 2.gatunek Z 1.imie<Z 2.imie ρ Z 2 Zwierzaki) (drugi warunek pozwala uniknać duplikatów ).

18 Wielozbiory Zgodnie z matematyczna definicja relacji jako zbioru utożsamia się jednakowe krotki (powstajace np. podczas rzutowania). Można rozszerzyć tę algebrę na wielozbiory, dopuszczajac powtórzenia. Powstaje jednak problem odpowiedniej semantyki dla operacji iloczynu i różnicy teoriomnogościowej. Intuicyjnie zdefiniowane rozszerzenia operacji na wielozbiory zastosowane do relacji daja relacje z wyjatkiem sumy, która dla dwóch relacji może dać wielozbiór. Przestaja zachodzić niektóre prawa algebry relacji, np. (R S) T = (R T ) (S T ) Operator eliminacji powtórzeń δ(r).

19 Grupowanie Aby móc modelować proste zapytania statystyczne wprowadzimy operator grupowania z opcjonalnym obliczeniem funkcji agregujacej Zauważmy, że γ A,MIN(B) MinB (R) γ A1,...,A n (R) = δ(r) jeśli A i to wszystkie atrybuty R.

20 Sortowanie Operator sortowania τ C,B (R). Nie jest to operator algebry relacji ani wielozbiorów, lecz ewentualnej algebry list, dlatego powinien być zewnętrznym operatorem wyrażenia!

21 Złaczenia zewnętrzne Umożliwiaja zachowanie zawieszonych krotek w wyniku Używa się specjalnej wartości do wskazania brakujacych wartości z drugiego argumentu złaczenia Pełne: R S Lewostronne: R L S brane sa tylko porzucone krotki z pierwszego argumentu; Prawostronne: R R S; Oczywiście zamiast złaczenia naturalnego można użyć złaczenia theta (z warunkiem u dołu).

22 Złaczenie zewnętrzne Zwierzaki gatunek imię waga Papuga Kropka 3,50 Papuga Lulu 5,35 Papuga Hipek 3,50 Lis Fufu 6,35 Krokodyl Czako 75,00 Gatunki gatunek Papuga Lis Krokodyl Krowa Zwierzaki Gatunki gatunek imię waga kontynent Papuga Kropka 3,50 Ameryka Papuga Lulu 5,35 Ameryka Papuga Hipek 3,50 Ameryka Lis Fufu 6,35 Europa Krokodyl Czako 75,00 Afryka Krowa Europa kontynent Ameryka Europa Afryka Europa

23 Złaczenie zewnętrzne Inny przykład. Schemat fikcyjnego hotelu obejmuje relacje Pokoje(numer,lozka,lazienka,cena) Rezerwacje(id,pokoj,pesel,odkiedy,dokiedy,zaplacono) Pokoje bez rezerwacji można znaleźć zapytaniem π numer Pokoje π pokoj Rezerwacje ale dla większej zabawy użyjemy σ pokoj= (Rooms Rezerwacje) numer=pokoj

24 Zastosowania algebry relacji Zapisywanie zapytań (np. modelowanie semantyki) Nakładanie ograniczeń na poprawność bazy danych (więzy). Przykłady: R S = R S (styl równościowy) (styl teoriomnogościowy) Modelowanie integralności referencyjnej π klucz-obcy (R) π klucz (S) π klucz-obcy (R) π klucz (S) = Inny zapis zależności funkcyjnych A B : σ R.A=R1.A R.b R1.B (R ρ R1 (R)) = Postać pośrednia do kompilacji zapytań na operacje bazy danych.

Bazy danych wykład drugi. Konrad Zdanowski

Bazy danych wykład drugi. Konrad Zdanowski Algebra relacji - przypomnienie Niech R(A 1,..., A k ) i S(B 1,..., B n ) relacje. Podstawowe operacje na relacjach: operacje teoriomnogościowe: suma R S, iloczyn R S, różnica R \ S, iloczyn kartezjański

Bardziej szczegółowo

Bazy danych 2. Algebra relacji Zależności funkcyjne

Bazy danych 2. Algebra relacji Zależności funkcyjne Bazy danych 2. Algebra relacji Zależności funkcyjne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011/12 Relacyjne systemy baz danych... zdominowały rynek. Systemy nierelacyjne maja status eksperymentalny

Bardziej szczegółowo

Algebra relacji. nazywamy każdy podzbiór iloczynu karteziańskiego D 1 D 2 D n.

Algebra relacji. nazywamy każdy podzbiór iloczynu karteziańskiego D 1 D 2 D n. Algebra relacji Definicja 1 (Relacja matematyczna). Relacją R między elementami zbioru D 1 D 2 D n, gdzie przypomnijmy D 1 D 2 D n = {(d 1, d 2,..., d n ) : d i D i, i = 1, 2,..., n}, nazywamy każdy podzbiór

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 8b: Algebra relacyjna http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Algebra relacyjna Algebra relacyjna (ang.

Bardziej szczegółowo

Bazy danych. Algebra relacji

Bazy danych. Algebra relacji azy danych lgebra relacji Model danych Model danych to spójny zestaw pojęć służący do opisywania danych i związków między nimi oraz do manipulowania danymi i ich związkami, a także do wyrażania więzów

Bardziej szczegółowo

Bazy danych Teoria projektowania relacyjnych baz danych. Wykła. Wykład dla studentów matematyki

Bazy danych Teoria projektowania relacyjnych baz danych. Wykła. Wykład dla studentów matematyki Bazy danych Teoria projektowania relacyjnych baz danych. Wykład dla studentów matematyki 2 kwietnia 2017 Ogólne wprowadzenie No przecież do tego służa reguły, rozumiesz? Żebyś się dobrze zastanowił, zanim

Bardziej szczegółowo

Relacyjny model baz danych, model związków encji, normalizacje

Relacyjny model baz danych, model związków encji, normalizacje Relacyjny model baz danych, model związków encji, normalizacje Wyklad 3 mgr inż. Maciej Lasota mgr inż. Karol Wieczorek Politechnika Świętokrzyska Katedra Informatyki Kielce, 2009 Definicje Operacje na

Bardziej szczegółowo

Matematyka stosowana. Bazy danych. Zbigniew Jurkiewicz http://www.mimuw.edu.pl/~zbyszek

Matematyka stosowana. Bazy danych. Zbigniew Jurkiewicz http://www.mimuw.edu.pl/~zbyszek Matematyka stosowana Bazy danych Zbigniew Jurkiewicz http://www.mimuw.edu.pl/~zbyszek Uniwersytet Warszawski, 2013 Streszczenie. Wprowadzenie do baz danych Wersja internetowa wykładu: http://mst.mimuw.edu.pl/lecture.php?lecture=bad

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 6: Algebra relacji. SQL - cd Algebra relacji operacje teoriomnogościowe rzutowanie selekcja przemianowanie Małgorzata Krętowska Wydział Informatyki Politechnika

Bardziej szczegółowo

RBD Relacyjne Bazy Danych Więzy realcji

RBD Relacyjne Bazy Danych Więzy realcji Wykład 8 RBD Relacyjne Bazy Danych Więzy realcji Bazy Danych - A. Dawid 2011 1 Więzy (Constraints) Więzy ograniczenia na związki między poszczególnymi atrybutami w bazie danych. Określają często zakres

Bardziej szczegółowo

Bazy danych Wykład zerowy. P. F. Góra

Bazy danych Wykład zerowy. P. F. Góra Bazy danych Wykład zerowy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Patron? Św. Izydor z Sewilli (VI wiek), biskup, patron Internetu (sic!), stworzył pierwszy katalog Copyright c 2011-12 P.

Bardziej szczegółowo

2010-10-21 PLAN WYKŁADU BAZY DANYCH MODEL DANYCH. Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna HISTORIA

2010-10-21 PLAN WYKŁADU BAZY DANYCH MODEL DANYCH. Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna HISTORIA PLAN WYKŁADU Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna BAZY DANYCH Wykład 2 dr inż. Agnieszka Bołtuć MODEL DANYCH Model danych jest zbiorem ogólnych zasad posługiwania

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Relacyjne bazy danych. są podstawą zachodniej cywilizacji

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Relacyjne bazy danych. są podstawą zachodniej cywilizacji Relacyjne bazy danych Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1 Model danych Relacyjne bazy danych są podstawą zachodniej cywilizacji 3 Model danych: Aspekt strukturalny: Zbiór struktur

Bardziej szczegółowo

Relacyjny model danych

Relacyjny model danych Relacyjny model danych Wykład przygotował: Robert Wrembel BD wykład 2 (1) 1 Plan wykładu Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe BD wykład 2 (2) W ramach drugiego

Bardziej szczegółowo

Dedukcyjne bazy danych i rekursja

Dedukcyjne bazy danych i rekursja Dedukcyjne bazy danych i rekursja Wykład z baz danych dla studentów matematyki 23 maja 2015 Bazy danych z perspektywy logiki Spojrzenie na bazy danych oczami logika pozwala jednolicie opisać szereg pojęć.

Bardziej szczegółowo

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 5 Strukturalny język zapytań (SQL - Structured Query Language) Algebraiczny rodowód podstawowe działania w przykładach Bazy danych.

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

KARTA PRZEDMIOTU. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Ogólne umiejętności posługiwania się komputerem

KARTA PRZEDMIOTU. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Ogólne umiejętności posługiwania się komputerem WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: Nazwa w języku angielskim: Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę* 0,5 0,5

Egzamin / zaliczenie na ocenę* 0,5 0,5 Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Technologia przetwarzania danych Nazwa w języku angielskim: Data processing technology Kierunek studiów

Bardziej szczegółowo

Bazy danych Język SQL część 2 Wykład dla studentów matem

Bazy danych Język SQL część 2 Wykład dla studentów matem Bazy danych Język SQL część 2 Wykład dla studentów matematyki 21 marca 2015 Zapytania na kilku tabelach Czasem poszukiwana informacja znajduje się w kilku tabelach. Aby zapytanie dotyczyło kilku tabel,

Bardziej szczegółowo

Rozpatrzymy bardzo uproszczoną bazę danych o schemacie

Rozpatrzymy bardzo uproszczoną bazę danych o schemacie Wykład 6 Algebraiczne podstawy implementacji strukturalnego języka zapytań (SQL) w systemach baz danych Oracle zapytania w języku algebry relacyjnych baz danych i ich odpowiedniki w SQL Rozpatrzymy bardzo

Bardziej szczegółowo

Grupa kursów: Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30

Grupa kursów: Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30 Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZĄRZADZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Wprowadzenie do SQL Nazwa w języku angielskim: Introduction to SQL Kierunek studiów (jeśli dotyczy): Zarządzanie

Bardziej szczegółowo

Program wykładu. zastosowanie w aplikacjach i PL/SQL;

Program wykładu. zastosowanie w aplikacjach i PL/SQL; Program wykładu 1 Model relacyjny (10 godz.): podstawowe pojęcia, języki zapytań (algebra relacji, relacyjny rachunek krotek, relacyjny rachunek dziedzin), zależności funkcyjne i postaci normalne (BCNF,

Bardziej szczegółowo

Konstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT

Konstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT Studia podyplomowe Inżynieria oprogramowania współfinansowane przez Unię Europejska w ramach Europejskiego Funduszu Społecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarządzania

Bardziej szczegółowo

Relacyjny model danych

Relacyjny model danych Model relacyjny Relacyjny model danych Relacyjny model danych jest obecnie najbardziej popularnym modelem używanym w systemach baz danych. Podstawą tego modelu stała się praca opublikowana przez E.F. Codda

Bardziej szczegółowo

Relacyjny model danych. Relacyjny model danych

Relacyjny model danych. Relacyjny model danych 1 Plan rozdziału 2 Relacyjny model danych Relacyjny model danych - pojęcia podstawowe Ograniczenia w modelu relacyjnym Algebra relacji - podstawowe operacje projekcja selekcja połączenie operatory mnogościowe

Bardziej szczegółowo

Operacja Teta-złączenia. v1 v1 Θ v2

Operacja Teta-złączenia. v1 v1 Θ v2 Operacja Teta-złączenia Dane są: r(r) tabela r o schemacie R, A R s(s) tabela s o schemacie S, B S R i S nie zawierają tych samych nazw (R S = Ø) Θ {>, =,

Bardziej szczegółowo

Bazy danych wykład trzeci. trzeci Modelowanie schematu bazy danych 1 / 40

Bazy danych wykład trzeci. trzeci Modelowanie schematu bazy danych 1 / 40 Bazy danych wykład trzeci Modelowanie schematu bazy danych Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa trzeci Modelowanie schematu bazy danych 1 / 40 Outline 1 Zalezności funkcyjne

Bardziej szczegółowo

Normalizacja baz danych

Normalizacja baz danych Wrocławska Wyższa Szkoła Informatyki Stosowanej Normalizacja baz danych Dr hab. inż. Krzysztof Pieczarka Email: krzysztof.pieczarka@gmail.com Normalizacja relacji ma na celu takie jej przekształcenie,

Bardziej szczegółowo

S y s t e m y. B a z D a n y c h

S y s t e m y. B a z D a n y c h S y s t e m y B a z D a n y c h Wykład na przedmiot: Bazy danych Studia zaoczne i podyplomowe UAM Anna Pankowska aniap@amu.edu.pl W y k ł a d I Temat: Relacyjne bazy danych Plan wykładu: - cel stosowania

Bardziej szczegółowo

BAZY DANYCH model relacyjny. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH model relacyjny. Opracował: dr inż. Piotr Suchomski BAZY DANYCH model relacyjny Opracował: dr inż. Piotr Suchomski Relacyjny model danych Relacyjny model danych posiada trzy podstawowe składowe: relacyjne struktury danych operatory algebry relacyjnej, które

Bardziej szczegółowo

1. Zakłada się, że każda operacja (read, write) w harmonogramie obejmuje również blokowanie i odblokowanie jednostki. Czy następujący harmonogram

1. Zakłada się, że każda operacja (read, write) w harmonogramie obejmuje również blokowanie i odblokowanie jednostki. Czy następujący harmonogram 1. Zakłada się, że każda operacja (read, write) w harmonogramie obejmuje również blokowanie i odblokowanie jednostki. Czy następujący harmonogram obejmujący dwie transakcje T1 i T2 jest szeregowalny i

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Pojęcie zależności funkcyjnej

Pojęcie zależności funkcyjnej Postacie normalne Plan wykładu Zależności funkcyjne Cel normalizacji Pierwsza postać normalna Druga postać normalna Trzecia postać normalna Postać normalna Boyca - Codda Pojęcie zależności funkcyjnej Definicja

Bardziej szczegółowo

Podstawy języka SQL cz. 2

Podstawy języka SQL cz. 2 Podstawy języka SQL cz. 2 1. Operatory zbiorowe a. UNION suma zbiorów z eliminacją powtórzeń, b. EXCEPT różnica zbiorów z eliminacją powtórzeń, c. INTERSECT część wspólna zbiorów z eliminacją powtórzeń.

Bardziej szczegółowo

Podstawowe zapytania SELECT (na jednej tabeli)

Podstawowe zapytania SELECT (na jednej tabeli) Podstawowe zapytania SELECT (na jednej tabeli) Struktura polecenia SELECT SELECT opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje FROM nazwy tabel lub widoków WHERE warunek (wybieranie wierszy) GROUP

Bardziej szczegółowo

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 1 Algebra relacyjnych baz danych jako podstawa języka SQL i jego implementacji w systemach baz danych Oracle Bazy danych. Wykład

Bardziej szczegółowo

WYKŁAD 1. Wprowadzenie do problematyki baz danych

WYKŁAD 1. Wprowadzenie do problematyki baz danych WYKŁAD 1 Wprowadzenie do problematyki baz danych WYKŁAD 2 Relacyjny i obiektowy model danych JĘZYK UML (UNIFIED MODELING LANGUAGE) Zunifikowany język modelowania SAMOCHÓD

Bardziej szczegółowo

Rachunki relacji. Rachunki relacji. RRK Relacyjny Rachunek Krotek

Rachunki relacji. Rachunki relacji. RRK Relacyjny Rachunek Krotek Rachunki relacji Rachunki relacji 1. RRK Relacyjny Rachunek Krotek 2. RRD Relacyjny Rachunek Dziedzin 3. Datalog Database Prolog Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski T. Pankowski, Rachunki

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Bazy danych. Dr inż. Paweł Kasprowski

Bazy danych. Dr inż. Paweł Kasprowski Plan wykładu Bazy danych Podstawy relacyjnego modelu danych Dr inż. Paweł Kasprowski pawel@kasprowski.pl Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność

Bardziej szczegółowo

Normalizacja. Pojęcie klucza. Cel normalizacji

Normalizacja. Pojęcie klucza. Cel normalizacji Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

Wprowadzenie i pojęcia wstępne.

Wprowadzenie i pojęcia wstępne. Wprowadzenie i pojęcia wstępne. X\A a b c x 1 a 1 b 1 c 1 x 2 a 1 b 1 c 2 x 3 a 1 b 2 c 3 x 4 a 2 b 1 c 4 x 5 a 1 b 2 c 1 x 6 a 1 b 2 c 2 x 7 a 1 b 1 c 1 S = X = {x 1,,x 8 } A = {a, b, c}

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

SZKOLENIE: Administrator baz danych. Cel szkolenia

SZKOLENIE: Administrator baz danych. Cel szkolenia SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.

Bardziej szczegółowo

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła 030 PROJEKTOWANIE BAZ DANYCH Prof. dr hab. Marek Wisła Elementy procesu projektowania bazy danych Badanie zależności funkcyjnych Normalizacja Projektowanie bazy danych Model ER, diagramy ERD Encje, atrybuty,

Bardziej szczegółowo

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Tabele 9 Klucze 10 Relacje 11 Podstawowe zasady projektowania tabel 16 Rozdział 2. Praca z tabelami 25 Typy danych 25 Tworzenie tabel 29 Atrybuty kolumn

Bardziej szczegółowo

Algebra relacji - rozwiązania zadań. Zadania

Algebra relacji - rozwiązania zadań. Zadania Algebra relacji - rozwiązania zadań Zadania Zadanie 1. Niech dom (IMIE) = { Adam, Ewa,, Zofia }, dom (NAZW ISKO) = { Kowalska, Kowalski, Nowak }, dom (P RZEDMIOT ) = { ANA, BAD, MAD, SIK }, dom (OCENA)

Bardziej szczegółowo

Bazy danych 3. Normalizacja baz danych (c.d.)

Bazy danych 3. Normalizacja baz danych (c.d.) Bazy danych 3. Normalizacja baz danych (c.d.) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Postać normalna Boyce a-codda Tabela jest w postaci normalnej Boyce a-codda (BCNF, PNBC), jeżeli 1.

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Bazy danych Database Kierunek: Rodzaj przedmiotu: obieralny Rodzaj zajęć: wykład, laboratorium Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień: 2W, 2L Semestr: III Liczba

Bardziej szczegółowo

Bazy danych 8. Złaczenia ciag dalszy. Grupowanie.

Bazy danych 8. Złaczenia ciag dalszy. Grupowanie. Bazy danych 8. Złaczenia ciag dalszy. Grupowanie. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Filtry Wyobraźmy sobie zapytanie SELECT... FROM T 1 JOIN T 2 ON... WHERE P(T 1 )

Bardziej szczegółowo

KaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości.

KaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości. elacja chemat relacji chemat relacji jest to zbiór = {A 1,..., A n }, gdzie A 1,..., A n są artybutami (nazwami kolumn) np. Loty = {Numer, kąd, Dokąd, Odlot, Przylot} KaŜdemu atrybutowi A przyporządkowana

Bardziej szczegółowo

Podstawowy kurs z systemów baz danych / Jeffrey D. Ullman, Jennifer Widom. - wyd Gliwice, cop Spis treści.

Podstawowy kurs z systemów baz danych / Jeffrey D. Ullman, Jennifer Widom. - wyd Gliwice, cop Spis treści. Podstawowy kurs z systemów baz danych / Jeffrey D. Ullman, Jennifer Widom. - wyd. 3. - Gliwice, cop. 2011 Spis treści Przedmowa 15 Co nowego w trzecim wydaniu? 16 Korzystanie z tej ksiąŝki 16 Wymagania

Bardziej szczegółowo

ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0

ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0 ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu ECDL/ICDL Użytkowanie baz danych. Sylabus opisuje zakres wiedzy

Bardziej szczegółowo

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy)

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy) Zapytania SQL. Polecenie SELECT jest używane do pobierania danych z bazy danych (z tabel lub widoków). Struktura polecenia SELECT SELECT FROM WHERE opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

Temat : SBQL 1 obiektowy język zapytań.

Temat : SBQL 1 obiektowy język zapytań. Laboratorium Języki i środowiska przetwarzania danych rozproszonych Temat : SBQL 1 obiektowy język zapytań. Historia zmian Data Wersja Autor Opis zmian 23.4.2012 1.0 Tomasz Kowalski Utworzenie dokumentu

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Bazy danych 11. Algorytmy złaczeń. P. F. Góra

Bazy danych 11. Algorytmy złaczeń. P. F. Góra Bazy danych 11. Algorytmy złaczeń P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2009 Typy złaczeń SELECT... FROM T 1 JOIN T 2 ON T 1.k p =T 2.k q JOIN T 3 ON T 2.k r =T 3.k s WHERE...; SELECT... FROM

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

2011-01-20 PLAN WYKŁADU BAZY DANYCH ETAPY PRZETWARZANIA ZAPYTANIA OPTYMALIZACJA ZAPYTAŃ

2011-01-20 PLAN WYKŁADU BAZY DANYCH ETAPY PRZETWARZANIA ZAPYTANIA OPTYMALIZACJA ZAPYTAŃ PLAN WYKŁADU BAZY DANYCH Wykład 11 dr inż. Agnieszka Bołtuć Pojęcie optymalizacji Etapy wykonywania zapytania Etapy optymalizacji Rodzaje optymalizacji Reguły transformacji Procedury implementacyjne Koszty

Bardziej szczegółowo

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 Bazy Danych LITERATURA C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 J. D. Ullman, Systemy baz danych, WNT - W-wa, 1998 J. D. Ullman, J. Widom, Podstawowy

Bardziej szczegółowo

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Złączenie definicja Złączenie (JOIN) to zbiór rekordów stanowiących wynik zapytania służącego pobraniu danych z połączonych tabel (związki jeden-do-jeden, jeden-do-wiele

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Laboratorium nr 10. Temat: Połączenia relacji

Laboratorium nr 10. Temat: Połączenia relacji Laboratorium nr 10 Temat: Połączenia relacji Dotychczas omawiane zapytania zawsze dotyczyły jednej relacji. MoŜliwe jest jednak pisanie zapytań, które odczytują i łączą dane z wielu relacji. Celem tego

Bardziej szczegółowo

Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016

Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016 Przedmioty do wyboru oferowane na semestr IV - letni (II rok) Prowadzący Przedmiot

Bardziej szczegółowo

Bazy Danych i Usługi Sieciowe

Bazy Danych i Usługi Sieciowe Bazy Danych i Usługi Sieciowe Model relacyjny Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS w. III Jesień 2011 1 / 40 Iloczyn kartezjański Iloczyn kartezjański zbiorów A, B

Bardziej szczegółowo

Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne)

Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne) Bazy danych 1 Wykład 5 Metodologia projektowania baz danych (projektowanie logiczne) Projektowanie logiczne przegląd krok po kroku 1. Usuń własności niekompatybilne z modelem relacyjnym 2. Wyznacz relacje

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Bazy Danych. Model Relacyjny. Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408

Bazy Danych. Model Relacyjny. Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Bazy Danych Model Relacyjny Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Relacyjny model danych Relacyjny model danych jest obecnie najbardziej popularnym modelem używanym w systemach

Bardziej szczegółowo

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d. TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, /14

Bazy danych. Andrzej Łachwa, UJ, /14 Bazy danych Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4/14 Własności SZBD: możliwość bezpiecznego przechowywania przez długi czas danych mierzonych w tera- i petabajtach, istnienie mechanizmów

Bardziej szczegółowo

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2011/2012 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2011/2012 Instytut Techniczny Kierunek studiów: Informatyka Kod kierunku: 11.3 Specjalność: Informatyka Stosowana

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie

Bardziej szczegółowo

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań

PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka

Bardziej szczegółowo

PRÓBNA NOWA MATURA z WSiP. Zasady oceniania zadań

PRÓBNA NOWA MATURA z WSiP. Zasady oceniania zadań PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Numer

Bardziej szczegółowo

PLAN WYKŁADU BAZY DANYCH ZALEŻNOŚCI FUNKCYJNE

PLAN WYKŁADU BAZY DANYCH ZALEŻNOŚCI FUNKCYJNE PLAN WYKŁADU Zależności funkcyjne Anomalie danych Normalizacja Postacie normalne Zależności niefunkcyjne Zależności złączenia BAZY DANYCH Wykład 5 dr inż. Agnieszka Bołtuć ZALEŻNOŚCI FUNKCYJNE Niech R

Bardziej szczegółowo

Program nauczania. Systemy baz danych. technik informatyk 351203

Program nauczania. Systemy baz danych. technik informatyk 351203 Program nauczania Systemy baz technik informatyk 351203 Treści nauczania Lp. Temat Liczba godzin Efekty kształcenia 1. Zapoznanie z pojęciem baz 53 1. Pojęcie bazy podstawowe definicje 2 PKZ(E.b)11 2.

Bardziej szczegółowo

Bazy danych Język SQL część 1 Wykład dla studentów matem

Bazy danych Język SQL część 1 Wykład dla studentów matem Bazy danych Język SQL część 1 Wykład dla studentów matematyki 15 marca 2015 SQL Język wysokiego poziomu do komunikacji z bazami danych (ściślej: z systemami zarzadzania bazami danych) Podajemy co ma być

Bardziej szczegółowo

Projektowanie Systemów Informacyjnych

Projektowanie Systemów Informacyjnych Projektowanie Systemów Informacyjnych Wykład II Encje, Związki, Diagramy związków encji, Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Baza danych. Modele danych

Baza danych. Modele danych Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych

Bardziej szczegółowo

Bazy danych i usługi sieciowe

Bazy danych i usługi sieciowe Bazy danych i usługi sieciowe Model relacyjny Paweł Daniluk Wydział Fizyki Jesień 2016 P. Daniluk (Wydział Fizyki) BDiUS w. III Jesień 2016 1 / 50 Iloczyn kartezjański Iloczyn kartezjański zbiorów A, B

Bardziej szczegółowo

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J. Bazy Danych Wykład II Encja, atrybuty, klucze Związki encji Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło 1 Encja Byt pojęciowy

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

Agnieszka Ptaszek Michał Chojecki

Agnieszka Ptaszek Michał Chojecki Agnieszka Ptaszek Michał Chojecki Krótka historia Twórcą teorii relacyjnych baz danych jest Edgar Frank Codd. Postulaty te zostały opublikowane po raz pierwszy w 1970 roku w pracy A Relational Model of

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo