Rys 0.2. Zależność oporów toczenia samochodu od ciśnienia w oponach.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rys 0.2. Zależność oporów toczenia samochodu od ciśnienia w oponach."

Transkrypt

1 WPROWADZENIE Powszechność użytkowania samochodów, łatwość kierowania nimi, wymóg wykorzystania cech dynamicznych samochodu w ruchu miejskim, dawniejsza dostępność i taniość paliw spowodowały, że u użytkownika zostało uśpione społeczne odczucie potrzeby oszczędnej techniki jazdy oraz troski o stan techniczny silnika i pojazdu w aspekcie zużycia paliwa. Nasza obecna sytuacja powoduje zwiększone zainteresowanie sposobami eksploatacyjnymi i technicznymi, ograniczającymi zużycie paliwa w samochodach (ocenianie na 100 km przebytej drogi). Obecnie wykorzystuje się sposób ogólnego zmniejszania zużycia paliw samochodowych w państwie poprzez administracyjne ograniczenia maksymalnej prędkości jazdy na drogach pozamiejskich i autostradach. Ograniczenie prędkości jazdy na obszarach zabudowanych jest podyktowane głównie bezpieczeństwem użytkowników drogi przechodniów. Ograniczenie maksymalnej prędkości i reglamentacja paliw to jednak tylko środki doraźne, gdyż ten sposób nie usprawnia niczego w samych samochodach. Dlatego docelowo poszukuje się możliwości zmniejszania zużycia paliwa w samochodach przez wprowadzenie zmian konstrukcyjnych w silnikach umożliwiających zwiększenie ich sprawności, oraz szereg innych usprawnień o mniejszym znaczeniu. Na zużycie paliwa mają również wpływ jakość nawierzchni i profil dróg, a także organizacja ruchu drogowego (eliminowanie przejazdów przez tory kolejowe i tramwajowe, wprowadzenie rond i rozjazdów przestrzennych oraz synchronizacji świateł na skrzyżowaniach). Na rys. 0.1 przedstawiono zależność mocy niezbędnej do ruchu samochodów o różnych kształtach nadwozi od prędkości. Do celów porównawczych przyjęto jednakowe masy samochodów i pola powierzchni czołowych (zaznaczając jednak linią przerywaną również opory toczenia samochodu o mniejszej masie). Zaznaczono także moc rozporządzalna zespołu napędowego przy wykorzystaniu biegu bezpośredniego. Jak widać najmniejszej mocy niezbędnej wymaga samochód 2 o opływowej sylwetce (jak np. Citroen CX czy Ford Sierra), większych samochód 1 o przeciętnej sylwetce (np. FSO czy Polonez), a największej samochód 3 o sylwetce odkrytego pojazdu terenowego. Wykresy ilustrują duże zapotrzebowanie mocy podczas jazdy z dużymi prędkościami (co rzutuje na zużycie paliwa) oraz wpływ kształtu nadwozia i masy pojazdu na moc niezbędną do ruchu. Choć przeciętny użytkownik samochodu ma obecnie ograniczone możliwości wyboru nabywanego samochodu to jednak z wykresów na rys 0.1 może wyciągnąć przynajmniej 2 wnioski: nie wozić w bagażniku zbędnych przedmiotów oraz nie jeździć z pustym bagażnikiem dachowym (a jeśli jest on wykorzystywany to jeździć wolniej). 2

2 Codzienne wykorzystywanie samochodu stwarza bardzo różnorodne warunki jazdy (jazda po różnych nawierzchniach, pokonywanie wzniesień i spadków, jazda na różnych biegach, pod wiatr lub z bocznym wiatrem itp.). Na rys 0.2 pokazano zależność oporów toczenia od ciśnienia w oponach samochodu, w odniesieniu do ciśnienia zalecanego przez wytwórcę. Widać, że nawet niewielki spadek ciśnienia powoduje znaczny wzrost oporów toczenia. Najsilniej jednak rzutują na moc niezbędną do ruchu samochodu opory wynikłe z działania sił aerodynamicznych, które decydują o mocy zespołu napędowego niezbędnej dla uzyskania wymaganej prędkości jazdy. We współczesnych samochodach osobowych moc niezbędna do pokonywania oporów aerodynamicznych jest 1 2-krotnie większa od mocy niezbędnej do pokonania oporów toczenia przy prędkości ok. 90 km/h /por. rys 0.1/. Opory aerodynamiczne znacznie wzrastają ze wzrostem prędkości samochodu Rys 0.1. Zależność mocy niezbędnej i rozporządzalnej od prędkości jazdy samochodu: 1 samochód osobowy o współczesnej sylwetce ; 2 samochód o sylwetce bardzo opływowej; 3 odkryty samochód terenowy; P 1 moc niezbędna do pokonania oporów toczenia; P 2 moc rozporządzalna zespołu napędowego na biegu bezpośrednim. Rys 0.2. Zależność oporów toczenia samochodu od ciśnienia w oponach. względem otaczającego powietrza atmosferycznego a więc także podczas jazdy pod wiatr. Na rys 0.3 przedstawiono wpływ wiatru zgodnego z kierunkiem jazdy lub przeciwnego, na moc niezbędną. W naszym obszarze geograficznym występują przeważnie wiatry wiejące z kierunku zachodniego, o prędkościach nie przekraczających 5 m/s. Wiatry boczne do kierunku jazdy samochodu wpływają na moc niezbędną do ruchu podobnie jak wiatry w kierunku czołowym wzrasta bowiem współczynnik Cx oporu aerodynamicznego przy skośnym napływie powietrza na sylwetkę samochodu oraz wzrastają opory toczenia przy występowaniu dodatkowej siły bocznej. Podczas jazdy przy silnym wietrze, zwłaszcza bocznym, na przyrost mocy niezbędnej do jazdy mają znaczny wpływ wszystkie elementy wystające z obrysu nadwozia samochodu, jak np. bagażnik dachowy (nawet pusty i wykonany z samych rurek) czy dodatkowe lusterka, reflektory lub ostrogi zderzaków, 3

3 a nawet ostre krawędzie rynienek na słupkach nadwozia. Wśród czynników wpływających na moc niezbędną do jazdy i zużycie paliwa ważny jest ogólny stan techniczny samochodu, a zwłaszcza ustawienie jego kół jezdnych: względnie położenia kół przednich i tylnych, zbieżność i pochylenia kół, stan hamulców. Niewłaściwe ustawienie kół jezdnych powoduje zwiększone tarcie i przyśpieszone ścieranie bieżników opon, co odbywa się kosztem dodatkowej energii. Podobne skutki powoduje ocieranie się okładzin hamulcowych o bębny lub tarcze, wywołane np. niewłaściwym wyregulowaniem linki hamulca ręcznego. Dla każdego kierowcy oczywisty jest wpływ stanu technicznego silnika (tj. stopnia jego zużycia, ale także poprawności regulacji gaźnika, zapłonu, luzów zaworowych, zanieczyszczenia filtru powietrza) na zużycie paliwa. Dlatego ważna Rys 0.3. Zależność wpływu wiatru na moc niezbędną, od prędkości jazdy samochodu: a wpływ wiatru czołowego; b wpływ wiatru bocznego ; P r moc oporów tarcia; P n moc całkowita; W prędkość wiatru czołowego; W prędkość wiatru bocznego. jest okresowa kontrola stanu technicznego i regulacji silnika. Przydatna do określenia potrzeby takiej regulacji jest ciągła rejestracja ilości paliwa wlewanego do zbiornika i obliczanie na tej podstawie zużycia paliwa na 100 km przebiegu samochodu. Zwiększone zużycie paliwa, zarejestrowane w 2..3 kolejnych obliczeniach, jest sygnałem wskazującym na konieczność regulacji silnika (lub kontroli poprawności ustawienia kół jezdnych np. po wjechaniu w wyrwę na jezdni, na krawężnik chodnika, przy kolizji z innym użytkownikiem drogi). Do bieżącej kontroli zużycia Przykład ewidencji zużycia paliwa Data Licznik S Pal. Zb. Zuż. Pal. Uwagi , ,9 10 4,8 Regulacja zapłonu ,0 6 4,6 V 80 km/h, Łódź, ciepło ,8 12 5,2 miasto 4

4 paliwa przydatne jest wypełnienie tabelki wg powyższego przykładu. Zapis daty umożliwia przypomnienie pory roku, warunków meteorologicznych, przybliżonej temperatury powietrza. W rubryce Pal. Zamieszcza się liczbę wlanych do zbiornika litrów paliwa, a w rubryce Zb. wskazania wskaźnika ilości paliwa w zbiorniku. Pamiętając o tym, że 0,1 pojemności zbiornika w maluchu stanowi ok. 2 litry, można z tą dokładnością ocenić ilość zużytego paliwa. Dzieląc ilość zużytego paliwa Pal. Przez przebytą drogę S i mnożąc wynik przez 100 otrzymuje się zużycie Zuż. paliwa na 100 km przebytej drogi. Rubrykę Uwagi wykorzystuje się do zapisów dotyczących dalszych jazd szczególnych (np. wyjazd do Szczecina czy Krakowa), wymian oleju czy czyszczenia świec, wymiany filtru czy kontroli ustawienia kół jezdnych. Ciągłe prowadzenie takich notatek pozwala na racjonalne wykonywanie zabiegów eksploatacyjnych. Rys 0.4. Zależność mocy nadwyżkowej od prędkości jazdy samochodu: P n moc niezbędna; P r moc rozporządzalna; P moc nadwyżkowa; I, II, III,IV numer biegu skrzynki przekładniowej Podstawowym sposobem ekonomicznej jazdy samochodem jest racjonalne wykorzystywanie możliwości zespołu napędowego podczas rozpędzania samochodu i pokonywania wzniesień oraz wykorzystywanie do jazdy nabytej już energii kinetycznej i ograniczenie hamowania, a więc stosowanie się do zasady: nie rozpędzać nadmiernie samochodu, aby nie zachodziła konieczność natychmiastowego hamowania. Na rys 0.4 przedstawiono zależność od prędkości jazdy: mocy rozporządzalnych zespołu napędowego na poszczególnych biegach, mocy niezbędnej do ruchu na drodze poziomej oraz charakterystyki mocy nadwyżkowych. Z charakterystyk tych wynika celowość pokonywania wzniesień na IV biegu przy prędkościach km/h, a na III przy km/h. Jazda z takimi prędkościami zapewnia niezbędny zapas intensywności chłodzenia silnika oraz nadmiar mocy zezwalający na ewentualne wyprzedzanie. Potrzeba całkowitego otwarcia przepustnicy podczas pokonywania wzniesienia z ustaloną prędkością wskazuje na konieczność zmiany przełożenia, np. z IV biegu na III bieg. Należy jednak pamiętać, że mniejsze zużycie paliwa, przy każdej prędkości jazdy samochodem Polski Fiat 126p. uzyskuje się podczas jazdy na biegu wyższym. Np. podczas jazdy z prędkością 80 km/h na III biegu zużycie paliwa jest blisko 50% większe niż przy IV biegu. Natomiast podczas pokonywania długich, stromych wzniesień oraz jazdy po bezdrożach najmniejsze zużycie paliwa uzyskuje się na II biegu przy prędkości ok. 30 km/h. 5

5 1. REGULACJA SILNIKA Każdy kierowca chciałby aby jego pojazd szybko osiągał pożądaną prędkość i był ekonomiczny. Te cechy są także zgodne z interesem społecznym. Małe zużycie paliwa nie wymaga komentarza, a dynamika pojazdu podobnie jak skutecznie działające hamulce decyduje o bezpieczeństwie ruchu drogowego. Większa dynamika to przede wszystkim krótszy czas blokowania drugiego pasa jezdni przez pojazd wyprzedzający. Ekonomiczność i dynamika samochodu zależą w dużym stopniu od stanu technicznego pojazdu jako całości oraz od właściwej regulacji silnika. Silnik samochodu PF 126p jest bardzo prosty pod względem konstrukcyjnym, łatwa jest jego regulacja. Dostępność punktów regulacyjnych w silniku jest dobra, zwłaszcza po odjęciu pokrywy komory silnikowej. Podstawowa regulacja silnika wykonywana w warunkach statycznych, obejmuje luzy zaworowe, maksymalny odstęp styków przerywacza aparatu zapłonowego, odstęp elektrod świec zapłonowych, skrajne położenia pływaka w gaźniku oraz statyczny kąt wyprzedzenia zapłonu. Oprócz tego, po kilku latach eksploatacji lub kilkudziesięciu tysiącach kilometrów przebiegu samochodu, wymiany wymagają dysze paliwowe i powietrzne w gaźniku ze względu na erozję dysz paliwowych i korozję dusz powietrznych, gardziel gaźnika i jego rozpylacz wymagają wypolerowania. Wymiany wymaga także przerywacz aparatu zapłonowego. Okresowo powinien być wymieniany filtr powietrza wlotowego silnika (i filtr paliwowy, jeśli został on zainstalowany w układzie paliwowym), a czyszczony odśrodkowy filtr oleju oraz spirala skraplacza oleju w układzie przewietrzania skrzyni korbowej silnika. Liczbowe wartości luzów, odstępów, częstotliwości wymian, czyszczeń i regulacji nie są tu przytoczone, gdyż są one zawarte w instrukcji dołączonej do samochodu przez wytwórcę. Po regulacji luzów zaworowych należy sprawdzić dokładność przylegania pokrywy rozrządu do uszczelki (oceniając ją na podstawie odcisków mieszczących się między krawędziami uszczelki) oraz stan fibrowych uszczelek pod nakrętki dociskowe pokrywy. Niewielkie nawet uszkodzenia wywołują nieszczelności i przecieki oleju, a próba silniejszego dokręcenia prowadzi do odkształceń pokrywy i konieczność jej wymiany. W skrajnym przypadku można nawet spowodować naciśnięcie pokrywą dźwigienek zaworowych obu cylindrów i jednoczesne uchylenie wszystkich zaworów, co uniemożliwia uruchomienie silnika (na szczęście, gdyż inaczej nastąpiłoby zniszczenie przylgni zaworów i gniazd zaworowych przez przepływającą płonącą mieszankę i spaliny). Przed regulacją odstępów przerywacza styki należy oczyszczać drobnym papierem ściernym (o ziarnistości ), a w przypadku wymiany przerywacza na nowy przed zamontowaniem doprowadzić od równoległości powierzchnię styków młoteczka i kowadełka w położeniu zetknięcia oraz wypolerować te powierzchnie wymienionym papierem ściernym. Po założeniu nowego przerywacza konieczna jest co najmniej dwukrotna kontrola wartości odstępu (co km 6

6 przebiegu), ze względu na docieranie się powierzchni ślizgu młoteczka do krzywek wałka napędu przerywacza. Należy pamiętać, ze przed każdym ustawieniu zapłonu trzeba ustawić odstęp styków (a nie odwrotnie!). Zmniejszenie odstępu między stykami przerywacza powoduje opóźnienie zapłonu. Regulacje statycznego kąta zapłonu wygodnie jest wykonywać następująco: pokręcając wał korbowy w prawo (pociągając za pasek klinowy lub kluczem nakładanym na kolejne nakrętki koła pasowego prądnicy) ustawić nacięcia na krawędzi koła pasowego na wale silnika naprzeciw znaku Z na kadłubie silnika co wyjaśnia rys Następnie zdjąć końcówki kabli ze świec poluzować nakrętkę ustalającą położenie aparatu zapłonowego względem kadłuba silnika i obrócić aparat nieco w prawo (patrząc z góry w kierunku zgodnym z ruchem wskazówek zegara). Po włączeniu stacyjki poruszać aparatem zapłonowym w lewo aż do chwili Rys Schemat ustawiania zapłonu (położenie przy ustawianiu zapłonu): 1 kadłub silnika; 2 koło pasowe; 3 pasek klinowy; 4 wgłębienie na krawędzi koła pasowego; 5 występ na kole pasowym; Z znak kąta wyprzedzenia zapłonu; O znak położenia odpowiadającemu zwrotowi zewnętrznemu tłoków silnika. Rys Regulacja skrajnych położeń pływaka: 1 pokrywa gaźnika; 2 uszczelka; 3 pływak; 4 ramię pływaka; 5 ogranicznik górnego położenia pływaka; 6 ogranicznik dolnego położenia; 7 iglica zaworu; 8 dopływ paliwa; A minimalna odległość pływaka od pokrywy; B maksymalna odległość pływaka od pokrywy. wystąpienia iskry między końcówką jednego z kabli a masą silnika z odległości ok. 5 7 mm. Czynność tę powtarzać kilkakrotnie coraz mniejszymi ruchami, aż do osiągnięcia takiego stanu, gdy dotknięcie aparatu zapłonowego powoduje przeskok iskry; wówczas należy dokręcić aparat i wyłączyć stacyjkę uznając, że zapłon został ustawiony. Po takiej regulacji należy dokonać kontrolnego rozruchu silnika. Brak iskry przy ustawianiu zapłonu wskazuje na zanieczyszczone styki przerywacza. Należy z nich usunąć pozostałe z czyszczenia ziarna ścierniwa, kłaczek oddartego papieru celowe jest oczyszczenie świec i regulacja odstępu elektrod (którego wartość proponuje się ustawić równą 0,8 mm). Regulację gaźnika rozpoczyna się od jego umycia, a po rozebraniu od umycia i przedmuchania kanałów i dysz. Przy zdejmowaniu gaźnika wygodnie jest 7

7 odkręcić od niego pokrywę dźwigni układu ssania, nie odłączając cięgna sterowania, co uwalnia potem od konieczności regulacji długości tego cięgna. Po rozebraniu reguluje się skrajne położenie pływaka, posługując się wykonanym poprzednio kątowniczkiem (pokazanym na rys. 1.2), którego ramiona określają skrajne odległości pływaka od ściany pokrywy gaźnika. Jeżeli gaźnik jest rozebrany, celowe jest rozwiercenie dyszy paliwowej o oznaczeniu F5/90 w rurce emulsyjnej układu ssania wiertłem o średnicy 1 mm, co znakomicie ułatwia rozruch w niskich temperaturach. Po zamontowaniu gaźnika na silniku konieczna jest regulacja biegu jałowego. Uprzednio jednak należy całkowicie dokręcić wkręt regulacji składu mieszanki i wstępnie go wykręcić o 2 2,5 obrotu. Dopiero po tej czynności można dokonać regulacji (dostrojenia) gaźnika do pracy silnika na biegu jałowym. Regulację Rys Zasada regulacji składu mieszanki biegu jałowego: a schemat gaźnika; b wpływ położenia wkrętu regulacyjnego na prędkość obrotową; 1 gardziel; 2 rozpylacz; 3 przepustnica; 4 wkręt regulacyjny przeprowadza się na nagrzanym już silniku (np. po kilku kilometrach jazdy próbnej). Zasady regulacji wyjaśnia wytwórca w instrukcji obsługi samochodu. Należy zdawać sobie sprawę z tego, że wkręcanie wkrętu regulacji składu mieszanki powoduje jej zubożenie, a wykręcanie wzbogacenie prowadzące do wzrostu prędkości obrotowej. Stabilna praca silnika (bez tzw. wypadania zapłonów) przy całkowicie wkręconym wkręcie regulacji składu oznacza, że paliwowa dysza biegu jałowego jest niedostatecznie dokręcona. Na rys. 1.3 pokazano schematycznie zasadę regulacji składu mieszanki na zakresie biegu jałowego silnika oraz zależność prędkości obrotowej biegu jałowego od położenia wkrętu regulacyjnego. Nadmierne wykręcenie wkrętu powoduje wzrost zużycia paliwa, a zbytnie wkręcenie wypadanie suwów pracy aż do braku możliwości pracy silnika na biegu jałowym. Wyraźnie zaznacza się wpływ regulacji biegu jałowego silnika na zużycie paliwa podczas pracy przy częściowym otwarciu przepustnicy nadmiernie wykręcony wkręt składu mieszanki może spowodować nawet kilkunastoprocentowy wzrost zużycia paliwa podczas jazdy samochodem z umiarkowanymi prędkościami (60 80 km/h). Niewłaściwa regulacja biegu jałowego prowadzi do niepełnego spalania i 8

8 zwiększonej wartości toksycznego tlenku węgla w spalinach. Dość często zdarza się gaśnięcie silnika po przymknięciu przepustnicy. Najczęściej przyczyną tego jest zatkanie paliwowej dyszy biegu jałowego (osadzonej w górnej części gaźnika, nad wkrętem regulacji składu mieszanki). Należy wówczas dyszę wykręcić i przedmuchać (lub ewentualnie przetkać drucikiem miedzianym lub sztywnym włóknem o średnicy nie większej od 0,4 mm). Dopiero po jej zamontowaniu można doregulować obroty biegu jałowego wkrętem składu mieszanki i położeniem przepustnicy. Ostateczną ocenę jakości regulacji silnika przeprowadza się wstępnie Rys Zależność prędkości jazdy i przebytej drogi od czasu podczas rozpędzania samochodu: a zależność prędkości od czasu; b zależność drogi od czasu. podczas jazdy próbnej, a następnie podczas normalnej eksploatacji. Przed jazdą próbną należy sprawdzić, czy całkowite wciśnięcie pedału gazu powoduje całkowite otwarcie przepustnicy gaźnika (takie sprawdzenie mogą wykonać dwie osoby). Jazda próbna, przy dobrze nagrzanym silniku, powinna polegać na próbie przyśpieszeń od prędkości 50 km/h do 80 km/h na biegu bezpośrednim: samochód powinien się płynnie rozpędzać bez występowania dzwonienia w silniku sygnalizującego występowanie spalania stukowego (detonacji). Próbę taką wykonuje się przy obciążeniu samochodu dwoma osobami. Po osiągnięciu ustalonej prędkości jazdy równej 50 km/h należy wcisnąć pedał gazu do oporu i od tej chwili rozpocząć pomiar czasu, aż do osiągnięcia prędkości 80 km/h. Pomiar należy wykonać przy bezwietrznej pogodzie, na prostym i poziomym odcinku drogi o suchej nawierzchni asfaltowej. Pomiar należy powtórzyć 4-krotnie ( 2 razy w jednym kierunku i z powrotem). Jeśli średnia arytmetyczna z tych 4 pomiarów osiągnie wartość s. to można uznać, że regulacja została przeprowadzona poprawnie. Na rys. 1.4 przedstawiono zależność prędkości i drogi przebytej podczas rozpędzania samochodu od czasu przy użyciu kolejnych biegów skrzyni przekładniowej. Każdy kierowca powinien zdawać sobie sprawę z możliwości przyśpieszeń swojego samochodu przed wykonywaniem manewru wyprzedzania innego pojazdu. Kontrolnego pomiaru zużycia paliwa można dokonać podłączając gaźnik do naczynia o dobrze znanej objętości (np. 0,5 dm 3 ) i mierząc czas opróżnienia naczynia podczas jazdy z ustaloną prędkością. Pomiar należy powtarzać tak jak pomiary przyśpieszeń. Ze względu na uproszczony sposób pomiaru (z występowaniem podczas jego trwania rozruchu silnika i rozpędzania do określonej prędkości), wyniki należy traktować jedynie jako porównawcze, uzyskiwane przed regulacją i po niej. Obydwa pomiary powinny być wykonywane w podobnych warunkach meteorologicznych i przy podobnym stanie cieplnym silnika. 9

9 2. KONTROLA UKŁADU JEZDNEGO I NADWOZIA Od regulacji i stanu technicznego układu jezdnego samochodu zależą jego opory toczenia, sterowność i stabilność ruchu. Charakterystyczną cechą samochodu Polski Fiat 126p jest występująca zbieżność kół przednich i tylnych. Od wielkości tych zbieżności w dużym stopniu zależą opory toczenia samochodu, zużywanie się opon oraz zużycie paliwa. Przy właściwym ciśnieniu w oponach wstępną ocenę uzyskuje się przez pomiar tzw. wybiegu samochodu na poziomej drodze o suchej, asfaltowej nawierzchni tj. jego drogi swobodnego toczenia, po odłączeniu (wysprzęgleniu) silnika przy ustalonej uprzednio prędkości jazdy, aż do zupełnego zatrzymania. Dla samochodu PF 126p o dobrze ustawionych kołach i dobrym stanie technicznym wybieg z prędkości 50 km/h powinien wynosić nie mniej niż 400 m. Krótszy wybieg Rys Zależność między prędkością początkową a drogą wybiegu samochodu. powinien być sygnałem do kontroli hamulców, łożysk kół i ustawienia kół jezdnych w samochodu. Na rys. 2.1 przedstawiono zależność drogi wybiegu samochodu PF 126p od początkowej prędkości jazdy (przed wysprzęgleniem silnika). Znając tę zależność można wykorzystać drogę wybiegu podczas dojazdu do znaków drogowych, skrzyżowań dróg czy innych widocznych przeszkód na drodze. Zwiększy to bezpieczeństwo jazdy i wpłynie na zmniejszenie zużycia paliwa. Wstępnej oceny, czy koła jezdne nie obracają się ze zbyt dużymi oporami, można dokonać po dłuższej jeździe i zatrzymaniu się z krótkotrwałym użyciu hamulca w końcowej fazie dobiegu przez sprawdzenie (dłonią) stanu cieplnego bębnów hamulcowych i piast kół jezdnych. Wyraźnie odczuwane ciepło (w skrajnym przypadku oparzenie) wskazuje na nadmierne tarcie, a więc potrzebę regulacji. Podobnie można ocenić poprawność ustawienia kół jezdnych przez ocenę stanu cieplnego bieżników opon. Oceny tej można dokonać w warunkach dodatnich temperatur otoczenia, przy właściwym ciśnieniu w oponach (mierzonym przed jazdą). Zauważona wyższa temperatura opony (lub pary opon) powinna być bodźcem do kontroli ustawienia kół jezdnych. Wyniki tej wstępnej oceny można uściślić jeszcze we własnym zakresie po to, aby móc ustalić potrzebę udania się do stacji 10

10 obsługi w celu przeprowadzenia regulacji. Do samodzielnego przeprowadzenia kontroli ustawienia kół potrzebny jest prostoliniowy odcinek sztywnej listwy lub metalowego kształtownika (kątownika, ceownika lub teownika) o długości nie krótszej od 230 cm. Ze względu na to że rozstaw przednich kół samochody PF 126p jest mniejszy o 61 mm od rozstawu kół tylnych, do jednego końca listwy należy przymocować klocek o grubości 30 mm. Tak przygotowany przyrząd należy przystawić do kół jezdnych na wysokości osi kół (rys. 2.2). Obrzeża obręczy przednich kół powinny być jednakowo odległe (z dokładnością ±1 mm) od listwy w przedniej części koła i jego części tylnej, natomiast obrzeża obręczy tylnych kół powinny być bardziej odległe od listwy w przedniej części niż tylnej o 1 2 mm (wytwórca zaleca 2,5 4,5 mm). Większa zbieżność tylnych kół zwiększa stabilność prowadzenia samochodu, lecz powoduje także większe opory toczenia oraz zużycie bieżników opon. Przy symetrycznym ustawieniu kół przednich na wprost koła Rys Osadzenie uszczelek w kanale nadwoziowym wlotu powietrza: 1 kratka ozdobna; 2 tunel; 3,3 blacha nadwozia; 4 uszczelka. Rys Zasada kontroli poprawności ustawiania kół jezdnych: 1 koło przednie; 2 koło tylne; 3 opona; 4 obręcz koła; 5 listwa; 6 klocek dystansujący tylne powinny być także ustawione symetrycznie. Brak symetrii w ustawieniu zbieżności kół zmusza do przeprowadzenia regulacji, najlepiej w specjalistycznej stacji obsługi. Celowe jest sprawdzenie osadzenia podkładek z gąbczastego tworzywa, uszczelniających krawędzie tuneli ozdobnych kratek wlotowych względem wewnętrznych blach nadwozia. Często podkładki te przesłaniają część przekroju kanału przepływowego, ograniczając przepływ powietrza do wentylatora chłodzącego i zwiększając jego pobór mocy. Zauważone usterki należy usunąć przyklejając podkładki do blach, układając je wzdłuż krawędzi otworu ( rys 2.3 na którym pokazano poprawne i niepoprawne umiejscowienie podkładki). Przy okazji należy zwrócić uwagę na niecelowość stosowania plastykowych wkładek obejmujących reflektory samochodu, gdyż zmniejszają one efektywność wentylacji wnętrza samochodu. 11

11 3.MOŻLIWOŚCI MODYFIKACJI NADWOZIA Nadwozie każdego samochodu jest użytkownikowi niejako zadane, ale umożliwia pewne modyfikacje polegające na dodawaniu elementów zmieniających aerodynamiczne właściwości sylwetki samochodu. Chodzi nie tylko o zmniejszenie oporu aerodynamicznego w ogóle, ale o ograniczenia jego wartości podczas jazdy przy występowaniu wiatru bocznego oraz zwiększenie stabilności ruchu pojazdu (przy nagłym porywie wiatru, czy wjechaniu w strefę wiatru np. przy wyjeździe z lasu lub wyprzedzaniu dużego samochodu ciężarowego). Jednym ze sposobów jest dodawanie odchylaczy strumienia powietrza tzw. spoilerów. Na rys. 3.1 pokazano opływ sylwetki samochodu z zastosowanymi spoilerami (i bez nich) przy występowaniu wiatru bocznego. Spoilery powodują Rys Opływ nadwozia samochodu osobowego: a opływ przy nieruchomym powietrzu; b opływ sylwetki przy wietrze bocznym; c opływ sylwetki z przednim odchylaczem przy wietrze bocznym; 1 sylwetka samochodu; 2 odchylacz; 3 strefa zawirowywania. Ponadto zwiększenie nacisku na osie kół (przednich lub tylnych w zależności od tego w jakiej części są one zainstalowane). Zwłaszcza przedni odchylacz zdecydowanie poprawia stabilność ruchu samochodu przy bocznym wietrze, nawet porywistym powoduje on aerodynamiczne dociążenie osi kół jezdnych samochodu, a siła dociążająca jest praktycznie stała przy ustalonej prędkości jazdy (w odróżnieniu od sił bezwładności działających na samochód i jego bagaż które są zmienne 12

12 podczas jazdy po nierównościach nawierzchni i w skrajnym przypadku mogą doprowadzić do chwilowej utraty kontaktu kół jezdnych z nawierzchnią a więc i chwilowej utraty sterowności samochodu). Zastosowanie spoilera przedniego w samochodzie PF 126p daje ponadto korzystny efekt nie zachlapywania przednich szyb podczas przejeżdżania przez kałuże wody i błota. Odchylacz o szerokości zaledwie mm, zmniejsza opór aerodynamiczny samochodu o ok. 4 5 %. Na rys. 3.2 pokazano schemat umiejscowienia przedniego spoilera w samochodzie PF 126p. Ostateczny kształt w strefie łączenia z blachą nadwozia najlepiej ustalić po wycięciu dopasowanego indywidualnie szablonu z cienkiej tektury i przeniesieniu uzyskanego obrysu na blachę aluminiową lub stalową o grubości 0,8 1,2 mm. Połączenie z blachą nadwozia proponuje się wykonywać za pomocą 6 śrub stalowych z nakrętkami o gwincie M5 lub M6. W ostatnich latach niemal wszystkie nowe samochody osobowe są wyposażone w spoilery. Szczególnie wyraźny postęp można zaobserwować w modyfikacji sylwetki samochodów osobowych Škoda. Rys Schemat usytuowania przedniego odchylacza: 1 blacha nadwozia; 2 odchylacz; 3 śruba. Rys Osłona rynienki przedniego słupka nadwozia samochodu: 1 słupek; 2 szyba przednia; 3 uszczelka gumowa szyby; 4 rynienka; 5 osłona rynienki. Badania aerodynamiczne kompletnych samochodów (a nie ich zmniejszonych modeli) w tunelach aerodynamicznych pozwoliły ustalić znaczny wpływ wystających rynienek przednich słupków nadwozia samochodu na jego opór aerodynamiczny. Na podstawie publikowanych wyników badań różnych nadwozi można wnioskować, że samochodzie PF 126p opór pochodzący od rynienek stanowi co najmniej 5 % całkowitego oporu aerodynamicznego samochodu. Dlatego proponuje się użytkownikowi obudowanie rynienek (w sensie aerodynamicznym) folią z półsztywnego tworzywa sztucznego np. błony fotograficznej wsuniętej jedną krawędzią pod uszczelkę przedniej szyby, a drugą w kanał rynienki tak, aby powierzchnia folii nieco wystawała nad krawędź rynienki (rys 3.3). Skutek zainstalowania takiej osłony zauważy użytkownik po uchyleniu okna podczas jazdy 13

13 (w porównaniu z efektami dźwiękowymi występującymi przy braku takiej osłony). Właściwości aerodynamiczne i cechy konstrukcyjne samochodu PF 126p można wykorzystać do poprawy wentylacji wnętrza samochodu, niewystarczającej latem przy czterech podróżujących osobach. Tylna część nadwozia tego samochodu ma podwójne ściany, co licencjodawca w pierwotnej postaci samochodu wykorzystywał do intensyfikacji wentylacji wnętrza przez odsysanie powietrza ze strefy tylnej szyby do szczelin między ścianą boczną nadwozia a tylną częścią drzwi, przez otwory w środkowych słupkach. W samochodzie PF 126p można powrócić do poprzedniej konstrukcji wykonując w obu słupkach nadwozia po 2 3 otwory o średnicy mm tuż pod zaczepem zamka drzwiowego. Na rys 3.4 pokazano drogę przepływu powietrza z wnętrza samochodu do atmosfery oraz miejsce Rys Wentylacja wnętrza samochodu PF 126p: a droga przepływu powietrza; b miejsce wykonywania otworów; 1 zewnętrzna powłoka nadwozia; 2 wewnętrzna powłoka; 3 tylna szyba; 4 słupek nadwozia; 5 drzwi; 6 zaczep zamka; 7 otwory wentylacyjne. wykonania otworów. Odsysanie z wnętrza samochodu zapobiega pokrywaniu tylnej szyby podczas jazdy rosą lub szronem, bez potrzeby korzystania z jej ogrzewania elektrycznego. Przy bardzo silnych mrozach można ograniczyć intensywność wymiany powietrza we wnętrzu samochodu przez zasłonięcie pewnej liczby wykonanych otworów ( np. przylepcem czy taśmą samoklejącą). Wymiana powietrza we wnętrzu samochodu zachodzi tylko podczas ruchu powietrza względem samochodu, a więc podczas jazdy lub postoju podczas wiatru (przy czym kierunek wiatru nie ma istotnego znaczenia, gdyż otwory wykonuje się po obu stronach nadwozia). Nadwozie samochodu PF 126p daje duże możliwości zwiększenia mocy użytecznej silnika i zmniejszenia zużycia paliwa. Rezerwy te można wykorzystać do zmniejszania poboru mocy dmuchawy chłodzącej silnik przez zmniejszenia oporów przepływu (spadku ciśnienia przepływającego powietrza) nadwoziowych kanałów dolotowych. Na rys. 3.5 przedstawiono schematycznie lewą część kanału 14

14 przepływowego w nadwoziu samochodu PF 126p. Pod względem przepływowym obecna konstrukcja ma szereg istotnych błędów między ścianami 2 i 3 znajduje się tunel ozdobnego wlotu z niefortunnie ukształtowanymi grubymi żebrami kraty wlotowej, a krawędź tunelu dociska uszczelkę (przesłaniając znacznie czynne pole przepływu) z gąbki do krawędzi otworu w wewnętrznej ścianie 3, stanowiącej kryzę (przeszkodę przepływową) na drodze przepływu powietrza do dmuchawy. Ostre krawędzie rury dolotowej 5 powodują odrywanie strumienia powietrza (i są dodatkowym źródłem hałasu) przy zmianie kierunku strumienia o 90º. Dlatego proponuje się inne, zgodniejsze z prawami aerodynamiki ukształtowanie żeber kraty wlotowej, usunięcie uszczelki 9, ponacinanie i odgięcie krawędzi otworu w wewnętrznej ścianie 3 w kierunku przepływu (tj. do wnętrza nadwozia) oraz ukształtowanie z warstwy plasteliny lub autokitu 7 krzywoliniowego wlotu do rury 5 zgodnie z wymiarami i kształtami zaznaczonymi na rys Wlot z plasteliny należy kształtować ręcznie, nakładając plastelinę na uprzednio starannie oczyszczone z kurzu powierzchnie blach, wykorzystując dostęp przez otwór wlotowy do kanału z lewej strony nadwozia. Najistotniejsze jest zaokrąglenie wlotu, kształt linii Rys Modyfikacje nadwoziowej części dolotu powietrza do dmuchawy: 1 wlot ozdobny; 2 zewnętrzna ściana nadwozia; 3 ściana wewnętrzna; 4 ściana półki podokiennej; 5 rura dolotowa nadwozia; 6 rura elastyczna; 7 warstwa plasteliny; 8 styropian lub gąbka; 9 gąbka; 10 ściana kanału przepływowego zaokrąglenia ma już mniejsze znaczenie. Użytkownicy posiadający warsztatowe możliwości wykonawstwa mogą usunąć wspawaną rurę 5, powiększyć powstały po niej otwór i wpawać lub przykręcić kilkoma śrubami, odcinek rury 5 o kielichowatym kształcie wlotu. Proponowane zmiany zmniejszają opory przepływu do dmuchawy o blisko 40 %, co zmniejsza jej pobór mocy o ok. 1 kw w zakresie maksymalnej prędkości obrotowej silnika (a więc zwiększa o tyle samo moc użyteczną silnika, a przy ustalonym poborze mocy zmniejsza zużycie paliwa). Modyfikacje dają większe możliwości chłodzenia silnika (ze względu na nieco większą gęstość powietrza doprowadzanego do dmuchawy) ale w każdym przypadku jego intensywność jest sterowana przez termostat. 15

15 Dla ograniczenia hałasu we wnętrzu samochodu celowe jest wciśnięcie kostek 8 z gąbki lub styropianu między ściany 2 i 3 nadwozia wokół ścian tunelu wlotu ozdobnego 1 oraz wciśnięcie plasteliny lub autokitu w szczeliny technologiczne między blachą półki podokiennej i ściany nadwozia. Przestrzega się użytkowników przed instalowaniem na wlotach nadwoziowych skrzelowych osłon, do których powietrze jest pobierane z kierunku jazdy samochodu wąską szczeliną. Zainstalowanie takich wlotów powoduje wzrost oporów przepływu o blisko 30 % w stosunku do oporów układu standardowego, a więc wzrost mocy niezbędnej do napędu dmuchawy i większe zużycie paliwa. Poprawne modyfikacje nadwoziowej części układu dolotowego dmuchawy powodują intensyfikację chłodzenia oleju, obniżając jego temperaturę o blisko 10 K, co ma istotne znaczenie w warunkach jazdy samochodem w pełni obciążonego przy wysokich temperaturach otoczenia. Należy tu zwrócić uwagę na to, że olej w samochodzie PF 126p może osiągać latem temperatury zbyt wysokie, a zimą zbyt niskie. W warunkach nawet krótkotrwałego parkowania samochodu silniki chłodzone powietrzem bardzo szybko stygną. Powoduje to, że w okresie ich nagrzewania do temperatury znamionowej pracują one przy zwiększonym zużyciu paliwa. Dlatego Rys Cieplna i dźwiękowa izolacja komory silnikowej: 1 ściana komory silnikowej; 2 silnik; 3 pokrywa komory silnikowej; 4 warstwa izolacyjna; 5 folia aluminiowa; 6 miska olejowa; 7 owiewka; 8 pokrywa połączenia kanału przepływowego; 9 materiał izolacyjny. celowe jest zapewnienie odpowiedniej izolacji cieplnej ścian ograniczających komorę silnikową samochodu. Na rys. 3.6 wskazano miejsca, w których można nakleić warstwę gąbki (o grubości 5 10 mm, za pomocą kleju typu butapren) na wewnętrzne powierzchnie komory silnikowej i pokrywy tej komory. Przyklejeni gąbki do powierzchni blach wydajnie utrudnia przenikanie hałasu silnika na zewnątrz samochodu i do jego wnętrza. Naklejenie na zewnętrzną powierzchnię gąbki dodatkowo folii aluminiowej wyklucza możliwość nasiąkania gąbki wodą, paliwem czy olejem. Na okres zimy celowe jest także ograniczenie przepływu powietrza przez komorę silnikową przez stosowanie zasłony szczelin wylotowych na pokrywie komory. Jest to wskazane już przy temperaturach niższych od ºC. Wszelkiego rodzaju modne daszki instalowane na pokrywach intensyfikują przepływ powietrza, a więc chłodzenie silnika. Na okres zimy (i mrozów) można ograniczyć przepływ powietrza przez kanały w dolnej części miski olejowej przez zatkanie otworu nadmuchowego z wentylatora np. kostką styropianu (rys. 3.6). Dla osadzenia takiej kostki konieczne jest odkręcenie dwóch śrub mocujących osłonę 8 kanału, a po wciśnięciu kostki nałożenie osłony i jej przykręcenie. Nawet zimą nie zaleca się rozgrzewania silnika na postoju z chwilą osiągnięcia stabilności pracy silnika (za pomocą tzw. ssania) należy niezwłocznie włączać pojazd do ruchu. Pod obciążeniem silnik nagrzewa się szybciej, co umożliwia wcześniejsze wyłączenie ssania i ekonomiczniejszą pracę już nagrzanego silnika. 16

16 4. MOŻLIWOŚCI MODYFIKACJI SILNIKA Silnik samochodu Polski Fiat 126p ma znaczne rezerwy w zakresie osiąganej mocy, momentu obrotowego i jednostkowego zużycia paliwa. Od początku swego istnienia przeszedł on już u licencjodawcy szereg modyfikacji zmierzających do uzyskiwania większych mocy (głównie przez zwiększenie pojemności skokowej cylindrów) przy możliwie małych zmianach konstrukcyjnych i technologicznych w zautomatyzowanej produkcji. Ostateczna forma konstrukcyjna jest więc kompromisem uzyskiwanych cech użytkowych i kosztów wytwarzania. Silnik ma także szereg rozwiązań konstrukcyjnych uważanych współcześnie za błędne dotyczy to głównie napełniania cylindrów mieszanką. Rys. 4.1.Schemat układu dolotowego silnika gaźnikowego oraz rozkład prędkości C i ciśnienia p przy ustalonej prędkości obrotowej silnika dal dwóch stopni ϕ otwarcia przepustnicy: 1 wlot; 2 obudowa filtru; 3 filtr; 4 gardziel gaźnika; 5 przepustnica; 6 kanał dolotowy; 7 zawór; 8 cylinder; 9 tłok. Na rys 4.1 pokazano schemat kompletnego układu dolotowego silnika gaźnikowego z rozkładem prędkości przepływu i ciśnienia wzdłuż kanału przepływowego, o wartościach średnich dla zakresu maksymalnej prędkości obrotowej silnika (a różnych mocach, zależnych od stopnia otwarcia przepustnicy). Z wykresów wynika, że największym źródłem oporów może być przymknięta przepustnica (element układu sterowania silnikiem). Przy jej pełnym otwarciu (ϕ=0) źródłami oporów są głównie: zawór dolotowy silnika, gardziel gaźnika, wlot filtru i 17

17 sam filtr. Są to obszary układu dolotowego, w których występują największe prędkości przepływu. Mając na względzie, że straty przepływu są proporcjonalne do kwadratu prędkości można stwierdzić, że nawet niewielkie zmiany pól przekrojów znacznie wpływają na straty przepływu. Opory przepływu zależą także od ukształtowania ścian kanału, a zwłaszcza od wszelkiego rodzaju uskoków w miejscu połączeń odcinków kanału (gaźnik kolektor dolotowy czy kanał dolotowy gaźnik). Dodatkowym źródłem oporów może być zanieczyszczony, zawilgocony lub nasączony olejem papierowy wkład filtru. W silnikach PF 126p, ze względu na jego charakterystyką budowę, można Rys Schemat konstrukcji i proponowanej modyfikacji układu dolotowego silnika: 1 obudowa filtru; 2 wlot standardowy; 3 kryza; 4 wkład filtracyjny; 5 pokrywa filtru; 6,6 końcówka przewietrzania skrzyni korbowej silnika; 7 korek; 8 wirnik dmuchawy; 9 kolanko wylotowe filtru; 10 tzw. tłumik szmerów ssania; 11 kolanko wlotowe gaźnika; S wariant standardowy; M wariant zmodyfikowany. również wprowadzić pewne modyfikacje w układzie dolotowym o istotnym wpływie na napełnianie silnika, na docinku od dmuchawy do filtru powietrza wlotowego. Modyfikacje te pozwalają na wykorzystanie ciśnienia wytwarzanego przez dmuchawę powietrza chłodzącego. Konstrukcja silnika umożliwia wprowadzenie kilku wariantów modyfikacji sposobu doprowadzania powietrza do obudowy filtru powietrza. Proponuje się sposób najłatwiejszy odcięcie standardowego wlotu wraz z odcinkiem kanału i pozostawienie tylko części stanowiącej teraz kolanko wlotowe. Nie zakłóca to przepływu powietrza chłodzącego w kierunku głowicy silnika, a usunięcie wlotu standardowego z kryzą powoduje, że przepływowi nie towarzyszy charakterystyczny gwizd. Wprowadzenie proponowanej modyfikacji powoduje dwukrotne zmniejszenie oporów przepływu kompletnego układu dolotowego na drodze do gaźnika, w stosunku do konstrukcji standardowej, 18

18 wpływając korzystnie na napełnianie i sprawność silnika. Rys. 4.2 wyjaśnia zasadę budowy układu dolotowego i proponowanej modyfikacji. Do wykonania modyfikacji przez użytkownika konieczne jest zdemontowanie z silnika (bez wyjmowania silnika z samochodu) górnej, blaszanej pokrywy wentylatora wraz z obudową 1 filtru powietrza, i po obcięciu dolotu standardowego 2 ponowne zamontowanie pokrywy. Przy okazji można wprowadzić jeszcze jedną modyfikację polegającą na zmianie miejsca podłączenia przewodu elastycznego przewietrzania skrzyni korbowej silnika. Obecne miejsce jest dobrane niekorzystnie, gdyż po dłuższym okresie eksploatacji samochodu powoduje nasiąkanie wkładu filtracyjnego olejem, co prowadzi do zwiększenia oporów przepływu i zmniejszenia sprawności silnika. Dlatego proponuje się wykonanie i zainstalowanie nowej końcówki 6 w tłumiku szmerów ssania 10 (wg. Rys 4.2) po uprzednim rozłączeniu obu połówek tłumika i usunięciu z jego wnętrza włókniny. Końcówkę 6 dobrze jest wkręcić na gwint do ściany tłumika (po uprzednim posmarowaniem np. klejem Distal; a obie połówki tłumika można połączyć także za pomocą wymienionego kleju). Rys Kanał przepływowy gaźnika: 1 kadłub gaźnika; 2 pokrywa; 3 uszczelka; 4 gardziel; 5 rozpylacz; S konstrukcja standardowa; K konstrukcja skorygowana. Możliwe i celowe są również modyfikacje gaźnika. Proponowane tu modyfikacje mają na celu zmniejszenie oporów przepływu co umożliwia zwiększenie napełniania silnika (a więc wzrost momentu obrotowego) albo lepsze rozdrobnienie paliwa i stworzenie warunków do jego odparowania co prowadzi do zmniejszenia zużycia paliwa. Gaźniki samochodowe, ich kadłuby, pokrywy i rozpylacze są wykonywane jako precyzyjne odlewy ze stopu aluminiowocynkowego. Tylko niektóre elementy kanału przepływowego podlegają obróbce mechanicznej, zwykle w obszarze przepustnic i połączeń z rozpylaczami. Powierzchnie o najistotniejszym znaczeniu przepływowym gardziele i rozpylacze emulsji paliwowo-powietrznej (tj. części, w których występują największe prędkości przepływu) mają powierzchnie nie obrabiane mechanicznie: często w przekrojach minimalnych pozostają występy poodlewnicze, które mają duży wpływ na opory powietrza oraz jakość i rozdział mieszanki do cylindrów silnika. Zawsze jest celowe usunięcie z gaźnika wszelkiego rodzaju uskoków i występów poodlewniczych (wynikających z podziału metalowych form, w których są 19

19 wykonywane odlewy), wystających krawędzi uszczelek na połączeniach, przemieszczeń otworów i kanałów, a zwłaszcza usunięcie występów poodlewniczych w przekroju minimalnym gardzieli i rozpylaczy. Na rys. 4.3 pokazano (w sposób przesadny) występy i uskoki w gaźniku silnika samochodu PF 126p wraz z propozycjami korekt kształtu rozpylacza i gardzieli. Po wykonaniu takich korekt kształtu (za pomocą trójkątnego skrobaka lub wąskiego ostrza scyzoryka czy półokrągłego pilnika) celowe jest wygładzenia płótnem ściernym i wypolerowanie ścian kanału przepływowego gaźnika (z wyjątkiem części kanału, w której znajduje się przepustnica). Polerowanie ma znaczenie eksploatacyjne: w niewielkim stopniu wpływa bezpośrednio na zmniejszenie oporów przepływu, natomiast znacznie wydłuża czas pracy, po którym pojawi się na powierzchniach chropowatość wynikająca z korozji i osadzania pyłu z przepływającego powietrza, zanieczyszczeń chemicznych z powietrza i agresywnych chemicznie składników spalin z układu przewietrzania skrzyni korbowej silnika. Pokazane na rys. 4.3 fragmenty części Rys Wpływ zawirowania strumienia powietrza w gaźniku na ruch kropli paliwa: a schemat gaźnika; b tory kropel; c stopień odparowania paliwa;; 1 bez zawirowania; 2 z zawirowaniem strumienia powietrza; C prędkość powietrza; C p prędkość kropli paliwa; W prędkość względna; r odległość od osi symetrii kanału gaźnika oznaczono literą S w wykonaniu standardowym, a literą K po skorygowaniu kształtu. Należy zwrócić uwagę na celowość skrócenia części wlotowej rozpylacza emulsji paliwowo-powietrznej. Ze względu na jakość mieszanki wytwarzanej w gaźniku, ocenianej na podstawie stopnia jej odparowania, dobre wyniki z punktu widzenia zużycia paliwa uzyskuje się przez wprowadzenie w ruch wirowy strumienia powietrza przepływającego przez gaźnik. Zawirowanie powietrza przepływającego przez gaźnik ma na celu zwiększenie względnych prędkości strumienia powietrza i kropel paliwa (co wyjaśniają położenia i wartości wektorów prędkości kropli paliwa C p, prędkości strumienia powietrza C oraz wektorów względnych prędkości na rys. 4.4). Jak wynika z wykresów (zbudowanych na podstawie obliczeń numerycznych z wykorzystaniem danych eksperymentalnych), wydłużenie względnej drogi kropli 20

20 przy zawirowaniu jest znaczne; badania przepływowe w warunkach prędkości ustalonych wykazują 2 4 % przyrost stopnia odparowania paliwa. Z wykresów wynika jeszcze jeden wniosek: celowe jest wydłużenie drogi przepływu mieszanki (na drodze od gaźnika do zaworów silnika) przez stosowanie pod gaźnik podstawek wyższych niż standardowe. Na rys. 4.5 pokazano zawirowywacz (wraz z rysunkiem wykonawczym) i miejsce jego zamontowania w kanale dolotowym gaźnika. Po wciśnięciu wystających łapek zawirowywacza w wykonane uprzednio (np. nożem) nacięcia w ściankach kolanka wlotowego, łapki należy zagiąć zgodnie z rysunkiem, a następnie wcisnąć na końcówkę kolanka złączkę gumową, opinającą i uszczelniającą połączenie tłumika szmerów ssania z kolankiem. Najlepsze efekty uzyskuje się przy jednoczesnym zawirowaniu strumienia powietrza wlotowego i zwiększeniu minimalnej średnicy gardzieli gaźnika (przy zachowaniu jej zarysu zbieżnorozbieżnego) o 0,5 mm tj. do wymiaru 23,5 mm, bez zmiany dysz paliwowych, powietrznych i nastaw gaźnika. Rys Zawirowywacz i jego mocowanie w kolanku wlotowym: 1 zawirowywacz; 2 kolanko wlotowe; 1,1 części składowe zawirowywacza Wymagania eksploatacyjne narzucają potrzebę dobrych przyśpieszeń i elastycznego przejścia od zakresu biegu jałowego silnika do jego pełnego obciążenia przy małych i średnich prędkościach obrotowych. Nie można również przekroczyć zawartości składników toksycznych (tlenku węgla, nie spalonych węglowodorów i tlenków azotu) w spalinach w stosunku do ilości określonych odpowiednimi normami. Proponowane modyfikacje zapewniają spełnienie powyższych wymagań. Już z rys. 0.1 wynika, że pobór mocy silnika podczas jazdy z umiarkowanymi prędkościami jest bardzo niewielki. W samochodzie PF 126p moc niezbędna do jazdy, na drodze poziomej i dobrej nawierzchni, przy bezwietrznej pogodzie, z prędkością 60 km/h nie przekracza 30% mocy jaką silnik mógłby osiągnąć przy całkowitym otwarciu przepustnicy. Oznacza to, że w tych warunkach silnik pracuje przy niewielkim stopniu uchylenia przepustnicy, a więc i znacznym udziale systemu biegu jałowego w zasilaniu silnika mieszanką i jego wpływie na zużycie paliwa. Stąd 21

Numery identyfikacyjne i zakup części zamiennych Bezpieczeństwo przede wszystkim! Sprawdzenie skutera przed jazdą Rozdział 1 Obsługa codzienna

Numery identyfikacyjne i zakup części zamiennych Bezpieczeństwo przede wszystkim! Sprawdzenie skutera przed jazdą Rozdział 1 Obsługa codzienna Podziękowania 8 O poradniku 9 Numery identyfikacyjne i zakup części zamiennych 9 Bezpieczeństwo przede wszystkim! 10 Sprawdzenie skutera przed jazdą 11 Sprawdzanie poziomu oleju silniki dwusuwowe 11 Sprawdzanie

Bardziej szczegółowo

Naprawa samochodów Fiat 126P / Zbigniew Klimecki, Józef Zembowicz. Wyd. 28 (dodr.). Warszawa, Spis treści

Naprawa samochodów Fiat 126P / Zbigniew Klimecki, Józef Zembowicz. Wyd. 28 (dodr.). Warszawa, Spis treści Naprawa samochodów Fiat 126P / Zbigniew Klimecki, Józef Zembowicz. Wyd. 28 (dodr.). Warszawa, 2017 Spis treści 1. Wiadomości wstępne 5 1.1. Dane identyfikacyjne samochodu 5 1.2. Dane techniczne samochodu

Bardziej szczegółowo

Zadania i funkcje skrzyń biegów. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu

Zadania i funkcje skrzyń biegów. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Zadania i funkcje skrzyń biegów Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Zadania skrzyni biegów Skrzynia biegów umożliwia optymalne wykorzystanie mocy silnika. Każdy silnik ma pewien

Bardziej szczegółowo

Gaźnik. Regulacja i naprawa

Gaźnik. Regulacja i naprawa Gaźnik Opis budowy i ocena stanu technicznego Kontrola organoleptyczna Diagnostyka Kontrola urządzenia rozruchowego Regulacja i naprawa Regulacja rozpylacza biegu jałowego Regulacja poziomu paliwa Regulacja

Bardziej szczegółowo

I. Kontrola stanu technicznego układu wydechowego i poziomu hałasu zewnętrznego podczas postoju pojazdu. Kontrola organoleptyczna - I etap

I. Kontrola stanu technicznego układu wydechowego i poziomu hałasu zewnętrznego podczas postoju pojazdu. Kontrola organoleptyczna - I etap ZAŁĄCZNIK Nr 3 SPOSÓB OCENY STANU TECHNICZNEGO UKŁADU WYDECHOWEGO I POMIARU POZIOMU HAŁASU ZEWNĘTRZNEGO PODCZAS POSTOJU POJAZDU ORAZ SPOSÓB KONTROLI STANU TECHNICZNEGO SYGNAŁU DŹWIĘKOWEGO PODCZAS PRZEPROWADZANIA

Bardziej szczegółowo

Układ napędowy. Silnik spalinowy CAT C27 Typ silnika CAT C 27. Zespół prądnic synchronicznych. Znamionowa prędkość obrotowa

Układ napędowy. Silnik spalinowy CAT C27 Typ silnika CAT C 27. Zespół prądnic synchronicznych. Znamionowa prędkość obrotowa Układ napędowy Silnik spalinowy CAT C27 Typ silnika CAT C 27 Moc znamionowa Znamionowa prędkość obrotowa 708 kw 1800 obr/min Obroty biegu jałowego 600 obr/min Ilość i układ cylindrów V 12 Stopień sprężania

Bardziej szczegółowo

Identyfikacja samochodu

Identyfikacja samochodu Producent Fiat Model Punto Rok produkcji Rejestracja Tel. - prywatny Stan licznika Tel. - komórkowy Numer zlecenia Tel. - służbowy Data 29/04/2015 Producent Fiat Model Punto (12-) 1,2 8V Autodata Limited

Bardziej szczegółowo

Porady montażowe dotyczące wymiany paska zębatego Na przykładzie Renault Clio II 1,6 16V kod silnika K4M 748

Porady montażowe dotyczące wymiany paska zębatego Na przykładzie Renault Clio II 1,6 16V kod silnika K4M 748 Technical Info www contitech de Porady montażowe dotyczące wymiany paska zębatego Na przykładzie Renault Clio II 1,6 16V kod silnika K4M 748 Silnik Clio II 1,6 16V- w różnych wariantach pojemnościowych

Bardziej szczegółowo

Porady montażowe dotyczące wymiany paska zębatego Szczegółowa instrukcja dla silnika 2,8 l 30 V w Audi A4, A6, A8 i VW Passat

Porady montażowe dotyczące wymiany paska zębatego Szczegółowa instrukcja dla silnika 2,8 l 30 V w Audi A4, A6, A8 i VW Passat Technical Info www contitech de Porady montażowe dotyczące wymiany paska zębatego Szczegółowa instrukcja dla silnika 2,8 l 30 V w Audi A4, A6, A8 i VW Passat Silnik 2,8 l 30 V jest montowany w dużych ilościach

Bardziej szczegółowo

Identyfikacja samochodu

Identyfikacja samochodu Producent Opel/Vauxhall Model Astra-G Classic II Rok produkcji 2003-10 Rejestracja Tel. - prywatny Stan licznika Tel. - komórkowy Numer zlecenia Tel. - służbowy Data 18/06/2015 Producent Opel/Vauxhall

Bardziej szczegółowo

POLSKI ZWIĄZEK MOTOROWY Główna Komisja Sportu Kartingowego

POLSKI ZWIĄZEK MOTOROWY Główna Komisja Sportu Kartingowego POLSKI ZWIĄZEK MOTOROWY Główna Komisja Sportu Kartingowego KARTA TECHNICZNA SILNIKA PRODUCENT Zakłady Metalowe PREDOM DEZAMET " w Nowej Dębie TYP,MODEL 051 / 50 KLASA NARODOWA 125 KATEGORIA POPULARNA 125

Bardziej szczegółowo

Temat ćwiczenia. Pomiar hałasu zewnętrznego emitowanego przez pojazdy samochodowe

Temat ćwiczenia. Pomiar hałasu zewnętrznego emitowanego przez pojazdy samochodowe POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiar hałasu zewnętrznego emitowanego przez pojazdy samochodowe POLSKA NORMA PN-92/S-04051 (zamiast PN-83/S-04051) Pojazdy samochodowe i motorowery

Bardziej szczegółowo

ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu

ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu Szczegółowa instrukcja do Audi A3 1.8 l T o kodzie silnika ARZ ContiTech pokazuje, jak uniknąć błędów przy wymianie paska W trakcie wymiany

Bardziej szczegółowo

Wymiana kompletu rozrządu w silniku 1,6 l Fiat Bravo

Wymiana kompletu rozrządu w silniku 1,6 l Fiat Bravo Wymiana kompletu rozrządu w silniku 1,6 l Fiat Bravo PL/07/LLP-LdV/IVT/140359 24.02 15.03.2008 Zespół Szkół Samochodowych Ul. Klonowaci 14 71-244 Szczecin Zestaw rozrządu dla silników benzynowych 1,6 l

Bardziej szczegółowo

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych 723103

Wymagania edukacyjne Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych 723103 Wymagania edukacyjne PRZEDMIOT Technologia napraw zespołów i podzespołów mechanicznych pojazdów samochodowych KLASA II MPS NUMER PROGRAMU NAUCZANIA (ZAKRES) 723103 1. 2. Podstawowe wiadomości o ch spalinowych

Bardziej szczegółowo

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści

Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, Spis treści Mechanika ruchu / Leon Prochowski. wyd. 3 uaktual. Warszawa, 2016 Spis treści Wykaz ważniejszych oznaczeń 11 Od autora 13 Wstęp 15 Rozdział 1. Wprowadzenie 17 1.1. Pojęcia ogólne. Klasyfikacja pojazdów

Bardziej szczegółowo

Pilarki STIHL budowa i obsługa. Andreas STIHL Spółka z o.o.

Pilarki STIHL budowa i obsługa. Andreas STIHL Spółka z o.o. Pilarki STIHL budowa i obsługa Andreas STIHL Spółka z o.o. Jednostka napędowa tłoki z dwoma pierścieniami uszczelniającymi łożysko czopu korbowego poddane specjalnej obróbce (karbonitrowanie) Zalety: długa

Bardziej szczegółowo

Silnik AFB AKN. Jałowy bieg (ciepły silnik, temperatura płynu chłodzącego nie niższa niż 80 C. Numer 0 (dziesiętne wartości wskazań)

Silnik AFB AKN. Jałowy bieg (ciepły silnik, temperatura płynu chłodzącego nie niższa niż 80 C. Numer 0 (dziesiętne wartości wskazań) Silnik Jałowy bieg (ciepły silnik, temperatura płynu chłodzącego nie niższa niż 80 C. Numer 0 (dziesiętne wartości wskazań) Numer bloku Opis Wartość wymagana Odpowiada wartości 1. Obroty silnika. 30 do

Bardziej szczegółowo

Filtry oleju MS 500, V 500, R 500, V½ - 500, ½ - 500

Filtry oleju MS 500, V 500, R 500, V½ - 500, ½ - 500 , Filtry oleju MS 500, V 500, R 500, V½ - 500, ½ - 500 Instrukcja obsługi i montażu AFRISO sp. z o.o. Szałsza, ul. Kościelna 7, 42-677 Czekanów Tel. 032 330 33 55; Fax. 032 330 33 51; www.afriso.pl Olej

Bardziej szczegółowo

ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu

ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu Szczegółowa instrukcja dla Fiata Doblò wersja furgon/kombi (263) 1.6 D Multijet ContiTech pokazuje, jak uniknąć błędów przy wymianie pasków

Bardziej szczegółowo

DOŁADOWANIE. Zawór regulacyjny ciśnienia

DOŁADOWANIE. Zawór regulacyjny ciśnienia Zawór regulacyjny ciśnienia Membrana (A) zaworu regulacyjnego ciśnienia jest sterowana przez elektrozawór (B) pilotowany przez komputer wtrysku. Elektrozawór ten wprowadza zmiany podciśnienia, w zależności

Bardziej szczegółowo

ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu

ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu ContiTech: Porady ekspertów w zakresie wymiany pasków rozrządu Szczegółowa instrukcja do Forda Focusa 2.0 l 16V o kodach silnika EDDB, EDDC, EDDD ContiTech pokazuje, jak uniknąć błędów przy wymianie paska

Bardziej szczegółowo

Urządzenie do odpowietrzania hamulców. Art. Nr

Urządzenie do odpowietrzania hamulców. Art. Nr Urządzenie do odpowietrzania hamulców Art. Nr 187593 Opis urządzenia Uniwersalne, mobilne, urządzenie do odpowietrzania układów hamulcowych wszystkich rodzajów pojazdów mechanicznych. Szyba, jednoosobowa

Bardziej szczegółowo

Charakterystyki prędkościowe silników spalinowych

Charakterystyki prędkościowe silników spalinowych Wydział Samochodów i Maszyn Roboczych Instytut Pojazdów LABORATORIUM TEORII SILNIKÓW CIEPLNYCH Charakterystyki prędkościowe silników spalinowych Opracowanie Dr inż. Ewa Fudalej-Kostrzewa Warszawa 2015

Bardziej szczegółowo

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej.

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej. TEMAT: TEORIA SPALANIA Spalanie reakcja chemiczna przebiegająca między materiałem palnym lub paliwem a utleniaczem, z wydzieleniem ciepła i światła. Jeżeli w procesie spalania wszystkie składniki palne

Bardziej szczegółowo

Przegląd auta przed zakupem - Lista kontrolna

Przegląd auta przed zakupem - Lista kontrolna MSS Adrian Wasyk ul. Znanieckiego 8/15 03-980 Warszawa Tel.510905900 NIP: 9521962479 MOBILNY SERWIS SAMOCHODOWY 24h Przegląd auta przed zakupem - Lista kontrolna Samochód marki:. Model: Typ:..... Nr rejestracyjny:

Bardziej szczegółowo

Identyfikacja samochodu. Układ zapłonowy. Ustawienie zapłonu i test spalin. Świece zapłonowe

Identyfikacja samochodu. Układ zapłonowy. Ustawienie zapłonu i test spalin. Świece zapłonowe Uwagi Zalecana wartość Zmierzona wartość Identyfikacja samochodu Liczba cylindrów Typ 4/OHC Pojemność skokowa (podatek) ccm 1389 Stopień sprężania :1 9,4 Przystosowany do benzyny bezołowiowej Tak Minimalna

Bardziej szczegółowo

Bloki wartości mierzonych sterownika -J361-, silnik AEH, AKL

Bloki wartości mierzonych sterownika -J361-, silnik AEH, AKL Bloki wartości mierzonych sterownika -J361-, silnik AEH, AKL Blok wartości mierzonych 1 (funkcje podstawowe) 2. Temperatura płynu chłodzącego 3. Napięcie sondy lambda (0... 1 V) 4. Warunki nastaw podstawowych

Bardziej szczegółowo

KARTY POMIAROWE DO BADAŃ DROGOWYCH

KARTY POMIAROWE DO BADAŃ DROGOWYCH Katedra Pojazdów i Sprzętu Mechanicznego Laboratorium KARTY POMIAROWE DO BADAŃ DROGOWYCH Zawartość 5 kart pomiarowych Kielce 00 Opracował : dr inż. Rafał Jurecki str. Strona / Silnik Charakterystyka obiektu

Bardziej szczegółowo

SPIS TREŚCI WPROWADZENIE... 9

SPIS TREŚCI WPROWADZENIE... 9 SPIS TREŚCI WPROWADZENIE... 9 ZASADY BHP I REGULAMIN LABORATORIUM POJAZDÓW... 10 Bezpieczne warunki pracy zapewni przestrzeganie podstawowych zasad bhp i przepisów porządkowych........... 10 Regulamin

Bardziej szczegółowo

Instrukcja instalowania dodatkowego układu zasilania paliwem LPG w samochodzie: MAZDA CX7 2,3 T DISI 16V. typ silnika: 7TKXT0235DB

Instrukcja instalowania dodatkowego układu zasilania paliwem LPG w samochodzie: MAZDA CX7 2,3 T DISI 16V. typ silnika: 7TKXT0235DB Instrukcja instalowania dodatkowego układu zasilania paliwem LPG w samochodzie: MAZDA CX7 2,3 T DISI 16V typ silnika: 7TKXT0235DB Strona 1 z 16 Wersja 1 MARKA MODEL MAZDA CX7 T DISI NORMA EMISJI SPALIN

Bardziej szczegółowo

Opisy kodów błędów. www.obd.net.pl

Opisy kodów błędów. www.obd.net.pl Opisy kodów błędów. P0010 Przestawiacz zmieniający kąt ustawienia wałka rozrządu A, wadliwe działanie układu dolotowego/lewego/przedniego (blok cylindrów nr 1) zmiany faz rozrządu P0011 Kąt ustawienia

Bardziej szczegółowo

SPOSÓB POMIARU EMISJI ZANIECZYSZCZEŃ GAZOWYCH ORAZ ZADYMIENIA SPALIN PODCZAS PRZEPROWADZANIA BADANIA TECHNICZNEGO POJAZDU

SPOSÓB POMIARU EMISJI ZANIECZYSZCZEŃ GAZOWYCH ORAZ ZADYMIENIA SPALIN PODCZAS PRZEPROWADZANIA BADANIA TECHNICZNEGO POJAZDU ZAŁĄCZNIK Nr 4 SPOSÓB POMIARU EMISJI ZANIECZYSZCZEŃ GAZOWYCH ORAZ ZADYMIENIA SPALIN PODCZAS PRZEPROWADZANIA BADANIA TECHNICZNEGO POJAZDU I. Pomiar emisji zanieczyszczeń gazowych spalin pojazdów z silnikiem

Bardziej szczegółowo

Modyfikacja układu przewietrzania silnika w motocyklu Royal Enfield 500 cc

Modyfikacja układu przewietrzania silnika w motocyklu Royal Enfield 500 cc Modyfikacja układu przewietrzania silnika w motocyklu Royal Enfield 500 cc Układ przewietrzania silnika ma za zadanie wyprowadzenie z przestrzeni pod tłokiem gazów spalinowych, które przedostają się tam

Bardziej szczegółowo

Czyszczenie i regulacja gaźnika Stromberg 175CD

Czyszczenie i regulacja gaźnika Stromberg 175CD 07.2-190 Czyszczenie i regulacja gaźnika Stromberg 175CD Wartości nastawcze oraz diagnostyczne Iglicowy zawór komory pływakowej Uszczelka (oring) pod zaworek iglicowy Odchylenie pływaka (kulka wciśnięta)

Bardziej szczegółowo

Rok produkcji Rejestracja. Tel. - służbowy Data 29/04/2015. Grande Punto 1,3 MultiJet 90. Moc silnika. Rok produkcji 2005-10

Rok produkcji Rejestracja. Tel. - służbowy Data 29/04/2015. Grande Punto 1,3 MultiJet 90. Moc silnika. Rok produkcji 2005-10 Producent Fiat Model Grande Punto Rok produkcji Rejestracja Tel. - prywatny Stan licznika Tel. - komórkowy Numer zlecenia Tel. - służbowy Data 29/04/2015 Producent Fiat Model Kod silnika 199A3.000 Wyposażenie

Bardziej szczegółowo

Technical Info. Porady montażowe dotyczące wymiany paska zębatego Na przykładzie silnika Opel 1,8i 16V C 18 XE

Technical Info. Porady montażowe dotyczące wymiany paska zębatego Na przykładzie silnika Opel 1,8i 16V C 18 XE Technical Info www contitech de Porady montażowe dotyczące wymiany paska zębatego Na przykładzie silnika Opel 1,8i 16V C 18 XE Silnik 1,8i 16V C 18 XE w różnych wariantach pojemności montowany jest w dużych

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Cel ćwiczenia WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Celem cwiczenia jest wyznaczenie współczynników oporu powietrza c x i oporu toczenia f samochodu metodą wybiegu. Wprowadzenie

Bardziej szczegółowo

PRZYRZĄDY DO USTAWIANIA ZAPŁONU

PRZYRZĄDY DO USTAWIANIA ZAPŁONU PRZYRZĄY O USTWINI ZPŁONU kierko@wp.pl Jednym z bardzo ważnych czynników poprawnej pracy silnika, z zapłonem iskrowym jest prawidłowe ustawienie kąta wyprzedzenia zapłonu. I w tej prezentacji, będzie przedstawione

Bardziej szczegółowo

INSTRUKCJA INSTALACJI I UŻYTKOWANIA Kurtyn powietrznych PYROX LGW, LGWL

INSTRUKCJA INSTALACJI I UŻYTKOWANIA Kurtyn powietrznych PYROX LGW, LGWL INSTRUKCJA INSTALACJI I UŻYTKOWANIA Kurtyn powietrznych PYROX LGW, LGWL 2 3 Zakres stosowania Kurtyna powietrzna przewidziana jest do montażu na stałe na wewnętrznych ścianach budynku ponad drzwiami wejściowymi

Bardziej szczegółowo

TEMAT: KADŁUBY SILNIKA

TEMAT: KADŁUBY SILNIKA TEMAT: KADŁUBY SILNIKA Kadłub silnika głównie jest podstawą dla tulei cylindrowych (część kadłuba w której umiejscowione są cylindry nazywana jest blokiem). Oprócz tego w kadłubie osadzone są elementy

Bardziej szczegółowo

Państwowa Komisja Badania Wypadków Lotniczych Samolot ultralekki Gemini Eol 2S; OK-JUA81; r., Warszawa-Marymont ALBUM ILUSTRACJI

Państwowa Komisja Badania Wypadków Lotniczych Samolot ultralekki Gemini Eol 2S; OK-JUA81; r., Warszawa-Marymont ALBUM ILUSTRACJI z wypadku samolotu ultralekkiego Gemini Eol 2S; OK-JUA81 27 sierpnia 2006 r., Warszawa-Marymont Strona 1 z 18 1 i 2 Samolot Gemini Eol 2S (znaki rozpoznawcze OK-JUA81) przed wypadkiem, na ziemi i w locie.

Bardziej szczegółowo

Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna

Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna Politechnika Lubelska i Napędów Lotniczych Instrukcja laboratoryjna Badania wentylatora /. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z budową i metodami badań podstawowych typów wentylatorów. II. Wprowadzenie

Bardziej szczegółowo

FORD Mondeo 2.5 24V V6 (SEA) 1996 do 2000

FORD Mondeo 2.5 24V V6 (SEA) 1996 do 2000 Strona 1/50 Ostrzeżenia i zalecenia O ile producent nie radzi inaczej, zalecane są następujące procedury: Należy zawsze wymieniać łańcuch rozrządu Jeżeli łańcuch rozrządu ma być użyty ponownie, wówczas

Bardziej szczegółowo

BEZPIECZEŃSTWO TRANSPORTU SAMOCHODOWEGO

BEZPIECZEŃSTWO TRANSPORTU SAMOCHODOWEGO - 1 - POLITECHNIKA ŚWIETOKRZYSKA Katedra Pojazdów Samochodowych i Transportu LABORATORIUM POJAZDÓW SAMOCHODOWYCH I CIĄGNIKÓW BEZPIECZEŃSTWO TRANSPORTU SAMOCHODOWEGO INSTRUKCJA DO ĆWICZENIA 4Bt Badania

Bardziej szczegółowo

Rok produkcji Rejestracja. Tel. - służbowy Data 20/03/2015. Producent Ford Model Focus ('11) 1,6 TDCi Autodata Limited 2012.

Rok produkcji Rejestracja. Tel. - służbowy Data 20/03/2015. Producent Ford Model Focus ('11) 1,6 TDCi Autodata Limited 2012. Producent Ford Model Focus Rok produkcji Rejestracja Tel. - prywatny Stan licznika Tel. - komórkowy Numer zlecenia Tel. - służbowy Data 20/03/2015 Producent Ford Model Focus ('11) 1,6 TDCi Autodata Limited

Bardziej szczegółowo

Do Czytelników 10. WIADOMOŚCI WSTĘPNE 11 Opis modelu 11 Dane identyfikacyjne 12 Podstawowe dane silników 13

Do Czytelników 10. WIADOMOŚCI WSTĘPNE 11 Opis modelu 11 Dane identyfikacyjne 12 Podstawowe dane silników 13 Do Czytelników 10 WIADOMOŚCI WSTĘPNE 11 Opis modelu 11 Dane identyfikacyjne 12 Podstawowe dane silników 13 OBSŁUGA SAMOCHODU 15 Plan obsługi 15 Narzędzia 17 Czynności obsługowe 18 Obsługa silnika 18 Sprawdzanie

Bardziej szczegółowo

1. Wprowadzenie. 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych. 3. Paliwa stosowane do zasilania silników

1. Wprowadzenie. 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych. 3. Paliwa stosowane do zasilania silników Spis treści 3 1. Wprowadzenie 1.1 Krótka historia rozwoju silników spalinowych... 10 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych 2.1 Klasyfikacja silników.... 16

Bardziej szczegółowo

Technical Info. Porady montażowe dotyczące wymiany paska zębatego

Technical Info. Porady montażowe dotyczące wymiany paska zębatego Technical Info www contitech de Porady montażowe dotyczące wymiany paska zębatego Szczegółowa instrukcja dla silnika 2,0 l Common Rail w samochodach VW Scirocco, Golf V, Golf VI, Golf Plus oraz Jetta III

Bardziej szczegółowo

Laboratorium z Konwersji Energii SILNIK SPALINOWY

Laboratorium z Konwersji Energii SILNIK SPALINOWY Laboratorium z Konwersji Energii SILNIK SPALINOWY 1. Wstęp teoretyczny Silnik spalinowy to maszyna, w której praca jest wykonywana przez gazy spalinowe, powstające w wyniku spalania paliwa w przestrzeni

Bardziej szczegółowo

INSTRUKCJA MONTAŻU I OBSŁUGI RIMINI, JESOLO (PL )

INSTRUKCJA MONTAŻU I OBSŁUGI RIMINI, JESOLO (PL ) INSTRUKCJA MONTAŻU I OBSŁUGI RIMINI, JESOLO (PL 04307183) OPIS Okap może działać jako pochłaniacz lub wyciąg. W trybie pochłaniacza (rys. 1) powietrze jest zasysane przez okap, tłuszcze zostają wchłonięte

Bardziej szczegółowo

Gilotyna Modele Q 11 2 x 1300 Q 11 2 x 2000 Q 11 2,5 x 1600 Q 11 3 x 1300 Q 11 4 x 2000 Q 11 4 x 2500 DOKUMENTACJA TECHNICZNO RUCHOWA

Gilotyna Modele Q 11 2 x 1300 Q 11 2 x 2000 Q 11 2,5 x 1600 Q 11 3 x 1300 Q 11 4 x 2000 Q 11 4 x 2500 DOKUMENTACJA TECHNICZNO RUCHOWA Modele Q 11 2 x 1300 Q 11 2 x 2000 Q 11 2,5 x 1600 Q 11 3 x 1300 Q 11 4 x 2000 Q 11 4 x 2500 DOKUMENTACJA TECHNICZNO Stron 7 Strona 1 Spis treści 1. Rysunek poglądowy maszyny 2 2. Podstawowe dane techniczne

Bardziej szczegółowo

Zespół Szkół Samochodowych w Bydgoszczy

Zespół Szkół Samochodowych w Bydgoszczy Zespół Szkół Samochodowych w Bydgoszczy Ul. Powstańców Wielkopolskich 63 Praca Dyplomowa Temat: Pompowtryskiwacz z mechanicznym układem sterowania Wykonali: Mateusz Dąbrowski Radosław Świerczy wierczyński

Bardziej szczegółowo

INSTRUKCJA TECHNICZNO RUCHOWA WENTYLATORA HYBRYDOWEGO TYPU WH-16 ORYGINALNA

INSTRUKCJA TECHNICZNO RUCHOWA WENTYLATORA HYBRYDOWEGO TYPU WH-16 ORYGINALNA PRZEDSIĘBIORSTWO PRODUKCYJNO-HANDLOWO-USŁUGOWE Metalplast Tarnowskie Góry Sp. z o.o. 42-600 Tarnowskie Góry, ul. Strzelecka 21, tel./fax (032) 285 54 11, tel. (032) 285 29 34 e-mail: office@metalplast.info.pl

Bardziej szczegółowo

Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska

Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości Seria Jubileuszowa Każda sprężarka śrubowa z przetwornicą częstotliwości posiada regulację obrotów w zakresie od 50 do 100%. Jeżeli zużycie powietrza

Bardziej szczegółowo

KD Zalecenia dotyczące montażu/demontażu

KD Zalecenia dotyczące montażu/demontażu CITROËN: C4, C4 Picasso, C5 FL, C5 X7, C8, Jumpy II, Dispatch II PEUGEOT: 307, 307 Restyling, 407, 807, Expert II KD459.56 Zalecenia dotyczące montażu/demontażu SILNIKI 1.8 i 2.0 i Numery OE 0831-V6 SCHEMAT

Bardziej szczegółowo

Pokrywa głowicy cylindrów, wymontowanie i zamontowanie

Pokrywa głowicy cylindrów, wymontowanie i zamontowanie Page 1 of 39 Pokrywa głowicy cylindrów, wymontowanie i zamontowanie Spezialwerkzeugliste: EN-47632 KM-6212-A KM-812 J463810 Wym., zdemontowanie Ostrzeżenie: Szyna paliwowa common rail w silnikach wysokoprężnych

Bardziej szczegółowo

2.5 Aerodynamika. W = 0,5 c x A v 2 ρ

2.5 Aerodynamika. W = 0,5 c x A v 2 ρ 2.5 Aerodynamika Spośród oporów, jakie napotyka i pokonuje samochód podczas jazdy, dla konstruktora nadwozi najistotniejszy jest opór powietrza. Zjawiska aerodynamiczne mają bowiem wpływ nie tylko na osiągi,

Bardziej szczegółowo

Pojęcie Ekojazdy Eco-Driving

Pojęcie Ekojazdy Eco-Driving Ekojazda Pojęcie Ekojazdy Eco-Driving jest nurtem edukacyjnym i świadomość zainicjowanym w celu dostarczenia użytkownikom dróg porad i zasad, które pokazują, że regularne przeglądy pojazdu połączone ze

Bardziej szczegółowo

PIŁA ELEKTRYCZNA DO METALU

PIŁA ELEKTRYCZNA DO METALU PIŁA ELEKTRYCZNA DO METALU INSTRUKCJA OBSŁUGI 2 SPIS TREŚCI I. ZASTOSOWANIE... 2 II. WYMIARY I PARAMETRY TECHNICZNE... 2 III. KONSTRUKCJA PIŁY... 3 IV. SMAROWANIE... 4 V. PRZEGLĄD I KONSERWACJA... 4 VI.

Bardziej szczegółowo

Wentylator stojący z pilotem 4w1

Wentylator stojący z pilotem 4w1 Wentylator stojący z pilotem 4w1 Szanowny Kliencie, dziękujemy za zakup stojącego wentylatora. Latem gwarantuje przyjemny klimat w pomieszczeniach mieszkalnych, może posłużyć również jako nawilżacz. Prosimy

Bardziej szczegółowo

SPRAWDZANIE STANU TECHNICZNEGO. MOTOCYKL YAMAHA XJ6N PRZEZNACZENIE EGZAMIN NA PRAWO JAZDY KAT. A

SPRAWDZANIE STANU TECHNICZNEGO. MOTOCYKL YAMAHA XJ6N PRZEZNACZENIE EGZAMIN NA PRAWO JAZDY KAT. A SPRAWDZANIE STANU TECHNICZNEGO. MOTOCYKL YAMAHA XJ6N PRZEZNACZENIE EGZAMIN NA PRAWO JAZDY KAT. A DANE EKSPLOATACYJNE: Długość całkowita - 2120 mm; Szerokość - 770 mm; Rozstaw osi - 1440 mm; Wysokość całkowita

Bardziej szczegółowo

INSTRUKCJA DO PRZEPŁYWOMIERZY F44

INSTRUKCJA DO PRZEPŁYWOMIERZY F44 INSTRUKCJA DO PRZEPŁYWOMIERZY F44 1 F44 jest przepływomierzem mechanicznym z tarczą precesyjną przeznaczonym do wykonywania pomiarów przepływu oleju napędowego (Diesla) oraz innego medium, o podobnych

Bardziej szczegółowo

Rok produkcji Rejestracja. Tel. - służbowy Data 29/04/2015. Grande Punto 1,3 MultiJet 70. Moc silnika. Rok produkcji

Rok produkcji Rejestracja. Tel. - służbowy Data 29/04/2015. Grande Punto 1,3 MultiJet 70. Moc silnika. Rok produkcji Producent Fiat Model Grande Punto Rok produkcji Rejestracja Tel. - prywatny Stan licznika Tel. - komórkowy Numer zlecenia Tel. - służbowy Data 29/04/2015 Producent Fiat Model Kod silnika 199B2.000 Wyposażenie

Bardziej szczegółowo

SILNIK Głowica i układ rozrządu Sprawdzanie ciśnienia sprężania Wymiana i regulacja naciągu paska klinowego Obsługa silnika

SILNIK Głowica i układ rozrządu Sprawdzanie ciśnienia sprężania Wymiana i regulacja naciągu paska klinowego Obsługa silnika Do Czytelnika SILNIK Charakterystyka techniczna Wymontowanie i zamontowanie silnika Głowica i układ rozrządu Wymontowanie i zamontowanie paska zębatego (silniki benzynowe i wysokoprężne, oprócz 1,7 TD)

Bardziej szczegółowo

WYMIANA FABRYCZNEGO WENTYLATORA CHŁODNICY GV 650 NA WENTYLATOR OD KAWASAKI ZX6R

WYMIANA FABRYCZNEGO WENTYLATORA CHŁODNICY GV 650 NA WENTYLATOR OD KAWASAKI ZX6R WYMIANA FABRYCZNEGO WENTYLATORA CHŁODNICY GV 650 NA WENTYLATOR OD KAWASAKI ZX6R Powyższa modyfikacja przedstawia procedurę wymiany uszkodzonego fabrycznego wentylatora chłodnicy w hyosungu GV 650 na wentylator

Bardziej szczegółowo

Wykaz części i materiałów

Wykaz części i materiałów WOJEWÓDZKIE POGOTOWIE RATUNKOWE SP ZOZ W LUBLINIE 20-043 Lublin, ul. Spadochroniarzy 8, tel. (81) 533-77-90, fax. (81) 533-78-00 www.pogotowie.lublin.pl e-mail: sekretariat@pogotowie.lublin.pl Wykaz części

Bardziej szczegółowo

Kompletna wymiana pokrycia tablicy rozdzielczej C461100. file://c:\program Files\cosids\DATA\TMP\01001754.rtf.html. Wym.

Kompletna wymiana pokrycia tablicy rozdzielczej C461100. file://c:\program Files\cosids\DATA\TMP\01001754.rtf.html. Wym. Strona 1 z 24 Kompletna wymiana pokrycia tablicy rozdzielczej C461100 Wym., zdemontowanie 1. Odłączyć akumulator. 2. Wymontować konsolę środkową 3. Wymontować przednią popielniczkę Wyjąć wkład popielniczki

Bardziej szczegółowo

Slajd 1. Uszkodzenia świec zapłonowych

Slajd 1. Uszkodzenia świec zapłonowych Slajd 1 Uszkodzenia świec zapłonowych Slajd 2 ŚWIECA ZAPŁONOWA NORMALNIE ZUŻYTA. W normalnych warunkach eksploatacji izolator pokryty jest szaro-białym lub szaro-żółtawym nalotem mogącym przechodzić w

Bardziej szczegółowo

Demontaż i montaż amortyzatora gazowego drzwi tyłu nadwozia TYP 168. 1 Amortyzator gazowy 2 Zabezpieczenie 3 Drzwi tyłu nadwozia

Demontaż i montaż amortyzatora gazowego drzwi tyłu nadwozia TYP 168. 1 Amortyzator gazowy 2 Zabezpieczenie 3 Drzwi tyłu nadwozia TYP 168 Demontaż i montaż amortyzatora gazowego drzwi tyłu nadwozia 1 Amortyzator gazowy 2 Zabezpieczenie 3 Drzwi tyłu nadwozia Wymontowanie, zamontowanie Uwaga! Niebezpieczeństwo urazu na skutek Demontaż

Bardziej szczegółowo

PODSUMOWANIE. Podsumowanie Dostateczny Powypadkowe Niskie

PODSUMOWANIE. Podsumowanie Dostateczny Powypadkowe Niskie Raport z inspekcji Stan PODSUMOWANIE Podsumowanie Dostateczny Powypadkowe Niskie Silnik Dostateczny - wycieki Postłuczkowe Niskie Zawieszenie Dostateczny Popowodziowe Średnie Hamulce dobry Przekręcony

Bardziej szczegółowo

DANE TECHNICZNE - NOWY PEUGEOT 308

DANE TECHNICZNE - NOWY PEUGEOT 308 DV6C Euro 5 EB2 Euro 5 INFORMACJE OGÓLNE Pojemność skokowa (cm 3 ) Moc maksymalna w kw (lub KM) / przy prędkości (obr/min) Maksymalny moment obrotowy (Nm) / przy prędkości (obr/min) Skrzynia biegów Opony

Bardziej szczegółowo

WYKAZ rzeczy ruchomych włączonych do zestawu części zamiennych do samochodów Star 660 i 266 pozycja nr 2 przetargu z dnia r.

WYKAZ rzeczy ruchomych włączonych do zestawu części zamiennych do samochodów Star 660 i 266 pozycja nr 2 przetargu z dnia r. WYKAZ rzeczy ruchomych włączonych do zestawu części zamiennych do samochodów Star 660 i 266 pozycja nr 2 przetargu z dnia 20.01.2012 r. Skład pakietu oraz żródło pochodzenia jego elementów Lp. Wyszczegółnienie

Bardziej szczegółowo

PRZECIWPRĄD STP STREAM ELEGANCE 70

PRZECIWPRĄD STP STREAM ELEGANCE 70 PRZECIWPRĄD STP STREAM ELEGANCE 70 INSTRUKCJA MONTAŻU I OBSŁUGI Przeczytaj instrukcję! 1. Montaż systemu Gratulujemy zakupu urządzenia przeciwprądowego, które umili Wam czas spędzany w Waszym basenie.

Bardziej szczegółowo

Układ doładowania z turbosprężarką spalin Demontaż i montaż turbosprężarki spalin

Układ doładowania z turbosprężarką spalin Demontaż i montaż turbosprężarki spalin Page 1 of 6 Układ doładowania z turbosprężarką spalin Demontaż i montaż turbosprężarki spalin Wymagane specjalne narzędzia, wyposażenie warsztatowe, zestawy testowe i pomiarowe oraz narzędzia dodatkowe

Bardziej szczegółowo

FIAT PUNTO II Instalacja elektryczna (wersja robocza)

FIAT PUNTO II Instalacja elektryczna (wersja robocza) Zapraszamy na Forum Fiata Punto Spis treści: Wprowadzenie 1. Wiadomości wstępne 1.1. Rozmieszczenie bezpieczników 2. Oświetlenie i sygnalizacja 2.1. Wykaz żarówek Aktualizacja: 2012-09-04 Strona 1 Wprowadzenie

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI SKRZYNKA STEROWNICZA NAGRZEWNICY POWIETRZA I KURTYNY POWIETRZNEJ AIRCOM 4

INSTRUKCJA OBSŁUGI SKRZYNKA STEROWNICZA NAGRZEWNICY POWIETRZA I KURTYNY POWIETRZNEJ AIRCOM 4 INSTRUKCJA OBSŁUGI SKRZYNKA STEROWNICZA NAGRZEWNICY POWIETRZA I KURTYNY POWIETRZNEJ AIRCOM 4 Wymiary: szerokość = 147 mm, wysokość = 71 mm głębokość = 28 mm Opis: Ekran wyświetla bądź to ustawioną skorygowaną

Bardziej szczegółowo

Wykaz czynności kontrolnych oraz metody oceny stanu technicznego pojazdu, przedmiotów jego wyposażenia i części

Wykaz czynności kontrolnych oraz metody oceny stanu technicznego pojazdu, przedmiotów jego wyposażenia i części ZAŁĄCZNIK Nr 8 WYKAZ CZYNNOŚCI KONTROLNYCH ORAZ METODY l KRYTERIA OCENY STANU TECHNICZNEGO POJAZDU, PRZEDMIOTÓW JEGO WYPOSAŻENIA I CZĘŚCI, DO PRZEPROWADZANIA DODATKOWEGO BADANIA TECHNICZNEGO POJAZDU Przedmiot

Bardziej szczegółowo

z nastawnymi łopatkami kierującymi Typu TDV-SilentAIR Zalecane do stosowania w pomieszczeniach o wysokości od ok. 2,6 do 4,0 m

z nastawnymi łopatkami kierującymi Typu TDV-SilentAIR Zalecane do stosowania w pomieszczeniach o wysokości od ok. 2,6 do 4,0 m 2/7.1/PL/6 Nawiewniki wirowe z nastawnymi łopatkami kierującymi Typu TDV-SilentAIR Zalecane do stosowania w pomieszczeniach o wysokości od ok. 2,6 do 4,0 m TROX AUSTRIA GmbH (Sp. z o.o.) Oddział w Polsce

Bardziej szczegółowo

Reflektory: sprawdzanie ustawienia, ewentualna regulacja

Reflektory: sprawdzanie ustawienia, ewentualna regulacja Strona 1 z 6 Reflektory: sprawdzanie ustawienia, ewentualna regulacja Poniższy opis sprawdzania i regulacji obowiązuje zasadniczo dla wszystkich krajów. Należy jednak przestrzegać wytycznych lub przepisów

Bardziej szczegółowo

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP

Bardziej szczegółowo

Kotły z zamkniętą komorą spalania. Rozwiązania instalacji spalinowych. Piotr Cembala Stowarzyszenie Kominy Polskie

Kotły z zamkniętą komorą spalania. Rozwiązania instalacji spalinowych. Piotr Cembala Stowarzyszenie Kominy Polskie Kotły z zamkniętą komorą spalania. Rozwiązania instalacji spalinowych Piotr Cembala Stowarzyszenie Kominy Polskie Dwufunkcyjny kocioł z zamkniętą komorą spalania i zasobnikiem ciepła 1-dopływ powietrza,

Bardziej szczegółowo

Instrukcja obsługi silnika odśnieżarki HECHT 9551. ul. Rolna 6, 62-081 Baranowo tel. 061 650 75 39, fax 061 652 73 05

Instrukcja obsługi silnika odśnieżarki HECHT 9551. ul. Rolna 6, 62-081 Baranowo tel. 061 650 75 39, fax 061 652 73 05 PL Instrukcja obsługi silnika odśnieżarki HECHT 9551 Serwis centralny: BHU A. Krysiak ul. Rolna 6, 62-081 Baranowo tel. 061 650 75 39, fa 061 652 73 05 OSTRZEŻENIE! 1. Zawsze przed uruchomieniem silnika

Bardziej szczegółowo

Instrukcja obsługi montaż / konserwacja napędu pneumatycznego serii AP/APM

Instrukcja obsługi montaż / konserwacja napędu pneumatycznego serii AP/APM Wstęp Należy zapoznać się z tą instrukcją i zachować ją do prac konserwacyjnych i naprawczych. Elementy napędu podlegają zużyciu, dlatego należy je kontrolować i w razie konieczności wymieniać na nowe.

Bardziej szczegółowo

/2004 PL

/2004 PL 7 747 004 7 06/004 PL Dla firmy instalacyjnej Instrukcja montażu Wymiana drzwiczek w kotłach na olej/gaz Logano S635 i Logano S735 Przeczytać uważnie przed przystąpieniem do montażu! Spis treści Informacje

Bardziej szczegółowo

dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 6!!!

dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 6!!! Laboratorium nr2 Temat: Sterowanie pośrednie siłownikami jednostronnego i dwustronnego działania. 1. Wstęp Sterowanie pośrednie stosuje się do sterowania elementami wykonawczymi (siłownikami, silnikami)

Bardziej szczegółowo

2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych

2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych SPIS TREŚCI 3 1. Wprowadzenie 1.1 Krótka historia rozwoju silników spalinowych... 10 2. Klasyfikacja i podstawowe wskaźniki charakteryzujące pracę silników spalinowych 2.1 Klasyfikacja silników... 16 2.1.1.

Bardziej szczegółowo

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe 1. Wstęp Klimatyzacja hali basenu wymaga odpowiedniej wymiany i dystrybucji powietrza, która jest kształtowana przez nawiew oraz wywiew.

Bardziej szczegółowo

t E termostaty k r A M fazowe r c E t ja ta c k Af A u E M d or r AH f M In o p

t E termostaty k r A M fazowe r c E t ja ta c k Af A u E M d or r AH f M In o p MAHLE Aftermarket Informacja o produktach Termostaty fazowe Konwencjonalna regulacja temperatury: bezpieczeństwo w pierwszym rzędzie Optymalny przebieg procesu spalania w silniku samochodu osobowego zapewnia

Bardziej szczegółowo

INSTRUKCJA SMAROWNICA. Typ S-3 KOPIA ORYGINAŁU

INSTRUKCJA SMAROWNICA. Typ S-3 KOPIA ORYGINAŁU SMAROWNICA Typ S-3 MONTAŻ I EKSPLOATACJA Wydanie 2013 KOPIA ORYGINAŁU MOJ SA ul Tokarska 6 ; 40-859 KATOWICE Tel: +48 32 604 09 00 ; Fax +48 32 604 09 01 MOJ SA Spis treści Lp Nazwa Strona 1 Informacje

Bardziej szczegółowo

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO Wielkościami liczbowymi charakteryzującymi pracę silnika są parametry pracy silnika do których zalicza się: 1. Średnie ciśnienia obiegu 2. Prędkości

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI PRZECINARKA DO NAWIERZCHNI ASPRO PRN500HA

INSTRUKCJA OBSŁUGI PRZECINARKA DO NAWIERZCHNI ASPRO PRN500HA INSTRUKCJA OBSŁUGI PRZECINARKA DO NAWIERZCHNI ASPRO PRN500HA UWAGA! Nie pracuj maszyną dopóki nie przeczytasz ze zrozumieniem instrukcji obsługi. Zwród szczególną uwagę na rozdział Instrukcja bezpieczeostwa.

Bardziej szczegółowo

HDI_SID807 Informacje o obwodzie paliwa

HDI_SID807 Informacje o obwodzie paliwa 1 of 2 2014-09-07 15:54 Użytkownik : Pojazd : 308 /308 VIN: VF34C9HR8AS340320 Data wydruku : 7 wrzesień 2014 15:54:42 Początek sesji samochodu : 07/09/2014-15:50 Wersja przyrządu : 07.49 HDI_SID807 Informacje

Bardziej szczegółowo

Ustawianie napięcia w silnikach Mitsubishi/Volvo V. Podczas montażu paska/ napinacza popełniane są dwa główne błędy:

Ustawianie napięcia w silnikach Mitsubishi/Volvo V. Podczas montażu paska/ napinacza popełniane są dwa główne błędy: Ustawianie napięcia w silnikach Mitsubishi/Volvo 1.8 16V NUMER REF. GATES: MARKA: MODEL: SILNIK: KOD SILNIKA: 5514XS/K015514XS MITSUBISHI / VOLVO Carisma, Pajero IQ, Pajero Pinin, Shogun Pinin, Space Star,

Bardziej szczegółowo

Wyważarka osobowa Hunter GSP 9722

Wyważarka osobowa Hunter GSP 9722 Wyważarka osobowa Hunter GSP 9722 HUNTER GSP 9722 jest najnowocześniejszym urządzeniem do wyważania kół, które oprócz tradycyjnej funkcji wyważania statycznego i dynamicznego koła wyposażone jest w rolkę

Bardziej szczegółowo

Alfabetyczny spis usterek możliwych do zdiagnozowania przez interfejs EuroScan (łącznie 956 błędów)

Alfabetyczny spis usterek możliwych do zdiagnozowania przez interfejs EuroScan (łącznie 956 błędów) Alfabetyczny spis usterek możliwych do zdiagnozowania przez interfejs EuroScan 2009+ (łącznie 956 błędów) Kody błędów typu B (nadwozie). Łącznie 255 możliwych usterek: opis/znaczenie Błąd konfiguracji

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA - 508 Sedan Luty 2011

SPECYFIKACJA TECHNICZNA - 508 Sedan Luty 2011 Luty 2011 (*) INFORMACJE OGÓLNE Pojemność skokowa (cm 3 ) 1 598 1 560 1 997 2 179 Maksymalna moc w kw (lub KM) / obroty silnika (obr./min.) 88 (120) / 6 000 115 (156) / 6 000 82 (112) / 3 600 103 (140)

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE OBSŁUGA SAMOCHODU Czynności obsługowe Obsługa silnika i układu wylotowego

WIADOMOŚCI WSTĘPNE OBSŁUGA SAMOCHODU Czynności obsługowe Obsługa silnika i układu wylotowego Bogato ilustrowany fachowy poradnik poświęcony obsłudze i naprawie samochodów BMW serii 3 (typ E46), produkowanych od kwietnia 1998 roku z silnikami benzynowymi (modele: 316i 105 KM, 115 KM; 318i 118 KM,

Bardziej szczegółowo

10 punktów zielonej jazdy

10 punktów zielonej jazdy Kampania Spraw, aby samochody stały się przyjazne środowisku, ma celu ograniczenie szkodliwego wpływu samochodów na środowisko naturalne oraz zachęcenie kierowców do ekologicznego podejścia do jazdy samochodem.

Bardziej szczegółowo

Tabela nr 4 kryteria wykonania zadań egzaminacyjnych na placu manewrowym

Tabela nr 4 kryteria wykonania zadań egzaminacyjnych na placu manewrowym Tabela nr 4 kryteria wykonania zadań egzaminacyjnych na placu manewrowym Poz. Poz. zadania z tabeli 2 1 2 3 Kryteria 1) sprawdzenie stanu technicznego podstawowych elementów pojazdów odpowiedzialnych za

Bardziej szczegółowo