KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO"

Transkrypt

1 KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2014/2015

2 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2014/2015 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego Wrocław Opracowanie: mgr Magdalena Wójcik 2

3 SPIS TREŚCI 1. INFORMACJE WSTĘPNE.. 4 KATALOG DLA STUDENTÓW, KTÓRZY ROZPOCZĘLI STUDIA PRZED ROKIEM AKADEMICKIM 2011/ PPRZEDMIOTY KSZTAŁCENIA PODSTAWOWEGO MATEMATYKA FIZYKA PRZEDMIOTY KSZTAŁCENIA OGÓLNEGO PRZEDMIOTY HUMANISTYCZNE PRZEDMIOTY MENADŻERSKIE JĘZYKI OBCE ZAJĘCIA SPORTOWE. 97 KATALOG KURSÓW DLA STUDENTÓW, KTÓRZY ROZPOCZELI STUDIA PO ROKU AKADEMICKIM 2011/ PPRZEDMIOTY KSZTAŁCENIA PODSTAWOWEGO MATEMATYKA FIZYKA PRZEDMIOTY KSZTAŁCENIA OGÓLNEGO PRZEDMIOTY HUMANISTYCZNE PRZEDMIOTY MENADŻERSKIE JĘZYKI OBCE ZAJĘCIA SPORTOWE SPIS KURSÓW

4 1. INFORMACJE WSTĘPNE Katalog kursów zwany dalej katalogiem, jest adresowany do jednostek organizacyjnych Uczelni oraz studentów Wydziałów Politechniki Wrocławskiej i obejmuje przedmioty kształcenia podstawowego oraz ogólnego na I i II stopniu studiów stacjonarnych i niestacjonarnych. Opisy kursów zostały opracowane zgodnie z ZW 30/2010 z dnia 9 lipca 2010 w sprawie dokumentowania programów nauczania i planów studiów rozpoczynających się od r. ak. 2007/2008 i latach następnych (studia w systemie bolońskim), ZW 68/2011 z dnia 23 listopada 2011 r. w sprawie wytycznych do tworzenia programów kształcenia i planów studiów w PWr (dla studiów rozpoczynających się od 1 października 2012 r.) oraz ZW 33/2012 z dnia w sprawie dokumentowania programów kształcenia studiów rozpoczynających się od roku akademickiego 2012/13, studia te odbywają się w zakresach określonych Krajowymi Ramami Kwalifikacji wprowadzonymi znowelizowaną Ustawą Prawo o Szkolnictwie Wyższym ((Dz. U. Nr 164, poz. 1365, z późn. zm.) oraz Rozporządzeniem MNiSW z dnia 22 listopada 2011 w sprawie Krajowych Ram Kwalifikacji dla Szkolnictwa Wyższego. Zgodnie z ZW 18/2014 z dnia 4 marca 2014 r. w sprawie procedury zgłaszania kursów na rok akademicki 2014/2015 do ogólnouczelnianej ofert kursów oraz ich kwalifikacji, każdy pracownik naukowo-dydaktyczny PWr, posiadający stosowne uprawnienia do prowadzenia danego rodzaju zajęć dydaktycznych (uprawnienia te na r. ak. 2014/15 są określone ZW 65/2014 z dnia 4 lipca 2014 r. w sprawie wprowadzenia zasad zlecania zajęć dydaktycznych i rozliczania pensum), może zgłosić ofertę poprowadzenia przedmiotu z w/w obszaru. Zgłoszone oferty, które uzyskały pozytywne opinie wydane przez właściwe merytorycznie Rady jednostek organizacyjnych PWr, wskazane w ww. ZW, zostały zakwalifikowane do katalogu. W obecnej ofercie kursów na r. ak. 2014/2015 utrzymano, po raz ostatni, podział ze względu na datę wszczęcia studiów: 1) studia w systemie bolońskim rozpoczęte w okresie od r. ak. 2007/8 r. do r.ak. 2011/12 włącznie; studia I i II stopnia stacjonarne i niestacjonarne. 2) studia rozpoczęte 1 października 2012 r.; studia I i II stopnia stacjonarne i niestacjonarne prowadzone zgodnie z Krajowymi Ramami Kwalifikacji dla Szkolnictwa Wyższego. Katalog zawiera krótkie opisy zawartości tematycznej przedmiotów; ich pełne opisy w języku polskim dostępne są w kartach przedmiotów w odpowiednich jednostkach i na stronach internetowych tych jednostek. Natomiast opisy w języku angielskim są dostępne także w kartach przedmiotów w odpowiednich jednostkach i na stronach internetowych tych jednostek. Opis kursu zawiera wymiar godzinowy. Na końcu katalogu umieszczono spis kursów. Korzystanie z katalogu ułatwiają kody przedmiotów składające się z oznaczeń literowo cyfrowych. Oznaczenia jednostek realizujących poszczególne kursy są następujące (trzecia litera w kodzie kursu): Wydział Architektury A Wydział Budownictwa Lądowego i Wodnego B Wydział Chemiczny C Wydział Elektroniki E Wydział Elektryczny F, R Wydział Geoinżynierii, Górnictwa i Geologii G 4

5 Wydział Inżynierii Środowiska S Wydział Informatyki i Zarządzania Z Wydział Mechaniczno-Energetyczny N Wydział Mechaniczny M Wydział Podstawowych Problemów Techniki P Wydział Elektroniki Mikrosystemów i Fotoniki D Studium Nauk Humanistycznych i Społecznych H Studium Nauki Języków Obcych L Studium Wychowania Fizycznego i Sportu W Oznaczenia form dydaktycznych: W wykład Ć ćwiczenia L laboratorium P projekt S seminarium dr hab. inż. Włodzimierz Salejda, prof. PWr, Pełnomocnik Rektora ds. zapewniania jakości kształcenia 5

6 KATALOG KURSÓW DLA STUDENTÓW, KTÓRZY ROZPOCZĘLI STUDIA PRZED ROKIEM AKADEMICKIM 2012/ PRZEDMIOTY KSZTAŁCENIA PODSTAWOWEGO MATEMATYKA MATEMATYKA STUDIA STACJONARNE ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A MAP ALGEBRA AND ANALYTIC GEOMETRY A ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A MAP ALGEBRA AND ANALYTIC GEOMETRY A ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A MAP ALGEBRA AND ANALYTIC GEOMETRY A ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 6

7 ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A MAP ALGEBRA AND ANALYTIC GEOMETRY A ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B MAP ALGEBRA AND ANALYTIC GEOMETRY B ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA LINIOWA 1 MAP LINEAR ALGEBRA 1 ECTS Treść kursu: Liczby zespolone. Wielomiany. Macierze i wyznaczniki. Układy równań liniowych. Geometria analityczna w R3. Kurs może być prowadzony w jęz. angielskim Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA LINIOWA 2 (INF, TIN) MAP LINEAR ALGEBRA 2 ECTS

8 Treść kursu: Baza ortonormalna, rzut ortogonalny, grupa, pierścień, ciało, arytmetyka modularna. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA LINIOWA 2 MAP LINEAR ALGEBRA 2 ECTS Treść kursu: Przestrzenie liniowe, liniowa niezależność wektorów, generatory, baza i wymiar, związek rzędu macierzy z liniową niezależnością, układy równań liniowych, twierdzenie Kroneckera- Capellego, przestrzeń rozwiązań układu jednorodnego, przekształcenia liniowe, macierz przekształcenia liniowego, macierze symetrii, rzutów i obrotów w R2 i R3, wartości i wektory własne, przestrzenie euklidesowe, iloczyn skalarny, norma wektora, ortogonalizacja Grama-Schmidta, rzut ortogonalny, diagonalizacja macierzy rzeczywistych symetrycznych. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Mechanicznego. Wymagania wstępne: Algebra z Geometrią Analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA 2 MAP ALGEBRA 2 ECTS Treść kursu: Kurs jest prowadzony w systemie mieszanym - oprócz tradycyjnych zajęć studenci mają dostęp do materiałów internetowych. Materiały te zawierają komplet wykładów, ćwiczeń oraz e-sprawdzianów a studenci muszą samodzielnie rozwiązać ćwiczenia. Przestrzenie liniowe. Przestrzenie rozwiązań układów równań liniowych. Przekształcenia liniowe. Przestrzenie euklidesowe. Operatory ortogonalne. Przestrzenie unitarne. Struktury algebraiczne. Grupy. Pierścienie i ciała. Kurs przeznaczony dla kier. Fizyka. Wymagania wstępne: Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. ANALIZA MATEMATYCZNA 1.1 A MAP MATHEMATICAL ANALYSIS 1.1 A ECTS

9 Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1.1 A MAP MATHEMATICAL ANALYSIS 1.1 A ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. ANALIZA MATEMATYCZNA 1.1 B MAP MATHEMATICAL ANALYSIS 1.1 B ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1.2 MAP MATHEMATICAL ANALYSIS 1.2 ECTS Treść kursu: Liczby rzeczywiste, własności funkcji, funkcje trygonometryczne, granica ciąg, granica i ciągłość funkcji jednej zmiennej, pochodna funkcji jednej zmiennej, badanie funkcji, całka nieoznaczona, całka oznaczona, całka niewłaściwa, zastosowania rachunku całkowego w fizyce i technice. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA MAP MATHEMATICAL ANALYSIS ECTS Treść kursu: Ogólnych własności funkcji. Granic właściwych i niewłaściwych ciągów liczbowych i funkcji. Ciągłość funkcji. Pochodne funkcji. Ekstrema lokalne. Funkcje wypukłe i punkty przegięcia 9

10 wykresu funkcji. Całka nieoznaczona. Całka oznaczona. Całka niewłaściwa I-go rodzaju. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie Rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2 MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całki niewłaściwe. Szeregi liczbowe. Szeregi potęgowe. Granica i ciągłość funkcji dwóch i trzech zmiennych. Rachunek różniczkowy funkcji dwóch i trzech zmiennych. Zastosowania rachunku różniczkowego w fizyce i technice. Całki podwójne i potrójne. Zastosowania całek wielokrotnych w fizyce i technice. Kurs może być prowadzony w jęz. Angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.1 A MAP MATHEMATICAL ANALYSIS 2.1 A ECTS Treść kursu: Zapoznanie studenta z podstawowymi pojęciami i twierdzeniami analizy matematycznej zgodnie z programem kursu. Przygotowanie do stosowania aparatu matematycznego do opisu i analizy obiektów i procesów technicznych. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.2 A MAP MATHEMATICAL ANALYSIS 2.2 A ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe. Tematy dodatkowe wybierane przez wydziały: całka potrójna, elementy analizy wektorowej, szeregi funkcyjne, równania różniczkowe zwyczajne. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.2 B MAP MATHEMATICAL ANALYSIS 2.2 B ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe. Tematy dodatkowe wybierane przez wydziały: całka potrójna, szeregi funkcyjne, równania różniczkowe zwyczajne. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 10

11 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. ANALIZA MATEMATYCZNA 2.3 A MAP MATHEMATICAL ANALYSIS 2.3 A ECTS Treść kursu: Pochodne cząstkowe pierwszego rzędu, ekstrema lokalne funkcji dwóch zmiennych, całki podwójne, całki potrójne, szeregi liczbowe, szeregi potęgowe, transformata Laplace a, wstęp do transformaty Fouriera. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Analiza matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.4A MAP MATHEMATICAL ANALYSIS 2.4 A ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, szeregi liczbowe i potęgowe, podstawy równań różniczkowych zwyczajnych, przykłady struktur algebraicznych. Kurs przeznaczony dla Wydziału Informatyki i Zarządzania, kierunek Informatyka. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 3.1 MAP MATHEMATICAL ANALYSIS 3.1 ECTS Treść kursu: Podstawowe pojęcia równań różniczkowych zwyczajnych, równania różniczkowe liniowe, układy równań różniczkowych liniowych, transformata Laplace`a, szeregi Fouriera. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Budownictwa. Wymagania wstępne: Analiza matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ELEMENTY ANALIZY WEKTOROWEJ MAP ELEMENTS OF VECTOR ANALYSIS ECTS Treść kursu: Całki krzywoliniowe niezorientowane i zorientowane, całki powierzchniowe niezorientowane i zorientowane, elementy analizy wektorowej, zastosowania całek krzywoliniowych i powierzchniowych w fizyce i technice. Kurs przeznaczony dla Wydziału Elektrycznego. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki FUNKCJE ZESPOLONE MAP COMPLEX FUNCTIONS ECTS

12 Treść kursu: Funkcje zmiennej zespolonej. Pochodna funkcji zmiennej zespolonej. Krzywa na płaszczyźnie zespolonej. Twierdzenie całkowe Cauch ego. Transformata Laplace a. Szeregi o wyrazach zespolonych. Punkty osobliwe funkcji zespolonych. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza matematyczna 2, Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i informatyki MATEMATYKA MAP MATHEMATICS 1 FOR ECONOMISTS ECTS Treść kursu: Wielomiany i funkcje wymierne. Funkcje wykładnicze i logarytmiczne. Macierze, układy równań liniowych. Granica ciągu, granica funkcji, pochodna funkcji, ekstrema funkcji. Całki nieoznaczone, całki oznaczone. Funkcje wielu zmiennych. Optymalizacja przy dwóch zmiennych. Równania różniczkowe zwyczajne. Kurs przeznaczony dla studiów licencjackich kierunku Zarządzanie Wydziału Informatyki i Zarządzania. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATHEMATICS MAP MATHEMATICS 1 FOR ECONOMISTS ECTS Treść kursu: Wielomiany i funkcje wymierne. Funkcje wykładnicze i logarytmiczne. Macierze, układy równań liniowych. Granica ciągu, granica funkcji, pochodna funkcji, ekstrema funkcji. Całki nieoznaczone, całki oznaczone. Funkcje wielu zmiennych. Optymalizacja przy dwóch zmiennych. Równania różniczkowe zwyczajne. Kurs przeznaczony dla studiów licencjackich kierunku Zarządzanie Wydziału Informatyki i Zarządzania. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. MATEMATYKA (EIT 1STOPIEŃ) MAP MATHEMATICS ECTS Treść kursu: Całki krzywoliniowe i powierzchniowe, elementy teorii pola, funkcje zmiennej zespolonej. Kurs przeznaczony dla Wydziału Elektroniki, realizowany w tygodniach od 8 do 15. Wymagania wstępne: Analiza Matematyczna 1.2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (AIR) MAP MATHEMATICS ECTS

13 Treść kursu: Równania różniczkowe i układy równań różniczkowych zwyczajnych, równania różnicowe, przekształcenie Z, elementy matematyki dyskretnej kombinatoryka, elementy teorii grafów, grupy, ciała i kody. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Analiza Matematyczna 1.2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA MAP MATHEMATICS ECTS Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, równania całkowe. Elementy teorii procesów stochastycznych: procesy Markowa, procesy odnowy, procesy gaussowskie, przestrzeń Hilberta. Kurs przeznaczony dla Wydziału Elektroniki Mikrosystemów i Fotoniki. Kurs prowadzony w języku angielskim. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA MAP MATHEMATICS ECTS Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, równania całkowe. Elementy teorii procesów stochastycznych: procesy Markowa, procesy odnowy, procesy gaussowskie, przestrzeń Hilberta. Kurs przeznaczony dla Wydziału Elektroniki Mikrosystemów i Fotoniki. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (EIT 2 STOPIEŃ) MAP MATHEMATICS (EIT 2ND LEVEL) ECTS Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, równania całkowe. Wymagania wstępne: Wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja na Wydziale Elektroniki PWr.: Analiza Matematyczna (1 semestr), Matematyka (2 semestr). Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA MAP MATHEMATICS ECTS 5 13

14 Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, transformata Laplace a równania całkowe. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia prowadzonych na Wydziale Elektroniki Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki MATEMATYKA MAP MATHEMATICS ECTS Treść kursu: Liniowe przestrzenie wektorowe, liniowa niezależność, baza, odwzorowania liniowe, przestrzenie liniowe, przestrzenie unitarne, układy ortogonalne, rzuty ortogonalne, funkcje mierzalne jednej i wielu zmiennych, funkcjonały liniowe. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia prowadzonych na Wydziale Elektroniki Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki MATEMATYKA MAP MATHEMATICS ECTS Treść kursu: Równania różniczkowe zwyczajne i cząstkowe, zmienne losowe, procesy stochastyczne Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia prowadzonych na Wydziale Elektroniki Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki MATEMATYKA MAP MATHEMATICS ECTS Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, równania całkowe. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia prowadzonych na Wydziale Elektroniki Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki MATEMATYKA MAP MATHEMATICS ECTS Treść kursu: Liniowe przestrzenie wektorowe, liniowa niezależność, baza, odwzorowania liniowe, przestrzenie liniowe, przestrzenie unitarne, układy ortogonalne, rzuty ortogonalne, funkcje mierzalne jednej i wielu zmiennych, funkcjonały liniowe. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia prowadzonych na Wydziale Elektroniki Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki 14

15 MATEMATYKA MAP MATHEMATICS ECTS Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, równania całkowe. Elementy teorii procesów stochastycznych: procesy Markowa, procesy odnowy, procesy gaussowskie, przestrzeń Hilberta. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia prowadzonych na Wydziale Informatyki i Zarządzania Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki MATEMATYKA DYSKRETNA MAP DISCRETE MATHEMATICS ECTS Treść kursu: Funkcje, relacje, zbiory, elementy logiki matematycznej - rachunek zdań i tautologie, zastosowania aparatu logiki, techniki dowodzenia twierdzeń i indukcja matematyczna, rekurencja - algorytmy i funkcje rekurencyjne, drzewa i grafy, zastosowanie algorytmów rekurencyjnych do operacji na drzewach i grafach. Kurs przeznaczony dla Wydziału Elektroniki. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA 1 MAP MATHEMATICS 1 ECTS Treść kursu: Rachunek różniczkowy funkcji jednej zmiennej, rachunek całkowy funkcji jednej zmienne, układy równań liniowych. Kurs przeznaczony dla Wydziału Architektury. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA 2 MAP MATHEMATICS 2 ECTS Treść kursu: Geometria analityczna przestrzeni, rachunek całkowy funkcji wielu zmiennych, izometrie płaszczyzny. Kurs przeznaczony dla Wydziału Architektury. Wymagania wstępne: Matematyka 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. WSTĘP DO RACHUNKU PRAWDOPODOBIEŃSTWA MAP I STATYSTYKI MATEMATYCZNEJ ECTS 1+1 INTRODUCTION TO PROBABILITY THEORY AND MATHEMATICAL STATISTICS

16 Treść kursu: Kurs zawiera wykłady o podstawowych pojęciach i twierdzeniach rachunku prawdopodobieństwa i statystyki matematycznej (przestrzeń probabilistyczna, zmienna losowa, dyskretny i ciągły rozkład prawdopodobieństwa, prawo wielkich liczb, centralne twierdzenie graniczne, próba prosta, histogram, estymacja punktowa i przedziałowa, hipoteza statystyczna, testowanie hipotez). Wymagania wstępne: Analiza matematyczna 1 Zespół realizujący: dr hab. Agnieszka Jurewicz, Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. RÓWNANIA RÓŻNICZKOWE MAP DIFFERENTIAL EQUATIONS ECTS Treść kursu: Równania różniczkowe zwyczajne rzędu pierwszego, równania liniowe wyższych rzędów, układy równań różniczkowych liniowych, elementy teorii stabilności, funkcje zmiennej zespolonej, pochodne i całki funkcji zmiennej zespolonej, transformata Laplace'a, residua, zastosowania poznanych metod w zagadnieniach fizyki i techniki. Wymagania wstępne: Analiza matematyczna 2, Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A MAP ORDINARY DIFFERENTIAL EQUATIONS A ECTS Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, elementy teorii stabilności, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE MAP DIFFERENTIAL EQUATIONS AND COMPLEX FUNCTIONS ECTS Treść kursu: Równania różniczkowe zwyczajne rzędu pierwszego, równania liniowe wyższych rzędów, układy równań różniczkowych liniowych, elementy teorii stabilności, funkcje zmiennej zespolonej, pochodne i całki funkcji zmiennej zespolonej, transformata Laplace'a, residua, zastosowania poznanych metod w zagadnieniach fizyki i techniki. Kurs przeznaczony dla kierunku Mechatronika na Wydziale Mechanicznym. Wymagania wstępne: Analiza matematyczna 2, Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. RACHUNEK PRAWDOPODOBIEŃSTWA MAP PROBABILITY THEORY ECTS

17 Treść kursu: Prawdopodobieństwo, zmienne losowe jedno - i wielowymiarowe. rozkłady dyskretne i ciągłe, momenty, centralne twierdzenie graniczne. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. RACHUNEK PRAWDOPODOBIEŃSTWA MAP PROBABILITY THEORY ECTS Treść kursu: Prawdopodobieństwo, zmienne losowe jednowymiarowe i wielowymiarowe, rozkłady dyskretne i ciągłe, momenty, centralne twierdzenie graniczne, podstawowe pojęcia statystyki, estymacja punktowa i przedziałowa, regresja liniowa jednowymiarowa, estymacja gęstości. Kurs przeznaczony dla Wydziału Mechanicznego. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. WSTĘP DO STATYSTYKI PRAKTYCZNEJ MAP INTRODUCTION TO PRACTICAL STATISTICS ECTS Treść kursu: Statystyki i ich rozkłady, estymacja punktowa, estymacja przedziałowa, testowanie hipotez, analiza wariancji, wielowymiarowe zmienne losowe, analiza regresji, analiza wariancji. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. WSTĘP DO STATYSTYKI PRAKTYCZNEJ MAP INTRODUCTION TO PRACTICAL STATISTICS ECTS Treść kursu: Statystyki i ich rozkłady, estymacja punktowa, estymacja przedziałowa, testowanie hipotez, analiza wariancji, wielowymiarowe zmienne losowe, analiza regresji, analiza wariancji. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA I RACHUNEK PRAWDOPODOBIEŃSTWA MAP MATHEMATICAL STATISTICS ECTS Treść kursu: Rozkład empiryczny, przestrzeń probabilistyczna, zmienne losowe dyskretne, ciągłe, dwuwymiarowe zmienne losowe, nierówności Markowa i Czebyszewa, estymacja punktowa, przedziały ufności, testowanie hipotez. Wymagania wstępne: Podstawy algebry i analizy matematycznej. Podstawy rachunku prawdopodobieństwa. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. STATYSTYKA MATEMATYCZNA MAP

18 MATHEMATICAL STATISTICS ECTS Treść kursu: Statystyki i ich rozkłady, estymacja punktowa, estymacja przedziałowa, testowanie hipotez, analiza wariancji, wielowymiarowe zmienne losowe, analiza regresji. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA MATEMATYCZNA MAP MATHEMATICAL STATISTICS ECTS Treść kursu: Przestrzeń probabilistyczna, zmienne losowe dyskretne, ciągłe, dwuwymiarowe zmienne losowe, estymacja punktowa, testowanie hipotez. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA STOSOWANA MAP APPLIED STATISTICS ECTS Treść kursu: Przestrzeń probabilistyczna, zmienne losowe dyskretne i ciągłe, wartość oczekiwana, wariancja, niezależność, estymacja punktowa i przedziałowa, testowanie hipotez statystycznych, regresja liniowa jednowymiarowa. Kurs przeznaczony dla Wydziału Elektrycznego i Studium Mechatroniki. Wymagania wstępne: Analiza matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA STOSOWANA MAP APPLIED STATISTICS ECTS Treść kursu: Prezentacja danych eksperymentalnych statystyka opisowa, matematyczne podstawy modeli probabilistycznych: zmienne losowe, wektory losowe i ich opis, kwantyle i momenty, zależność stochastyczna i jej miary, ciągi zmiennych losowych i ich asymptotyczne zachowania, statystyczne metody analizy zjawisk losowych, estymacja punktowa i przedziałowa, regresja liniowa jednowymiarowa, testowanie hipotez statystycznych: testy istotności dla średniej rozkładu normalnego, test analizy wariancji, testy nieparametryczne. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA STUDIA NIESTACJONARNE ALGEBRA LINIOWA (ZAO EA) MAP LINEAR ALGEBRA ECTS

19 Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami kombinatoryki i algebry liniowej. Omawiane będą następujące pojęcia i ich własności: permutacje, wariacje, kombinacje, liczby zespolone, wielomiany, macierze, wyznaczniki, układy równań liniowych, wzory Cramera, eliminacja Gaussa, przestrzeń liniowa Rn, przekształcenia liniowe przestrzeni Rn, wartości własne i wektory własne macierzy, normy wektorów i macierzy. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Komisja programowa Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami algebry oraz geometrii analitycznej na płaszczyźnie i w przestrzeni. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ (ZAO CH) MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami algebry oraz geometrii analitycznej na płaszczyźnie i w przestrzeni. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ (EY) MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Podstawy geometrii analitycznej na płaszczyźnie i w przestrzeni, liczby zespolone, macierze, wyznaczniki, układy równań liniowych. Kurs przeznaczony jest dla Wydziału Elektrycznego. Może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami algebry oraz geometrii analitycznej na płaszczyźnie i w przestrzeni. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. 19

20 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Geometria analityczna na płaszczyźnie i w przestrzeni, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany, przestrzenie liniowe, przekształcenia liniowe. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A MAP ALGEBRA AND ANALYTIC GEOMETRY A ECTS Treść kursu: Wyrażenia algebraiczne, odstawy geometrii analitycznej na płaszczyźnie i w przestrzeni, liczby zespolone, macierze, wyznaczniki, układy równań liniowych. Może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1.1 A (IZ) MAP MATHEMATICAL ANALYSIS 1.1 A ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Matura z matematyki na poziomie rozszerzonym z wynikiem co najmniej 40% punktów. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 (ZAO CH) MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 20

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2015/2016 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2015/2016 Politechnika Wrocławska

Bardziej szczegółowo

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2012/2013 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2012/2013 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego

Bardziej szczegółowo

KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2009/2010 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2009/2010 Politechnika Wrocławska Dział Nauczania WybrzeŜe Wyspiańskiego

Bardziej szczegółowo

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2010/2011 1 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2010/2011 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa:

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa: Matematyka Matematyka dyskretna (MAD) Analiza matematyczna i algebra liniowa z geometrią analityczną (AAL) Rachunek prawdopodobieństwa i statystyka (RRR) Kod modułu: MAT Rodzaj modułu: podstawowy, obowiązkowy

Bardziej szczegółowo

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2011/2012 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2011/2012 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

M A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300

M A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300 M A T E M A T Y K A Podział kursów w procesie nauczania: -podstawowe 5 kursów (300 godzin) -rozszerzone 8 kursów (480 godzin) MATURA zakres podstawowy 5 KURSÓW PP: 101,102,103,104,105 MATURA zakres rozszerzony

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS 148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: PROBABILISTYKA NIEPRZEMIENNA Nazwa w języku angielskim: NONCOMMUTATIVE PROBABILITY Kierunek studiów (jeśli dotyczy): MATEMATYKA

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki Program studiów na kierunku matematyka (studia I stopnia o profilu ogólnoakademickim, stacjonarne) dotyczy osób zarekrutowanych w roku 2013/14 i w latach następnych Państwowa Wyższa Szkoła Zawodowa w Tarnowie

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: inżynieria środowiska Rodzaj przedmiotu: nauk ścisłych, moduł 1 Rodzaj zajęć: Wykład, ćwiczenia Profil kształcenia: ogólnoakademicki Fizyka Physics Poziom kształcenia: I stopnia

Bardziej szczegółowo

ANALIZA MATEMATYCZNA DLA FIZYKÓW

ANALIZA MATEMATYCZNA DLA FIZYKÓW Lech Górniewicz Roman Stanisław Ingarden ANALIZA MATEMATYCZNA DLA FIZYKÓW Wydanie piąte Toruń 2012 SPIS TREŚCI WSPOMNIENIE O PROFESORZE ROMANIE STANISŁAWIE INGARDENIE (Miłosz Michalski)... ix PRZEDMOWA

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe

Bardziej szczegółowo

Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy

Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy P O D S TT A W Y N A U C ZZ A N I A M A TT E M A TT Y K I Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy Język nauczania: polski Odpowiedzialny za przedmiot: nauczyciel akademicki prowadzący

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW STUDIA I STOPNIA NA KIERUNKU FIZYKA UW I. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat akademicki). II. SYLWETKA

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: INŻYNIERIA ŚRODOWISKA Kierunek: OCHRONA ŚRODOWISKA (OS) Stopień studiów: I Efekty kształcenia na I stopniu dla kierunku OS K1OS_W01 K1OS_W02 K1OS_W03 OPIS KIERUNKOWYCH

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA STOSOANA PLAN STUDIÓ STACJONARNYCH PIERSZEGO STOPNIA semestr: 1. w grupach 14.4- -060 prowadzenie do psychologii 15 15 30 2 S-PP/OH 11.1- -810 stęp do logiki i teorii mnogości 30 30 60 1 8 P1

Bardziej szczegółowo

Wpływ przygotowania ze szkoły średniej na wyniki egzaminów z fizyki

Wpływ przygotowania ze szkoły średniej na wyniki egzaminów z fizyki Referat wygłoszony na Zjeździe Fizyków 9-14.9.27 Szczecin, oraz opublikowany w Piśmie FOTON, nr 99 (27) Wpływ przygotowania ze szkoły średniej na wyniki egzaminów z fizyki Henryk Figiel, Janusz Niewolski

Bardziej szczegółowo

Zasady studiów magisterskich na kierunku astronomia

Zasady studiów magisterskich na kierunku astronomia Zasady studiów magisterskich na kierunku astronomia Sylwetka absolwenta Absolwent jednolitych studiów magisterskich na kierunku astronomia powinien: posiadać rozszerzoną wiedzę w dziedzinie astronomii,

Bardziej szczegółowo

Studia w systemie 3+2 Propozycja zespołu Komisji ds. Studenckich i Programów Studiów

Studia w systemie 3+2 Propozycja zespołu Komisji ds. Studenckich i Programów Studiów Studia w systemie 3+2 Propozycja zespołu Komisji ds. Studenckich i Programów Studiów Polecenie Rektora nakłada na Wydział obowiązek przygotowania programu studiów w systemie 3-letnich studiów licencjackich

Bardziej szczegółowo

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU BUDOWNICTWA WNT UWM W ROKU AKADEMICKIM 2012/2013 Nazwa przedmiotu: Zajęcia wyrównawcze z matematyki Rodzaj studiów:

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW I.CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata. II.SYLWETKA ABSOLWENTA

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Liczba godzin zajęć dydaktycznych na studiach stacjonarnych: RAZEM: 45 godzin. Ćwiczenia: -

Liczba godzin zajęć dydaktycznych na studiach stacjonarnych: RAZEM: 45 godzin. Ćwiczenia: - Nazwa przedmiotu: Fizyka Nazwa jednostki prowadzącej kierunek: Instytut Nauk Społecznych i Informatyki Przedmiot przeznaczony do realizacji w: Zakładzie Informatyki Nazwa kierunku studiów: Nazwa specjalności

Bardziej szczegółowo

Matematyka dyskretna Discrete mathematics. Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Matematyka dyskretna Discrete mathematics. Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

(1) Symbol (2) Efekty kształcenia dla kierunku studiów (3) Odniesienie do efektów kształcenia w obszarze kształcenia

(1) Symbol (2) Efekty kształcenia dla kierunku studiów (3) Odniesienie do efektów kształcenia w obszarze kształcenia Efekty kształcenia dla kierunku studiów i ich relacje z efektami kształcenia dla obszarów kształcenia Wydział prowadzący kierunek studiów: Kierunek studiów: Wydział Nauk Ekonomicznych i Zarządzania Wydział

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy elektrodynamiki Nazwa w języku angielskim: Introduction to Electrodynamics Kierunek studiów (jeśli

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) 748 55 82 email: statinfmed@uwb.edu.pl dr Robert Milewski

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) 748 55 82 email: statinfmed@uwb.edu.pl dr Robert Milewski Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot:

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Kurs matematyki dla chemików

Kurs matematyki dla chemików Kurs matematyki dla chemików nr 136 Joanna Ger Kurs matematyki dla chemików Wydanie piąte poprawione Wydawnictwo Uniwersytetu Śląskiego Katowice 2012 Redaktor serii: Matematyka Tomawsz Dłotko Recenzenci

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia STATYSTYKA MATEMATYCZNA KARTA MODUŁU KSZTAŁCENIA Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Równania różniczkowe zwyczajne i cząstkowe (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot

Bardziej szczegółowo

Zarządzenie Rektora Politechniki Gdańskiej nr 17/2012 z 4 lipca 2012 r.

Zarządzenie Rektora Politechniki Gdańskiej nr 17/2012 z 4 lipca 2012 r. Zarządzenie Rektora Politechniki Gdańskiej nr 17/2012 z 4 lipca 2012 r. w sprawie: wysokości opłat za usługi edukacyjne związane z kształceniem osób będących obywatelami polskimi i obywatelami państw członkowskich

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 013/014 Kierunek studiów: Informatyka Stosowana Forma

Bardziej szczegółowo

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW 1. NAZWA PRZEDMIOTU : BIOSTATYSTYKA Z ELEMENTAMI INFORMATYKI

Bardziej szczegółowo

Zarządzenie Rektora Politechniki Gdańskiej nr 4/2015 z 3 lutego 2015 r.

Zarządzenie Rektora Politechniki Gdańskiej nr 4/2015 z 3 lutego 2015 r. Zarządzenie Rektora Politechniki Gdańskiej w sprawie: wysokości opłat świadczone usługi edukacyjne dla osób będących obywatelami polskimi i obywatelami państw członkowskich Unii Europejskiej lub państw

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r.

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r. PLAN STUDIÓW DLA KIERUNKU INFORMATYKA STUDIA: INŻYNIERSKIE TRYB STUDIÓW: STACJONARNE Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 201 r. Egzamin po semestrze Obowiązuje od naboru na rok akademicki

Bardziej szczegółowo

Obowiązkowy A. Przedmioty kształcenia ogólnego 1 Etykieta w życiu publicznym wykład 9 zaliczenie tak 1 B. Przedmioty podstawowe

Obowiązkowy A. Przedmioty kształcenia ogólnego 1 Etykieta w życiu publicznym wykład 9 zaliczenie tak 1 B. Przedmioty podstawowe Instytut Informatyki, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy internetowe, SI studia niestacjonarne Rok 2012/2013 Rok I, semestr I (zimowy) zajęć 1 Etykieta w życiu publicznym 9 tak 1 Przedmiot

Bardziej szczegółowo

Podstawy fizyki sezon 1

Podstawy fizyki sezon 1 Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2013/14 Moduł

Bardziej szczegółowo

Zarządzenie Rektora Politechniki Gdańskiej nr 12/2013 z 24 kwietnia 2013 r.

Zarządzenie Rektora Politechniki Gdańskiej nr 12/2013 z 24 kwietnia 2013 r. Zarządzenie Rektora Politechniki Gdańskiej nr 12/2013 z 24 kwietnia 2013 r. w sprawie: wysokości opłat usługi edukacyjne zwiąne z kształceniem osób będących obywatelami polskimi i obywatelami państw członkowskich

Bardziej szczegółowo

Opis efektów kształcenia i sposobów ich weryfikacji

Opis efektów kształcenia i sposobów ich weryfikacji PROGRAM PRZEDMIOTU Nazwa przedmiotu WNIOSKOWANIE STATYSTYCZNE Rok akademicki / 26, semestr zimowy, grupy UE 1 Prof. zw. dr hab. Andrzej Luszniewicz Wymagania wstępne Studenci wnioskowania statystycznego

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

PROGRAM NAUCZANIA NA STACJONARNYCH STUDIACH I STOPNIA NA KIERUNKU: MATEMATYKA SPECJALNOŚĆ: MATEMATYKA TEORETYCZNA dotyczy rekrutacji 2009/2010

PROGRAM NAUCZANIA NA STACJONARNYCH STUDIACH I STOPNIA NA KIERUNKU: MATEMATYKA SPECJALNOŚĆ: MATEMATYKA TEORETYCZNA dotyczy rekrutacji 2009/2010 PROGRAM NAUCZANIA NA STACJONARNYCH STUDIACH I STOPNIA NA KIERUNKU: MATEMATYKA SPECJALNOŚĆ: MATEMATYKA TEORETYCZNA dotyczy rekrutacji 2009/2010 I. WYMAGANIA OGÓLNE: Studia trwają 6 semestrów. Przewidziana

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Studia Podyplomowe Instytutu Mechatroniki, Nanotechnologii. i Techniki Próżniowej

Studia Podyplomowe Instytutu Mechatroniki, Nanotechnologii. i Techniki Próżniowej Studia podyplomowe 1 Studia Podyplomowe Instytutu Mechatroniki, Nanotechnologii i Techniki Próżniowej 1 Informacje ogólne Studia podyplomowe Instytutu Mechatroniki, Nanotechnologii i Techniki Próżniowej

Bardziej szczegółowo

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW Ι.CHARAKTERYSTYKA STUDIÓW Studia indywidualne pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Wydział Prawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: INŻYNIERIA ŚRODOWISKA Kierunek: INŻYNIERIA ŚRODOWISKA (IS) Stopień studiów: I Efekty na I stopniu dla kierunku IS K1IS_W01 K1IS_W02 K1IS_W03 OPIS KIERUNKOWYCH EFEKTÓW

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI

WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Dziennik Ustaw Nr 253 14793 Poz. 1521 WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Umiejscowienie kierunku wobszarze Załącznik nr3 Kierunek

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Standardy kształcenia dla kierunku studiów: Informatyka A. STUDIA PIERWSZEGO STOPNIA

Standardy kształcenia dla kierunku studiów: Informatyka A. STUDIA PIERWSZEGO STOPNIA Dziennik Ustaw Nr 164 398 Poz. 1166 Załącznik nr 45 Standardy kształcenia dla kierunku studiów: Informatyka A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia licencjackie trwają nie krócej niż 6

Bardziej szczegółowo

R E K T O R ZARZĄDZENIE WEWNĘTRZNE 34/2015

R E K T O R ZARZĄDZENIE WEWNĘTRZNE 34/2015 R E K T O R ZARZĄDZENIE WEWNĘTRZNE 34/2015 z dnia 8 maja 2015 r. w sprawie zmiany wytycznych do tworzenia programów kształcenia, programów i planów w Politechnice Wrocławskiej (dla rozpoczynających się

Bardziej szczegółowo

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I C ZĘŚĆ I I I Podręcznik dla nauczycieli klas III liceum ogólnokształcącego i

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna

Bardziej szczegółowo

METODY ILOŚCIOWE W ZARZĄDZANIU

METODY ILOŚCIOWE W ZARZĄDZANIU 1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy

Bardziej szczegółowo

Wyższa Szkoła Europejska im. ks. Józefa Tischnera z siedzibą w Krakowie

Wyższa Szkoła Europejska im. ks. Józefa Tischnera z siedzibą w Krakowie Wyższa Szkoła Europejska im. ks. Józefa Tischnera z siedzibą w Krakowie KARTA PRZEDMIOTU 1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE Nazwa przedmiotu Matematyka Rocznik studiów 2012/2013 Wydział Wydział Stosowanych

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA

POLITECHNIKA WROCŁAWSKA POLITECHNIKA WROCŁAWSKA Niniejszy suplement do dyplomu oparty jest na modelu opracowanym przez Komisję Europejską, Radę Europy oraz UNESCO/CEPES. Ma on dostarczyć obiektywnych pełnych informacji dla lepszego

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Program studiów stacjonarnych drugiego stopnia dla studentów, którzy rozpoczęli studia w latach 2010/11 i 2011/12

Program studiów stacjonarnych drugiego stopnia dla studentów, którzy rozpoczęli studia w latach 2010/11 i 2011/12 Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Program studiów stacjonarnych drugiego stopnia dla studentów, którzy rozpoczęli studia w latach 2010/11 i 2011/12 Warszawa, wersja z dnia

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza wypukła Nazwa w języku angielskim: Convex analysis Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność (jeśli

Bardziej szczegółowo

Wyższa Szkoła Technologii Teleinformatycznych w Świdnicy. Dokumentacja specjalności. Grafika komputerowa

Wyższa Szkoła Technologii Teleinformatycznych w Świdnicy. Dokumentacja specjalności. Grafika komputerowa Wyższa Szkoła Technologii Teleinformatycznych w Świdnicy Dokumentacja specjalności Grafika komputerowa prowadzonej w ramach kierunku Informatyka na wydziale Informatyki 1. Dane ogólne Nazwa kierunku: Informatyka

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

ZARZĄDZENIE NR 68 REKTORA UNIWERSYTETU ZIELONOGÓRSKIEGO

ZARZĄDZENIE NR 68 REKTORA UNIWERSYTETU ZIELONOGÓRSKIEGO ZARZĄDZENIE NR 68 REKTORA UNIWERSYTETU ZIELONOGÓRSKIEGO z dnia 10 lipca 2013 roku zmieniające zarządzenie nr 38 Rektora Uniwersytetu Zielonogórskiego z dnia 9 kwietnia 2013 r. w sprawie wysokości opłat

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA KURSU/GRUPY KURSÓW Nazwa w języku polskim: UBEZPIECZENIA ŻYCIOWE Nazwa w języku angielskim: LIFE INSURANCE Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność

Bardziej szczegółowo

Opłata za semestr Kierunek studiów Pierwszy stopień Drugi stopień

Opłata za semestr Kierunek studiów Pierwszy stopień Drugi stopień Załącznik nr 1 do zarządzenia nr 38 Rektora Uniwersytetu Zielonogórskiego z dnia 9 kwietnia 2013 r. Załącznik nr 1 do zarządzenia nr 61 Rektora Uniwersytetu Zielonogórskiego z dnia 25 czerwca 2014 r. 1.

Bardziej szczegółowo

Wyższa Szkoła Technologii Teleinformatycznych w Świdnicy. Dokumentacja specjalności. Systemy komputerowe administracji

Wyższa Szkoła Technologii Teleinformatycznych w Świdnicy. Dokumentacja specjalności. Systemy komputerowe administracji Wyższa Szkoła Technologii Teleinformatycznych w Świdnicy Dokumentacja specjalności Systemy komputerowe administracji prowadzonej w ramach kierunku Informatykana wydziale Informatyki 1. Dane ogólne Nazwa

Bardziej szczegółowo