KONCEPCJA DIAGNOZY. Margaryta Orzechowska. Jak przeprowadzić diagnozę

Wielkość: px
Rozpocząć pokaz od strony:

Download "KONCEPCJA DIAGNOZY. Margaryta Orzechowska. Jak przeprowadzić diagnozę"

Transkrypt

1 51 KONCEPCJA DIAGNOZY Margaryta Orzechowska Jednym z zadań nauczyciela na początku roku szkolnego jest przeprowadzenie diagnozy wstępnej. To szczególnie trudne w przypadku objęcia nowej klasy, bo wtedy taka diagnoza powinna dotyczyć nie tylko poziomu wiedzy i umiejętności uczniów, ale też ich zachowania i podejścia do przedmiotu. Nauczyciele stosują w tym celu najczęściej sprawdziany jest to forma dość wygodna, choć może nie najszczęśliwsza. Sprawdzian da nam tylko bardzo ogólny obraz klasy, a wnioski z jego analizy nie pomogą w pełni zaplanować pracy z uczniami. Taka forma diagnozy może sprawić, że słabsi uczniowie stracą wiarę we własne siły i w konsekwencji nie podejmą prób podwyższania swoich kompetencji. Wrażliwi uczniowie mogą mieć z kolei trudności z nawiązywaniem kontaktów z nauczycielem, który zaczyna od sprawdzianu, a uczniowie zdolni potraktują taką diagnozę jako kolejny łatwy sprawdzian i upewnią się tylko, że nie muszą podejmować specjalnego wysiłku, by osiągnąć bardzo dobre wyniki. 1. Porównywanie liczb 2. Dodawanie i odejmowanie liczb 3. Mnożenie liczb 4. Dzielenie liczb 5. Porównywanie różnicowe 6. Zegary 7. Kalendarz 8. Ważenie 9. Obliczenia pieniężne 10. Figury geometryczne 11. Obwody figur 12. Zadania dodatkowe Ponadto nauczycielowi zazwyczaj brakuje czasu na przekazanie uczniom wniosków z analizy wyników sprawdzianu (lub nauczyciel po prostu nie czuje takiej potrzeby), więc uczniowie nie zyskują szczegółowych informacji o sobie, o swoim poziomie wiedzy i umiejętności. Zamiast sprawdzianu proponuję zatem zabawę z uczniami. Pobawmy się, pozwólmy im samym wybrać zadania, poziom ich trudności, a także decydować o kolejności ich rozwiązywania. Taki sposób diagnozy pozwoli nauczycielowi na obserwację, szczegółową analizę i wnioski, a dzieciom da okazję do aktywności na miarę ich możliwości, pozwoli na powtórzenie wiadomości i na inne spojrzenie na nowego nauczyciela. Jak przeprowadzić diagnozę Przygotowujemy wcześniej zadania dotyczące poszczególnych zagadnień do każdego zagadnienia po trzy zadania z zachowaniem stopnia trudności (np. A łatwe, A B C

2 52 MATERIAŁY B średnie, C trudne). Na początku zajęć wręczamy uczniom mapę zadań może to być tabela lub na przykład plan regat. Mapa zadań zawiera zagadnienia z podstawy programowej klas 1 3. Każdy uczeń sam decyduje, od którego tematu zacznie, a następnie wybiera poziom trudności zadania z danego zagadnienia. Na planie regat zagadnienia przedstawiamy za pomocą żaglówek (zob. rysunek obok). Jeśli uczeń stwierdzi, że zadanie jest dla niego zbyt łatwe lub za trudne, może zmienić swoją decyzję i spróbować rozwiązać zadanie z innego poziomu. Można się umówić z uczniami, że przebieg swoich aktywności będą zapisywać za pomocą symboli na mapie zadań; wtedy dodatkowo mamy możliwość prześledzenia decyzji dziecka i poznania jego możliwości. Na przykład zaznaczanie numerami kolejności wybieranych zadań może dostarczyć informacji na temat zagadnień, w których uczeń czuje się najlepiej. Umieszczenie umownego symbolu S przy danym zadaniu może oznaczać samodzielnie rozwiązałem zadanie, symbolu P potrzebowałem pomocy nauczyciela, symbolu Z zrezygnowałem lub zrobię to zadanie później. Wszystkie zadania razem z podpisaną mapą zadań uczniowie gromadzą (np. w kopertach lub plastikowych koszulkach) i na koniec zajęć oddają nauczycielowi do sprawdzenia. Na takie zajęcia poświęćmy dwie godziny lekcyjne. Zaproponowana tu diagnoza pozwala też na poznanie imion uczniów, obserwowanie ich działań, wspomaganie ich i sporządzanie wstępnych notatek z obserwacji. Czas, jak widać, jest dobrze spożytkowany. Podczas takiej diagnozy uczniowie nie tylko rozwiązują zadania uczą się też oceny swoich możliwości, podejmowania decyzji, bez ryzyka surowej oceny. Dzięki temu zwiększa się ich motywacja do podejmowania wysiłku w celu rozwiązania problemów i zaufanie do nowego, przyjaźnie nastawionego nauczyciela. Oczywiście sprawdzanie zadań i analiza wyników zajmie nauczycielowi więcej czasu, ale czyż korzyści nie są tu większe niż przy sprawdzianie? Na następnych stronach przedstawiam wybrane zadania, które można wykorzystać do przeprowadzenia diagnozy w klasie czwartej szkoły podstawowej. Gotowy do wydruku zestaw obejmujący wszystkie zagadnienia zawarte w mapie zadań oraz plan regat znajdują się na stronie (hasło potrzebne do otwarcia pliku: pa5ezw).

3 53 1. A. Liczby podane poniżej zapisz w kolejności od najmniejszej do największej A. Połącz działania z ich wynikami. 1. B. Na trzech kartonikach umieszczono cyfry 7, 3 i 9. Jakie liczby trzycyfrowe można ułożyć za pomocą tych kartoników? Zapisz te liczby w kolejności od największej do najmniejszej. 3. B. Uzupełnij tabelkę: 1. C. Wpisz w kwadracikach cyfry dobrane tak, aby nierówności były prawdziwe. 57 < 5 < > 1 4 > < 4 < > 1 1 > A. Uzupełnij działania: = 20 7= = = = = 3. C. Uzupełnij grafy: 2. B. Uzupełnij graf: 4. A. Połącz działania z ich wynikami. 2. C. Uzupełnij tabelkę: Liczba a Liczba b Suma liczb a i b

4 54 MATERIAŁY 4. B. Wstaw znak >, < lub =. 4: : 4 63 : : 7 24 : : 6 45 : : 9 56 : : 7 39 : : 7 6. A. Wpisz godziny na zegarach cyfrowych lub dorysuj brakujące wskazówki na tarczach zegarów tak, by zegary wskazywały tę samą godzinę. a) b) 4. C. Na ile osób można podzielić podane na opakowaniach liczby cukierków, aby każda z nich dostała po tyle samo cukierków? Spośród podanych w kółkach liczb wybierz wszystkie poprawne odpowiedzi i je zamaluj. c) d) 6. B. Zegar Kasi spieszy się o kwadrans. Załóżmy, że jest godzina 19:35. Którą godzinę pokaże wtedy zegar Kasi? Wpisz odpowiednie godziny na zegarach cyfrowych i narysuj brakujące wskazówki na tarczach zegarów. 5. A. Małgosia ma 15 lat, a jej brat ma o 6 lat więcej. Ile lat ma brat Małgosi? 5. B. Tomek zapisał na kartce liczbę 69. Marta napisała liczbę o 14 większą od liczby Tomka, a Ola o 14 mniejszą od liczby kolegi. Jakie liczby napisały Marta i Ola? 5. C. O ile większa jest suma liczb 55 i 27 od różnicy tych liczb?

5 55 6. C. Odczytaj, jaką godzinę pokazuje pierwszy zegar wskazówkowy, a następnie narysuj wskazówki na kolejnych zegarach tak, by każdy następny zegar pokazywał godzinę, która była godzinę i 15 minut wcześniej od godziny na poprzednim zegarze. Uzupełnij wskazania zegarów cyfrowych. Najmłodszym dzieckiem z czwórki przyjaciół jest Marek. W roku przestępnym urodziła się Kasia. Marek urodził się w miesiącu, który ma 31 dni. Iza jest o rok młodsza od Kasi. 7. A. Wpisz odpowiednie cyfry rzymskie lub nazwy miesięcy. II X lipiec grudzień IV VIII marzec wrzesień 9. A. Hania planuje kupić w sklepie masło za 5 zł 50 gr, mleko za 2 zł 50 gr, batonik za 2 zł 50 gr i dżem za 6 zł 50 gr. Czy 20 zł wystarczy jej na te zakupy? Jeśli tak ile otrzyma reszty? 9. B. Patrycja chciała rozmienić banknot dziesięciozłotowy. Jakie monety może otrzymać dziewczynka? Podaj cztery możliwe rozwiązania. 9. C. Uzupełnij tabelkę. 7. B. Uzupełnij tabelkę według wzoru. Nazwa towaru Cena za kilogram Waga Wartość Data Liczba dni w miesiącu 3 III 2013 r. 3 marca 2013 r X 2013 r. 1 VIII 2013 r. 14 kwietnia 2013 r. 27 lutego 2013 r. 7. C. Poniżej są przedstawione daty urodzin czwórki przyjaciół. Podkreśl TAK, jeśli zdanie jest prawdziwe, lub NIE jeśli jest fałszywe. ziemniaki 2 zł 50 gr 5 kg cebula 1 zł 50 gr 7 kg marchew 3 zł 13 kg pomidory 5 zł 50 gr 3 kg pietruszka 2 zł 3 i pół kg 11. A. Prostokątne pole z truskawkami ma wymiary 27 m 12 m. Ile metrów niskiego płotu potrzeba, by je ogrodzić? 11. B. Obwód pewnego prostokąta wynosi 14 cm. Jaki obwód ma prostokąt o bokach dłuższych o 2 cm? 11. C. Jakie wymiary może mieć prostokąt, którego obwód wynosi 12 cm? Podaj trzy możliwe rozwiązania. Narysuj trójkąt o takim samym obwodzie.

Edukacja matematyczna

Edukacja matematyczna Edukacja matematyczna 1 Klasa 1 Klasa 2 Klasa3 I półrocze I półrocze I półrocze posługuje się określeniami: mniej, więcej, tyle samo; porównuje liczby, wpisuje znaki , = wykonuje obliczenia z okienkami

Bardziej szczegółowo

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH PO KLASIE 3 SZKOŁY PODSTAWOWEJ Autor: Grażyna Wójcicka Konsultacje: Weronika Janiszewska, Joanna Zagórska, Maria Zaorska, Tomasz Zaorski imię i nazwisko 1 Zapisz

Bardziej szczegółowo

Spis treści. Materiały do wycięcia... A H

Spis treści. Materiały do wycięcia... A H Spis treści Rachunki pamięciowe dodawanie iodejmowanie... 4 O ile więcej, o ile mniej... Rachunki pamięciowe mnożenie i dzielenie. 9 Ile razy więcej, ile razy mniej... 13 Sprawdź, ile umiesz... 15 Dzielenie

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 202 KATA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna

Bardziej szczegółowo

KWIECIEŃ Grupa A 73, 70, 63, 60, 53, 50,, 70 > > 49. : = Sprawdzenie:

KWIECIEŃ Grupa A 73, 70, 63, 60, 53, 50,, 70 > > 49. : = Sprawdzenie: Imię nazwisko, numer dziennika Imię i nazwisko, numer z dziennika KWIECIEŃ Grupa A 1. Podane liczby zapisano według pewnej zasady. Zapisz dwie kolejne liczby. 73, 70, 63, 60, 53, 50,, 2. Otocz pętlą liczbę,

Bardziej szczegółowo

ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej

ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej XVI MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2010 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej

Bardziej szczegółowo

1. Rozwiąż krzyżówkę i zapisz hasło.

1. Rozwiąż krzyżówkę i zapisz hasło. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: 1. Rozwiąż krzyżówkę i zapisz hasło. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1. Nazwa miesiąca, w którym rozpoczynasz rok szkolny. 2. Jeden z dwunastu w roku.

Bardziej szczegółowo

W przyszłość bez barier

W przyszłość bez barier Program zajęć dla dzieci z trudnościami w zdobywaniu umiejętności matematycznych w klasach I III w Szkole Podstawowej w Łysowie realizowany w ramach projektu W przyszłość bez barier PO KL.09.01.02-14-071/13

Bardziej szczegółowo

podręcznik z ćwiczeniami dla klasy drugiej

podręcznik z ćwiczeniami dla klasy drugiej Matematyka 2 podręcznik z ćwiczeniami dla klasy drugiej MNOŻENIE 4 grupy po 3 chłopców to razem 12 chłopców. Można to zapisać za pomocą dodawania: 3+3+3+3=12 lub krócej za pomocą mnożenia: 4. 3=12 czytamy:

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

RAPORT Z ZAKRESU UMIEJĘTNOŚCI MATEMATYCZNYCH. przeprowadzonego w Szkole Podstawowej z Oddziałami Integracyjnymi nr 10. im.

RAPORT Z ZAKRESU UMIEJĘTNOŚCI MATEMATYCZNYCH. przeprowadzonego w Szkole Podstawowej z Oddziałami Integracyjnymi nr 10. im. RAPORT Z WYNIKÓW Z WEWNĄTRZSZKOLNEGO TESTU KOMPETENCJI DRUGOKLASISTY Z ZAKRESU UMIEJĘTNOŚCI MATEMATYCZNYCH przeprowadzonego w Szkole Podstawowej z Oddziałami Integracyjnymi nr 10 im. Polonii w Słupsku

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH

DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH Cele operacyjne Uczeń umie: budować wyrażenia algebraiczne, opuszczać nawiasy, redukować wyrazy podobne, dodawać i odejmować sumy algebraiczne. Metody nauczania

Bardziej szczegółowo

Matematyka test dla uczniów klas drugich

Matematyka test dla uczniów klas drugich Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 2011/20 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko kl... Zadanie 1. Liczba 5 1, 75 jest równa liczbie 6 7 1 A. 2

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z

Bardziej szczegółowo

CO DWIE GŁOWY TO NIE JEDNA

CO DWIE GŁOWY TO NIE JEDNA II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 1. Organizatorem konkursu jest Zespół Szkół nr 4 w Kościanie, nauczyciele Jolanta Niklas, Jolanta Jąder,

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

Działania na ułamkach zwykłych rozwiązywanie zadań

Działania na ułamkach zwykłych rozwiązywanie zadań Działania na ułamkach zwykłych rozwiązywanie zadań 1. Cele lekcji a) Wiadomości 1. Uczeń zna pojęcia sumy, różnicy i iloczynu. 2. Uczeń zna sposób obliczania sumy ułamków zwykłych, różnicy ułamków zwykłych,

Bardziej szczegółowo

60 minut. Powodzenia! Pracuj samodzielnie.

60 minut. Powodzenia! Pracuj samodzielnie. Jedlicze, 6.0.202r...... Szkoła Podstawowa w... imię i nazwisko ucznia klasa VIII Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Drogi Uczniu Jesteś

Bardziej szczegółowo

Matematyka. Repetytorium szóstoklasisty

Matematyka. Repetytorium szóstoklasisty Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

Sprawdzian kompetencji trzecioklasisty

Sprawdzian kompetencji trzecioklasisty Imię i nazwisko... Klasa III....Numer w dzienniku... (wypełnia nauczyciel) Sprawdzian kompetencji trzecioklasisty Zestaw matematyczny Grupa B Instrukcja dla ucznia 1. Upewnij się, czy sprawdzian ma 8 kolejnych

Bardziej szczegółowo

Propozycja zadań na szkolny etap Małej Olimpiady Matematycznej Rok szkolny 2014/2015

Propozycja zadań na szkolny etap Małej Olimpiady Matematycznej Rok szkolny 2014/2015 Propozycja zadań na szkolny etap Małej Olimpiady Matematycznej Rok szkolny 2014/2015 Zadanie 1 Napisz wszystkie liczby trzycyfrowe, które można zbudować z cyfr : 6, 7, 0 tak, aby cyfry się nie powtarzały.

Bardziej szczegółowo

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych.

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. Sprawdzian Zadanie. (0 ). Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz liczbę spośród oznaczonych literami A i B oraz liczbę spośród oznaczonych literami C i D. 27 7 2 A / B A. 3

Bardziej szczegółowo

XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012

XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012 XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń

Bardziej szczegółowo

lic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW / 99

lic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW / 99 lic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW - 4014-304/ 99 Lp TEMAT L POZIOM WYMAGAŃ Uczeń potrafi: g P PP I LICZBY NATURALNE DO 100 1 Pamięciowe dodawanie

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

Szkoła Podstawowa nr 2 im. Floriana Adamskiego w Chełmie Śląskim. Analiza testu diagnostycznego z matematyki dla klas czwartych

Szkoła Podstawowa nr 2 im. Floriana Adamskiego w Chełmie Śląskim. Analiza testu diagnostycznego z matematyki dla klas czwartych Szkoła Podstawowa nr 2 im. Floriana Adamskiego w Chełmie Śląskim Analiza testu diagnostycznego z matematyki dla klas czwartych 2012/2013 Charakterystyka wyników osiągniętych przez uczniów Wskaźniki Wyjaśnienie

Bardziej szczegółowo

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m

Bardziej szczegółowo

Klasa 5. Liczby i działania

Klasa 5. Liczby i działania Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP REJONOWY

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP REJONOWY KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP REJONOWY Numer zadania Poprawna odpowiedź Liczba punktów 1. C 1 2. B 1 3. A 1 4. F, P, P, F 4 5. A 1 6. B 1 7. B 1 8.

Bardziej szczegółowo

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3

Bardziej szczegółowo

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory; Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Sprawdzian kompetencji trzecioklasisty

Sprawdzian kompetencji trzecioklasisty Imię i nazwisko... Klasa III....Numer w dzienniku... (wypełnia nauczyciel) Sprawdzian kompetencji trzecioklasisty Zestaw matematyczny Grupa A Instrukcja dla ucznia 1. Upewnij się, czy sprawdzian ma 8 kolejnych

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ MATEMATYKA

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ MATEMATYKA WPISUJE UCZEŃ KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw zadań zawiera 10 stron (zadania 1 23). Ewentualny brak

Bardziej szczegółowo

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa:

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: LICZBY WYMIERNE I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: A. 66 B. 64 C. 46 D. 44 Zadanie 2 Wskaż jedną poprawną odpowiedź. Liczba

Bardziej szczegółowo

Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach.

Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach. Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach. Opracowała: mgr inż. Monika Grzegorczyk 1. Temat lekcji: Równania pierwszego stopnia z jedną niewiadomą w zadaniach.

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. V.

Scenariusz lekcji matematyki w kl. V. Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

Działania na ułamkach zwykłych powtórzenie wiadomości

Działania na ułamkach zwykłych powtórzenie wiadomości Działania na ułamkach zwykłych powtórzenie wiadomości. Cele lekcji a) Wiadomości. Uczeń zna pojęcia sumy, różnicy i iloczynu. 2. Uczeń zna sposób obliczania sumy ułamków zwykłych, różnicy ułamków zwykłych,

Bardziej szczegółowo

Szkoła Podstawowa w... Nauczyciel... ZADANIA KONKURSOWE DLA UCZNIÓW KLASY I POWODZENIA!!! Czas trwania konkursu: 45 minut A) B) C)

Szkoła Podstawowa w... Nauczyciel... ZADANIA KONKURSOWE DLA UCZNIÓW KLASY I POWODZENIA!!! Czas trwania konkursu: 45 minut A) B) C) Imię i nazwisko.... / 2 Klasa... Szkoła Podstawowa w... Nauczyciel... ZADANIA KONKURSOWE DLA UCZNIÓW KLASY I POWODZENIA!!! Czas trwania konkursu: 45 minut 1. Monika narysowała szlaczek Który znak jest

Bardziej szczegółowo

Diagnoza ta może być przeprowadzona częściowo lub w całości w zależności od decyzji nauczyciela. Propozycja kryteriów do ustalania oceny.

Diagnoza ta może być przeprowadzona częściowo lub w całości w zależności od decyzji nauczyciela. Propozycja kryteriów do ustalania oceny. Diagnoza wstępna ucznia klasy 3. dokonywana na początku trzeciego roku nauki. Diagnoza wstępna poszczególnych sfer rozwoju ucznia. Diagnoza ta może być przeprowadzona częściowo lub w całości w zależności

Bardziej szczegółowo

SYSTEMY ZAPISYWANIA LICZB

SYSTEMY ZAPISYWANIA LICZB Spis treści LICZBY I DZIAŁANIA Rachunki pamięciowe dodawanie i odejmowanie... 3 O ile więcej, o ile mniej... 7 Rachunki pamięciowe mnożenie i dzielenie... 10 Ile razy więcej, ile razy mniej... 12 Dzielenie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut Rozwiązania zadań ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

Klasa Klasa 4. Raport dla ucznia nr 1. Wynik procentowy poszczególnych zadań dla ucznia nr 1

Klasa Klasa 4. Raport dla ucznia nr 1. Wynik procentowy poszczególnych zadań dla ucznia nr 1 62-55 Wilczyn, 19 Raport dla ucznia nr 1 Maksymalna liczba punktów do zdobycia: 3 Uczeń nr 1 Średnia klasy Średnia ogólnopolska liczba punktów 24 21.14 22.94 wynik procentowy 8% 7% 76% Wynik procentowy

Bardziej szczegółowo

1 wskazuje dziesiątki i jedności w liczbach dwucyfrowych. 1 potrafi wskazać na osi liczbowej miejsce danej liczby.

1 wskazuje dziesiątki i jedności w liczbach dwucyfrowych. 1 potrafi wskazać na osi liczbowej miejsce danej liczby. Edukacja matematyczna Pojęcie i wiedza matematyczna: Kl. Wymagania Zgodne z oczekiwaniami ma trudności z uporządkowaniem liczb w zakresie od 0 do 0. nie zauważa, że jedna figura jest powiększeniem lub

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz

Bardziej szczegółowo

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY Imię i nazwisko ucznia... Wypełnia nauczyciel Klasa... OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY Sposób na Wojtka 16 TEST Z MATEMATYKI Czas pracy: 45 minut Liczba punktów do uzyskania: Numer

Bardziej szczegółowo

PODSTAWOWE FIGURY GEOMETRYCZNE

PODSTAWOWE FIGURY GEOMETRYCZNE TEST SPRAWDZAJĄCY Z MATEMATYKI dla klasy IV szkoły podstawowej z zakresu PODSTAWOWE FIGURY GEOMETRYCZNE autor: Alicja Bruska nauczyciel Szkoły Podstawowej nr 1 im. Józefa Wybickiego w Rumi WSTĘP Niniejsze

Bardziej szczegółowo

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych.

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. KONSPEKT DO LEKCJI MATEMATYKI W KL.V TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. CELE LEKCJI: kształcenie umiejętności stosowania zdobytych wiadomości w różnych sytuacjach rzeczywistych utrwalenie

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny. Przykładowe rozwiązania i propozycja punktacji rozwiązań

Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny. Przykładowe rozwiązania i propozycja punktacji rozwiązań Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny Przykładowe rozwiązania i propozycja punktacji rozwiązań Ustalenia do punktowania zadań otwartych: 1. Jeśli uczeń przedstawił obok prawidłowej

Bardziej szczegółowo

1 Ułamek dziesiętny. P 1. Rozszerz ułamek do mianownika 10, 100 lub 1000 i zapisz go w postaci dziesiętnej. c) a) 3 4. b) 4 5.

1 Ułamek dziesiętny. P 1. Rozszerz ułamek do mianownika 10, 100 lub 1000 i zapisz go w postaci dziesiętnej. c) a) 3 4. b) 4 5. 48 Ułamki dziesiętne 4 Ułamki dziesiętne 1 Ułamek dziesiętny P 1. Rozszerz ułamek do mianownika 10, 100 lub 1000 i zapisz go w postaci dziesiętnej. a) 3 4 b) 4 5 c) 7 20 d) 11 250 P 2. Rozszerz ułamek

Bardziej szczegółowo

XXI Krajowa Konferencja SNM

XXI Krajowa Konferencja SNM 1 XXI Krajowa Konferencja SNM AKTYWNOŚCI MATEMATYCZNE Ewa Szelecka (Częstochowa) ewaszel@poczta.onet.pl Małgorzata Pyziak (Rzeszów) mmpskarp@interia.pl Projekty, gry dydaktyczne i podręcznik interaktywny

Bardziej szczegółowo

2. Zapisz liczby za pomocą dodawania. Wśród składników ma znaleźć się liczba 10.

2. Zapisz liczby za pomocą dodawania. Wśród składników ma znaleźć się liczba 10. KARTY PRACY 4 CZĘŚĆ KARTA PRACY NR 61 IMIĘ:... DATA: 1. Zapisz liczby za pomocą dodawania. 64 = 60 + 27 = + 7 55 = + = + 2. Zapisz liczby za pomocą dodawania. Wśród składników ma znaleźć się liczba 10.

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R.

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. I ETAP KOD. PIRAMIDA ( 4 pkt ) Dodaj sąsiednie liczby w każdym wierszu i wejdź na szczyt piramidy.

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B

Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B . Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B Program powstał w celu wyrównania szans edukacyjnych dzieci z brakami w wiadomościach

Bardziej szczegółowo

Ekran tytułowy (menu główne)

Ekran tytułowy (menu główne) Wstęp Ten multimedialny program edukacyjny przeznaczony jest dla uczniów szkół podstawowych. Oferując ciekawe zadania tekstowe, służy przede wszystkim doskonaleniu umiejętności matematycznych. Program

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby naturalne... 7 Ułamki zwykłe, część I... 12 Ułamki zwykłe, część II... 17 Figury na płaszczyźnie... 22 Ułamki dziesiętne... 27 Procenty...

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Zadanie 1.2. Zadanie 1.4. Zadanie 1.6. Zadanie 1.8

Zadanie 1.2. Zadanie 1.4. Zadanie 1.6. Zadanie 1.8 Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Liczba o x większa od y to: A. y x C. y x B. xy D. x + y Iloczyn liczb 2a i b to: A. 2a + b C. 2ab B. 2a b D. 2a b Zadanie 1.3 Zadanie 1.4 Wojtek chce kupić x

Bardziej szczegółowo

8 + 66 =.. 48 + 20 =... 35 + 46 =... 53 7 =... 89 50 =... 72 58 =...

8 + 66 =.. 48 + 20 =... 35 + 46 =... 53 7 =... 89 50 =... 72 58 =... Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2011/2012 Etap szkolny (60 minut) Ryzyko dysleksji [suma punktów].... Imię i nazwisko Klasa 1. Oblicz. 8 + 66 =.. 48 + 20 =...

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

SPRAWDZIAN DIAGNOZUJĄCY KLAS PIĄTYCH

SPRAWDZIAN DIAGNOZUJĄCY KLAS PIĄTYCH KOD UCZNIA SPRAWDZIAN DIAGNOZUJĄCY KLAS PIĄTYCH CZĘŚĆ MATEMATYCZNA Instrukcja dla ucznia. Na tej stronie wpisz swój kod, nie wpisuj nazwiska, imienia ani klasy. 2. Czytaj uważnie wszystkie teksty i zadania.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap wojewódzki 23 lutego 2013 r. Instrukcja dla ucznia Godzina 11.00 Kod ucznia 1. Sprawdź, czy zestaw zawiera 8 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

Matematyka w piątej klasie szkoły podstawowej

Matematyka w piątej klasie szkoły podstawowej Matematyka w piątej klasie szkoły podstawowej WYDAWNICTWA SZKOLNE I PEDAGOGICZNE WARSZAWA 2010 Copyright by Wydawnictwa Szkolne i Pedagogiczne Spółka Akcyjna, 2010 Informacja do zadań od 1. do 5. Strefa

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy IV

Wymagania edukacyjne z matematyki dla klasy IV *na ocenę śródroczną: 1. LICZBY I DZIAŁANIA Wymagania edukacyjne z matematyki dla klasy IV zna pojęcie sumy, różnicy, iloczynu i ilorazu rozumie rolę liczby 0 w dodawaniu i odejmowaniu rozumie rolę liczb

Bardziej szczegółowo

Imię i nazwisko ucznia. Numer w dzienniku. Zestaw M2. Jeśli się pomylisz, otocz zamalowany kwadrat kółkiem i zaznacz inną odpowiedź, na przykład:

Imię i nazwisko ucznia. Numer w dzienniku. Zestaw M2. Jeśli się pomylisz, otocz zamalowany kwadrat kółkiem i zaznacz inną odpowiedź, na przykład: Imię i nazwisko ucznia Klasa Numer w dzienniku Zestaw M2 Instrukcja dla ucznia Zestaw powinien zawierać 13 zadań. Sprawdź, czy jest kompletny. Jeśli zauważysz jakieś braki lub usterki, zgłoś to nauczycielowi.

Bardziej szczegółowo

MATEMATYKA. Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej. Karty pracy

MATEMATYKA. Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej. Karty pracy MATEMATYKA Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej Karty pracy Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Test Zadania wyrównujące Numer zadania Karty

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu, Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie

Bardziej szczegółowo

KARTA PRACY nr 22 IMIĘ:... DATA: 1. Wytnij kartoniki i baw się! Połącz działanie z wynikiem mnożenia.

KARTA PRACY nr 22 IMIĘ:... DATA: 1. Wytnij kartoniki i baw się! Połącz działanie z wynikiem mnożenia. karty pracy 2 część KARTA PRACY nr 22 IMIĘ:... DATA: 1. Wytnij kartoniki i baw się! Połącz działanie z wynikiem mnożenia. 6 6 4 4 15 56 5 2 0 8 7 4 7 8 3 7 10 30 3 4 5 6 21 16 9 9 8 8 18 36 6 7 1 7 12

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad.

Bardziej szczegółowo

II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA

II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA Załącznik nr 8 Część pisemna szkoła podstawowa Kod ucznia Drogi uczniu, przed Tobą zestaw 20 problemów, masz na ich rozwiązanie

Bardziej szczegółowo

BADANIE WYNIKÓW NAUCZANIA z MATEMATYKI wklasieiv po I semestrze

BADANIE WYNIKÓW NAUCZANIA z MATEMATYKI wklasieiv po I semestrze BADANIE WYNIKÓW NAUCZANIA z MATEMATYKI wklasieiv po I semestrze Do rozwiązania masz 21 zadań.dokażdego zadania podane są cztery odpowiedzi, z których tylko jedna jest prawidłowa. Twoim zadaniem jest wybrać

Bardziej szczegółowo

Matematyka. Opis arkusza zadań. Zestaw M1.

Matematyka. Opis arkusza zadań. Zestaw M1. Matematyka. Opis arkusza zadań. Zestaw M1. Numer zadania Obszar badanych umiejętności 1. Rozwiązywanie 2. Umiejętności Podobszar Korzystanie z informacji. Zapis z podstawy programowej Symbolem oznaczono

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010 Etap wojewódzki 13 marca 2010 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

MATEMATYKA. karty pracy klasa 2 gimnazjum

MATEMATYKA. karty pracy klasa 2 gimnazjum MATEMATYKA karty pracy klasa 2 gimnazjum Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Numer zadania Test Karty pracy Zadania wyrównujące Zadania utrwalające Zadania rozwijające

Bardziej szczegółowo

NACIONALINIS EGZAMINŲ CENTRAS

NACIONALINIS EGZAMINŲ CENTRAS 2016 NACIONALINIS EGZAMINŲ CENTRAS Imię, Nazwisko Klasa Kod ucznia STANDARTIZUOTAS TESTAS MATEMATYKA 4 KLASA 1 Wpisz w prostokąt brakującą liczbę. 2899 < < 2901 2 W pudełku mieści się 6 jajek. Rodzina

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 PODSTAWOWE PONADPODSTAWOWE LICZBY I DZAŁANIA porównywać liczby porządkować liczby w kolejności od najmniejszej do największej lub odwrotnie przedstawiać liczby

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA KLASY IV

KONKURS MATEMATYCZNY DLA KLASY IV DLA KLASY IV Zadanie 1. Wartość wyrażenia ( 2 ) : + (100 : 4 +2 6)= wynosi: a)1 b) c) 2 d) 41 Zadanie 2. Klientka płaci banknotem 100- złotowym za 2 kostki masła po zł, 6 jajek po 40 gr., bułek po 1zł,

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem

WYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem WYRAŻENIA ALGEBRAICZNE trening przed sprawdzianem. Zapisz liczbę 5 razy większą od ilorazu liczby x przez liczbę y. Oblicz wartość wyrażenia x y xy dla x = 6 oraz y = -.. Uprość wyrażenie: - 5x (x y) =.

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm

Bardziej szczegółowo

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu

Wymagania z matematyki klasa V Matematyka z plusem. Wymagania. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu Wymagania z matematyki klasa V Matematyka z plusem Wymagania Lp. Czynności Kat. 2(K) 3(P) 4(R) 5(D) 6(W) celu 1. Czyta ze zrozumieniem treści zadań. 2. Sprawdza uzyskane rozwiązania. C/D + + + 3. Znajduje

Bardziej szczegółowo

Matematyka test dla uczniów klas trzecich

Matematyka test dla uczniów klas trzecich Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2009/2010 Czas pracy: 60 minut Ryzyko dysleksji [suma punktów] Imię i nazwisko... kl.3... W zadaniach od 1. do 5. podkreśl poprawne

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap międzyszkolny (60 minut) [suma punktów]..... Imię i nazwisko Nazwa (numer) szkoły, miejscowość W sklepie sportowym

Bardziej szczegółowo

12. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I

12. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I 56 Mirosław Dąbrowski 12. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości podczas

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5

KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KONSPEKT LEKCJI MATEMARTKI DLA KLASY 5 KLASA 5E PROWADZĄCA: Anna Sałyga DZIAŁ PROGRAMOWY: Arytmetyka TEMAT: Dodawanie i odejmowanie liczb mieszanych. CELE: Poziom wiadomości: (kategoria A) uczeń zna algorytm

Bardziej szczegółowo

Matematyka i gry komputerowe

Matematyka i gry komputerowe Matematyka i gry komputerowe Program matematyki w klasach I-III z wykorzystaniem gier komputerowe Autor: mgr Małgorzata Szkabara Wstęp Innowacja programowa pt. Matematyka i gry komputerowe jest propozycją

Bardziej szczegółowo