XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski"

Transkrypt

1 XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski 1

2 Rysunek 1: Elektrody (bramki) definiujące elektrostatyczną boczną kropkę kwantową. Fotografia otrzymana przy użyciu elektronowego mikroskopu skaningowego. 1 Wstęp Obecnie w laboratoriach naukowych prowadzone są intensywne badania nad przyrządami, które mogą wykonywać kwantowe operacje logiczne. Niepełna lista tych przyrządów obejmuje: przyrząd fotonowy, bazujący na nieliniowym efekcie Kerra, optyczne wnęki rezonansowe, mikrofalowe wnęki rezonansowe, pułapki jonowe, wnęki atomowe, bazujące na elektrodynamice kwantowej, atomowe kondensaty Bosego-Einsteina, urządzenia oparte na magnetycznym rezonansie jądrowym, obwody nadprzewodzące ze złączami Josephsona, kropki kwantowe. 2 Kropki kwantowe Na wykładzie tym przedstawię wybrane zagadnienia z zakresu badań nad możliwościami zastosowań sprzężonych kropek kwantowych do realizacji kwantowych operacji logicznych.

3 Rysunek 2: Pionowe kropki kwantowe. Czarna obwódka (pierścień) pokazuje elektrodę bramki, górne pokrycie nanostruktury metalem stanowi elektrodę źródła (drenu). Średnica pierścienia 5 nm. Rysunek 3: (a) Schemat podwójnych sprzężonych kropek kwantowych. Kropki kwantowe tworzą się w warstwie dwuwymiarowego gazu elektronowego (2DEG). Szare pola pokazują obszary wypełnione elektronami. Bramki definiujące (b) pojedynczą kropkę kwantową, (c) podwójną kropkę kwantową. I DOT = prąd płynący przez kropki, I QP C = prąd mierzony przez kwantowy kontakt punktowy. 2

4 Rysunek 4: (a) Bramki definiujące dwie sprzężone kropki kwantowe oraz kwantowe kontakty punktowe (QPC-L, QPC-R). (b) Układ warstw pod bramkami. Uwięzienie elektronów w kropkach kwantowych występuje w wąskim obszarze dolnego heterozłącza GaAs/AlGaAs - UNDOPED. Rysunek 5: (a) Bramki definiujące dwie sprzężone kropki kwantowe oraz kwantowe kontakty punktowe (QL i QR). (b) Wyniki pomiarów przewodności różniczkowej w funkcji napięć przyłożonych do bramek L i P R. Liczby mn (m, n =, 1, 2) oznaczają stany ładunkowe kropek lewej m i prawej n. 3

5 Rysunek 6: Schemat nieniszczącego pomiaru spinu pary elektronowej w stanie singletowym S i trypletowym T. Rysunek 7: Wyniki nieniszczącego pomiaru spinu pary elektronowej dla singletu S i trypletu T. 4

6 Rysunek 8: Schemat potrójnej kropki kwantowej. Rysunek 9: Poczwórna kropka kwantowa. 5

7 Rysunek 1: Profil energii potencjalnej elektronu w nanourządzeniach A i B. 3 Manipulacja stanami spinowymi pary elektronowej w poczwórnej kropce kwantowej A. Kwaśniowski and J. Adamowski, Phys. Rev. B 82 (21) Rozważamy dwa nanourządzenia, oznaczone symbolami A i B, zawierające cztery sprzężone kropki kwantowe. Kropki prawe (wyjściowe) są asymetryczne. Asymetrię tę wprowadzamy przyjmując różne rozmiary i głębokości studni potencjału dla prawych kropek. Energia potencjalna uwięzienia elektronu w poczwórnej kropce kwantowej w modelu 2D U c (r) = Uµν exp{ [(r r µν) 2 /Rµν] 2 p/2 }, (1) µν r = (x, y), µ = l, r, ν = 1, 2 Uµν = głębokość studni potencjału dla kropki QD(µν) (Uµν > ) R µν = zasięg potencjału uwięzienia, który określa rozmiar kropki QD(µν) r µν = wektor położenia centrum kropki QD(µν) parametr p 2 określa twardość potencjału uwięzienia (nachylenie ścian) Dla p < 4 mamy do czynienia z potencjałem miękkim, a dla p 4 potencjał staje się twardy. W tych obliczeniach p = 4. W nanourządzeniu A, potencjał uwięzienia elektronów może być zmieniany przez zmianę napięć bramek definiujących poczwórną kropkę kwantową. W obliczeniach przyjmujemy, że głębokości lewych studni potencjału są takie same. Wprowadzamy minimalną energię W elektronu w lewych studniach potencjału, przy czym W Ul1 = Ul2. Jeżeli napięcie bramek definiujących lewe kropki zmieni się o V g, to energia W zmieni się o W = α V g, 6

8 gdzie α jest współczynnikiem konwersji napięcie-energia. W nanourządzeniu B, potencjał uwięzienia może być modyfikowany przez zmianę napięcia V przyłożonego pomiędzy elektrodami e l i e r, które mogą być elektrodami źródła i drenu. Elektrody e l i e r wytwarzają pole elektryczne F = ( F,, ), gdzie F = V/L, a L jest odległością pomiędzy elektrodami. Zakładamy, że pole elektryczne F jest jednorodne. W zewnętrznym polu elektrycznym F, elektron posiada dodatkową energię potencjalną U(r) wyrażoną wzorem for x < L/2, U(r) = ef x ev/2 for x L/2, (2) ev for x > L/2. Jako energię odniesienia (zero na skali energii) przyjmujemy potencjał elektrochemiczny µ l lewej elektrody, tzn. kładziemy µ l =. Definiujemy całkowitą energię potencjalną elektronu jako U = U c + U. Preparacja stanu początkowego Energia potencjalna elektronów w lewych kropkach jest ustalona na niższym poziomie niż w prawych kropkach. Zapewnia to lokalizację elektronów w lewych kropkach w stanie początkowym. Badamy zmiany lokalizacji pary elektronowej w poczwórnej kropce kwantowej spowodowane zmianami profilu potencjału uwięzienia, które z kolei wynikają z kontrolowanych zmian napięć przyłożonych do elektrod bramek oraz źródła i drenu. W tym celu rozwiązujemy numerycznie jedno- i dwulelektronowe problemy własne. Jednoelektronowy hamiltonian ma postać h j = 2 2m e 2 j + U(r j ), (3) gdzie j = 1, 2, a m e jest efektywną masą pasmową elektronu w pasmie przewodnictwa. Obliczamy jednoelektronowe orbitale ϕ ν (r) i jednoelektronowe poziomy energetyczne E ν, gdzie ν oznacza zbiór orbitalnych liczb kwantowych. Uzupełniamy te orbitale o funkcje własne χ σ z-owej składowej spinu elektronu otrzymując spinorbitale ψ νσ (r) = ϕ ν (r)χ σ, gdzie σ jest spinową liczbą kwantową. 7

9 Rysunek 11: Energia potencjalna U elektronu w poczwórnej kropce kwantowej w funkcji współrzędnej x dla y ustalonego dla wartości odpowiadających odcinkom łączącym centra par kropek l1 r1 i l2 r2 dla nanorządzenia A (a) i B (b). Krzywe niebieska (czerwona) pokazują profile energii potencjalnej dla stanu początkowego (i) i końcowego (f). Następnie rozważamy układ dwuelektronowy opisany za pomocą hamiltonianu e 2 H = h 1 + h 2 + 4πε ε s r 1 r 2, (4) gdzie ε s jest statyczną przenikalnością elektryczną. Dwuelektronowy problem własny rozwiązywany jest metodą mieszania konfiguracji (CI) przy użyciu wyznaczników Slatera Φ k (r 1, r 2 ) = 1 2 [ψ νσ (r 1 )ψ ν σ (r 2) ψ νσ (r 2 )ψ ν σ (r 1)], (5) gdzie k numeruje różne konfiguracje dwuelektronowe (νσν σ ). Funkcja falowa w metodzie CI ma postać Ψ(r 1, r 2 ) = K c k Φ k (r 1, r 2 ), (6) k=1 gdzie K jest całkowita liczbą konfiguracji uwzględnianych w obliczeniach. W obliczeniach przyjęliśmy K = 36 dla nanoukładu A i K = 81 dla nanoukładu B. Dla dwóch elektronów w poczwórnej kropce kwantowej obliczone zostały energie najniższych poziomów singletowego (E S ) i trypletowego (E T ). Przy braku zewnętrznego pola magnetycznego trzy stany trypletowe (T, T ± ) są zdegenerowane. A zatem mamy do czynienia z potrójnie zdegenerowanym poziomem trypletowym E T. Lokalizację pary elektronowej w poczwórnej kropce kwantowej można opisać za pomocą jednoelektronowej gęstości prawdopodobieństwa, która 8

10 (a) -3 E E 1 E 2 E [mev] (b) W W 1 W 2 W E S E TJ 1 E [mev] -7 J [mev] W W 1 W 2 W W [mev] Rysunek 12: (a) Poziomy energetyczne E, E 1 i E 2 stanów jednoelektronowych ϕ, ϕ 1 i ϕ 2 w funkcji energii W dna lewych studni kwantowych dla nanourządzenia A. (b) Energie stanów singletowego (E S, czerwona krzywa) i trypletowego (E T, niebieska krzywa) oraz energia wymiany J = E T E S (zielona krzywa) jako funkcje W dla nanorządzenia A. zdefiniowana jest jako 2 ϱ(r) = j=1 d 2 r 1 d 2 r 2 Ψ (r 1, r 2 )δ(r r j )Ψ(r 1, r 2 ). (7) Implementacja bramki XOR Definiujemy bazę obliczeniową dla pojedynczych kubitów spinowych. Są to spinory α, β, (8) czyli stany własne operatora z-owej składowej spinu elektronu odpowiadające wartościom własnym + /2 and /2. Konstruujemy dwukubitową bazę obliczeniową ze stanów α i β. Stany początkowe Lewe (wejściowe) kropki kwantowe są pojedynczo obsadzone elektronami. Para elektronowa posiada następujące stany o najniższej energii: S a i = 1 2 [ α(1) l1 β(2) l2 α(2) l1 β(1) l2 ], (9) S b i = 1 2 [ β(1) l1 α(2) l2 β(2) l1 α(1) l2 ], (1) T + i = α(1) l1 α(2) l2, (11) 9

11 -3 (a) -35 E [mev] E E 1 E F = F 1 F 2 F 3 (b) E [mev] -9 1 J [mev] E S E TJ -1.5 F = F 1 F 2 F F [kv/cm] Rysunek 13: (a) Poziomy energetyczne E, E 1 i E 2 stanów jednoelektronowych ϕ, ϕ 1 i ϕ 2 w funkcji pola elektrycznego F dla nanourządzenia B. (b) Energie stanów singletowego (E S, czerwona krzywa) i trypletowego (E T, niebieska krzywa) oraz energia wymiany J = E T E S (zielona krzywa) w funkcji pola elektrycznego F dla nanorządzenia B. T i = β(1) l1 β(2) l2, (12) gdzie S a,b i i T +, i oznaczają odpowiednio stany singletowe i trypletowe, (1) i (2) są skrótowymi oznaczeniami zmiennych spinowych elektronów 1 i 2, a wskaźniki l1 i l2 oznaczają lokalizację elektronów odpowiednio w kropkach QD(l1) i QD(l2). Stany końcowe Po zastosowaniu odpowiednich napięć zewnętrznych elektrony tunelują do prawych kropek. Dla nanourządzeń A lub B opisanych parametrami z obszaru II elektrony obsadzają następujące stany kwantowe o najniższych energiach: S f = 1 2 [ α(1) r2 β(2) r2 α(2) r2 β(1) r2 ], (13) T + f = α(1) r1 α(2) r2, (14) T f = β(1) r1 β(2) r2. (15) Po zamianie wskaźników r1 i r2 we wzorach (13), (14) i (15) otrzymamy stany końcowe elektronów w nanourządzeniach opisanych parametrami z obszaru IV. W rezultacie wykonane zostały następujące operacje: S a i S f, (16) S b i S f, (17) T + i T + f, (18) 1

12 15 (a) singlet W (b) triplet W (c) W 1 (d) W (e) W 2 (f) W (g) W 3 (h) W x [nm] x [nm] Rysunek 14: Kontury gęstości jednoelektronowej na płaszczyźnie x y dla singletu (lewa strona) i trypletu (prawa strona) w nanourządzeniu A. Pokazane są wyniki dla wartości W = W, W 1, W 2, W 3 zaznaczonych na rysunku Dwa alternatywne położenia kwantowych kontaktów punktowych zaznaczone są jako i. Pomiar ładunku elektrycznego jednej z prawych kropek pozwala na jednoznaczne wyznaczenie stanu spinowego pary elektronowej. 11

13 15 (a) singlet F (b) triplet F (c) F 1 (d) F (e) F 2 (f) F (g) F 3 (h) F x [nm] x [nm] Rysunek 15: Kontury gęstości jednoelektronowej na płaszczyźnie x y dla singletu (lewa strona) i trypletu (prawa strona) w nanourządzeniu B. Pokazane są wyniki dla wartości pola elektrycznego F = F, F 1, F 2, F 3 zaznaczonych na rysunku Dwa alternatywna położenia kwantowych kontaktów punktowych zaznaczone są jako i. Pomiar ładunku elektrycznego jednej z prawych kropek pozwala na jednoznaczne wyznaczenie stanu spinowego pary elektronowej. 12

14 (a) l1 r1 (b) l1 r l2 r2 l2 r2 singlet (c) l1 r1 (d) l1 r l2 r2 l2 r2 triplet -2-1 x [nm] 1-1 x [nm] 1 2 Rysunek 16: Kontury gęstości jednoelektronowej na płaszczyźnie x y dla singletu [(a) i (b)] i trypletu [(c) i (d)] w nanourządzeniu A. Widać, że obsadzenie prawych kropek kwantowych przez elektrony jest takie samo w każdym stanie spinowym, ponieważ rozmiar kropki QD(r2) jest albo za mały [(a), (c)] albo za duży [(b), (d)] (a) l1 r1 (b) l1 r l2 r2 l2 r2 singlet (c) l1 r1 (d) l1 r l2 r2 l2 r2 triplet -2-1 x [nm] 1-1 x [nm] 1 2 Rysunek 17: Kontury gęstości jednoelektronowej na płaszczyźnie x y dla singletu [(a) i (b)] i trypletu [(c) i (d)] w nanourządzeniu B Widać, że obsadzenie prawych kropek kwantowych przez elektrony jest takie samo w każdym stanie spinowym, ponieważ rozmiar kropki QD(r2) jest albo za mały [(a), (c)] albo za duży [(b), (d)]. 13

15 Rysunek 18: Obszary I-V parametrów R r1 i Ur1 charakteryzujących kropkę QD(r1). Prawa górna wstawka pokazuje w sposób schematyczny lokalizację elektronów o różnych spinach w prawych (wyjściowych) kropkach. W obu nanourządzeniach w obszarach II i IV (szare pola) lokalizacja elektronów w prawych kropkach jest jednoznacznie określona przez ich stany spinowe. Lewa górna wstawka pokazuje powiększenie prostokątnego obszaru na głównym rysunku. Krzywe czerwone (zielone) pokazują granice obszarów I-V dla nanourządzenia A (B). 14

16 a) b) X Y Z (1) (1) (2) 1 1 (3) 1 1 (4) 1 1 (3) (2) (4) Rysunek 19: (a) Tabela prawdy bramki logicznej XOR. (b) Lokalizacja elektronów w stanach spinowych i pokazana schematycznie dla stanu początkowego (strzałki niebieskie) i końcowego (strzałki czerwone) operacji (1-4) zdefiniowanych na rysunku (a). Wyniki (b) otrzymano dla nanourządzenia A z parametrami z obszaru II. T i T f. (19) Podczas tych operacji całkowity spin pary elektronowej jest zachowany. Wynikiem operacji (16), (17), (18) i (19) jest transformacja czterech kubitów wejściowych (początkowych) (9), (1), (11), (12) w trzy kubity wyjściowe (końcowe) (13), (14), (15). W nanourządzeniach A i B o parametrach z obszaru II wszystkie inne stany końcowe posiadają energie wyższe od energii stanów (13), (14), (15). Np. stan singletowy o postaci S f = 1 2 [ α(1) r1 β(2) r2 α(2) r1 β(1) r2 ] (2) nie jest stanem podstawowym w nanourządzeniach o parametrach z obszaru II. Jednakże stan (2) oraz inne stany z obsadzeniem prawych kropek różnym od podanego wzorami (13), (14) i (15) mogą się pojawiać jako stany podstawowe w nanourządzeniach opisanych parametrami z obszarów I, III i V (por. rysunek (18)). W tabeli prawdy [rysunek (19) (a)] X i Y oznaczają wejściowe wartości logiczne, a Z jest wyjściową wartością logiczną. Wejściową wartość logiczną (1) kodujemy jako stan spinowy ( ) elektronu zlokalizowanego w jednej z lewych kropek. Po wykonaniu operacji kwantowy kontakt punktowy () mierzy ładunek elektryczny kropki QD(r1) (QD(r2)). Wynikowe wartości logiczne Z = (1) zdefiniowane są jako stany ładunkowe q(r1) prawej kropki kwantowej QD(r1) następująco: jeżeli q(r1) =, to Z = 1, 15

17 jeżeli q(r1) = e, to Z =. W przypadku użycia kwantowego kontaktu punktowego do mierzenia ładunku elektrycznego kropki QD(r2) wynikowe wartości logiczne zdefiniowane są następująco: jeżeli q(r2) = 2e, to Z = 1, jeżeli q(r2) = e, to Z =. Wnioski Nanourządzenia A i B z parametrami dobranymi z obszarów II i IV wykonują operacje logicznej bramki XOR (por. tabela prawdy, rysunek (19) (a)). Operacje te można zapisać jako X l1 Y l2 Z = X Y r1, (21) gdzie jest dodawaniem modulo 2. Kubit wynikowy Z r1 jest mierzony za pomocą kwantowego kontaktu punktowego jako stan ładunkowy kropki QD(r1). Jeżeli wykonamy pomiar ładunku kropki QD(r2) za pomocą, to kubitem wynikowym jest stan Z = X Y r2. = Nanourządzenia A i B opisane parametrami z obszarów II i IV wykonują operacje klasycznej bramki logicznej XOR. Odpowiednia kwantowa bramka logiczna XOR jest zdefiniowana jako X Y X Z = X Y. (22) Jest to dwukubitowa bramka logiczna równoważna bramce CNOT. Można zauważyć, że stany wynikowe Z operacji (21) i (22) są identyczne, natomiast kubit kontrolny X nie pojawia się w wyniku klasycznej operacji (21). Podsumowanie wyników dla poczwórnych kropek kwantowych w poczwórnej kropce kwantowej o odpowiednio dobranych parametrach można zrealizować transformację początkowo spreparowanego stanu spinowego pary elektronowej w końcowy stan spinowy o jednoznacznie określonej lokalizacji elektronów możliwe jest w pełni elektryczne sterowanie operacjami logicznymi na kubitach spinowych elektryczny odczyt końcowego stanu spinowego (konwersja spinładunek) poczwórna kropka kwantowa jest obiecującym nanoukładem do operacji logicznych: stany wejściowe i wyjściowe (wynikowe) dobrze określone i rozdzielone przestrzennie (kropki lewe i prawe) 16

18 4 Perspektywy obliczeń kwantowych Komputer kwantowy??? Najbardziej obiecujące technologie i urządzenia do wytworzenia komputera kwantowego: komputer optyczny obwody nadprzewodzące kropki kwantowe Jednak wybór optymalnej technologii nie został dotąd dokonany. Nanokomputery obliczenia wykonywane w sposób klasyczny (konwencjonalny) możliwa miniaturyzacja klasycznych układów elektronicznych do 1 nm zjawiska kwantowe mają niekorzystny wpływ na działanie nanokomputera, np. prąd tunelowy przez barierę w pewnym zakresie można te zjawiska eliminować, np. wytwarzając warstwy barier z izolatorów o bardzo dużej przenikalności elektrycznej (azotki) możliwe zastosowanie kropek kwantowych w nanokomputerach Kropka kwantowa zawierająca dużą liczbę elektronów (N 2) zachowuje się jak układ (prawie) klasyczny. Np. energia potrzebna do naładowania kropki dodatkowym elektronem E = e2 C, (23) gdzie C jest pojemnością elektryczną kropki. Jeżeli E k B T, (24) to możliwe jest wykonywanie operacji jednoelektronowych w temperaturze T. = zaniedbywalne straty energii i wydzielanie ciepła = duża szybkość operacji logicznych na pojedynczych elektronach O ile nie możemy przewidzieć szybkiej realizacji technicznej (a tym bardziej komercyjnej) komputera kwantowego, to produkty uboczne badań prowadzonych w tym kierunku mają (lub wkrótce będą miały) zastosowania. Są to technologie i urządzenie kwantowe, a w szczególności: 17

19 tranzystor jednolektronowy tranzystor spinowy jednoelektronowa komórka pamięci litografia kwantowa kryptografia kwantowa 18

Badanie wpływu potencjału uwięzienia i zewnętrznego pola elektrycznego na oddziaływanie wymienne w sprzężonych kropkach kwantowych

Badanie wpływu potencjału uwięzienia i zewnętrznego pola elektrycznego na oddziaływanie wymienne w sprzężonych kropkach kwantowych Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Fizyki i Informatyki Stosowanej Badanie wpływu potencjału uwięzienia i zewnętrznego pola elektrycznego na oddziaływanie wymienne w

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi

Bardziej szczegółowo

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy

Bardziej szczegółowo

Nanostruktury, spintronika, komputer kwantowy

Nanostruktury, spintronika, komputer kwantowy Nanostruktury, spintronika, komputer kwantowy Wykªad dla uczniów Gimnazjum Nr 2 w Krakowie I. Nanostruktury Skala mikrometrowa 1µm (mikrometr) = 1 milionowa cz ± metra = 10 6 m obiekty mikrometrowe, np.

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Spintronika fotonika: analogie

Spintronika fotonika: analogie : analogie Paweł Wójcik, Maciej Wołoszyn, Bartłomiej Spisak W oparciu o wykład wygłoszony podczas konferencji 2nd World Congress of Smart Materials, Singapur, March 2-6, 2016 Wprowadzenie dla niespecjalistów

Bardziej szczegółowo

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych

Bardziej szczegółowo

XII. NANOSTRUKTURY PÓŁPRZEWODNIKOWE Janusz Adamowski

XII. NANOSTRUKTURY PÓŁPRZEWODNIKOWE Janusz Adamowski XII. NANOSTRUKTURY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Wstęp Na wykładzie tym zostaną omówione dwa typy nanostruktur półprzewodnikowych: (1) kropki kwantowe, (2) druty kwantowe (nanodruty). 2 Wprowadzenie

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

Metody symulacji w nanotechnologii

Metody symulacji w nanotechnologii Metody symulacji w nanotechnologii Jan Iwaniszewski A. Formalizm operatorowy Załóżmy, że nasz układ kwantowy posiada dyskretny zbiór funkcji własnych ϕ k, k =,,.... Tworzą one bazę w całej przestrzeni

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Wprowadzenie do struktur niskowymiarowych

Wprowadzenie do struktur niskowymiarowych Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu

Bardziej szczegółowo

dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Zasilacz pierwszego polskiego komputera UMC1 produkowanego seryjnie w ELWRO opracowanego w katedrze kierowanej

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Wpływ efektów interferencyjnych i korelacji kulombowskich na transport elektronowy przez układy kropek kwantowych. Piotr Trocha

Wpływ efektów interferencyjnych i korelacji kulombowskich na transport elektronowy przez układy kropek kwantowych. Piotr Trocha UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Wpływ efektów interferencyjnych i korelacji kulombowskich na transport elektronowy przez układy kropek kwantowych Piotr Trocha Rozprawa doktorska Promotor:

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa

Bardziej szczegółowo

Efekty dwuelektronowe w transporcie ładunku przez kropkę kwantową

Efekty dwuelektronowe w transporcie ładunku przez kropkę kwantową Wydział Fizyki i Informatyki Stosowanej Praca magisterska Rafał Kozik kierunek studiów: fizyka techniczna specjalność: fizyka komputerowa Efekty dwuelektronowe w transporcie ładunku przez kropkę kwantową

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Podstawy Mikroelektroniki

Podstawy Mikroelektroniki Akademia Górniczo-Hutnicza w Krakowie Wydział IEiT Katedra Elektroniki Podstawy Mikroelektroniki Temat ćwiczenia: Nr ćwiczenia 1 Pomiary charakterystyk magnetoelektrycznych elementów spintronicznych-wpływ

Bardziej szczegółowo

Oddziaływania w magnetykach

Oddziaływania w magnetykach 9 Oddziaływania w magnetykach Zjawiska dia- i paramagnetyzmu są odpowiedzią indywidualnych (nieskorelowanych) jonów dia- i paramagnetycznych na działanie pola magnetycznego. Z drugiej strony spontaniczne

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś   Wykład 13 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych. Bartłomiej Szafran

Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych. Bartłomiej Szafran Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych (wybrane wyniki z rozprawy habilitacyjnej) Kraków 12.05.2006 Bartłomiej Szafran Półprzewodnikowe kropki kwantowe

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Projekt FPP "O" Kosma Jędrzejewski 13-12-2013

Projekt FPP O Kosma Jędrzejewski 13-12-2013 Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru

Bardziej szczegółowo

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1 Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.2.

Wykład 21: Studnie i bariery cz.2. Wykład 21: Studnie i bariery cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Przykłady tunelowania: rozpad alfa, synteza

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3 Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Wykład VI. Teoria pasmowa ciał stałych

Wykład VI. Teoria pasmowa ciał stałych Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola

Bardziej szczegółowo

II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych: sprzężenie LS i

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:

Bardziej szczegółowo

Liczby zmiennoprzecinkowe i błędy

Liczby zmiennoprzecinkowe i błędy i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan

Bardziej szczegółowo

Menu. Badające rozproszenie światła,

Menu. Badające rozproszenie światła, Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Elektrostatyczna energia potencjalna. Potencjał elektryczny Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

W5. Komputer kwantowy

W5. Komputer kwantowy W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie

Bardziej szczegółowo

Wstęp do algorytmiki kwantowej

Wstęp do algorytmiki kwantowej Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny

Bardziej szczegółowo