Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA 2.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA 2."

Transkrypt

1 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA 2 Kod przedmiotu EZ1C Kod AK Ćwiczenie pt. OSCYLOSKOP CYFROWY Numer ćwiczenia M 16 Opracował: dr inż. Adam Idźkowski Białystok 2013

2 Wszystkie prawa zastrzeżone. Wszystkie nazwy handlowe i towarów występujące w niniejszej instrukcji są znakami towarowymi zastrzeżonymi lub nazwami zastrzeżonymi odpowiednich firm odnośnych właścicieli. 2

3 Wprowadzenie Celem ćwiczenia jest zapoznanie studentów z właściwościami pomocniczego sprzętu pomiarowego, który będzie używany przez nich w trakcie ćwiczeń laboratoryjnych z Metrologii. W instrukcji tej zawarte są opisy, objaśnienia, wskazówki i pytania kontrolne dotyczące najważniejszych wiadomości z zakresu budowy i zasad działania oscyloskopu cyfrowego. Oscyloskop jest jednym z najważniejszych i najbardziej uniwersalnych przyrządów pomiarowych. Jego cenną zaletą jest zdolność wyświetlania na ekranie nieruchomych obrazów zmiennych w czasie sygnałów elektrycznych. Stanowi to dla inżyniera zajmującego się konstruowaniem układów elektronicznych, czy dla fizyka badającego właściwości materii trudną do przecenienia wartość. Płyta czołowa i interfejs użytkownika Jedną z pierwszych czynności, jakie należy wykonać przed rozpoczęciem obsługi oscyloskopu, jest zaznajomienie się z jego płytą czołową. Rys. 1. Płyta czołowa oscyloskopu serii DS

4 Rys. 2. Wejścia, pokrętła, przyciski. Wejścia Na płycie czołowej znajdują się dwa wejścia (kanały) oscyloskopu oznaczone jako CH1 i CH2 (rys. 2), do których można podłączyć sygnały napięciowe. EXT TRIG jest wejściem zewnętrznego wyzwalania (nie będzie wykorzystywane w ćwiczeniu). Źródlo napięcia elektryczngo Fabryczna sonda lub przewód ekranowany CH1 Oscyloskop Rys. 3. Sposób podłączenia źródła napięcia do wejścia CH1 oscyloskopu. 4

5 Sposób podłączania oscyloskopu do źródła napięcia jest przedstawiony na rys 3. Można to zrobić przy pomocy fabrycznej sondy (rys.4) lub przewodu ekranowanego (rys.5). Rys. 4. Fabryczna sonda przełączana 1x lub 10x (umożliwia wzmocnienie badanego sygnału dziesięciokrotne), przewód z krokodylkiem podłącza się do masy. Rys. 5. Przewód ekranowany z wtykami BNC - sygnał na żyle w środku, masa na obudowach wtyków i ekranie przewodu. 5

6 Aby uniknąć uszkodzenia oscyloskopu, należy pamiętać aby napięcie wejściowe na złączu BNC (wejściu kanału) nie przekraczało wartości Vmax= 400 V Impedancja wejściowa wynosi 1M. Przyciski i pokrętła Przyciski współpracują z menu wyświetlanymi na ekranie oscyloskopu i pozwalają na uzyskanie dostępu do wielu jego własności i menu związanych z kanałami, a także funkcji matematycznych, odniesienia i natychmiastowego dostępu. Pokrętła (SCALE, POSITION) służą do ustawiania współczynnika skali i regulacji położenia przebiegu w kierunku pionowym (napięcie) i poziomym (czas w trybie pracy Y-T lub napięcie w trybie pracy X-Y). VERTICAL oznacza kierunek pionowy, a HORIZONTAL kierunek poziomy (Rys. 6). napięcie w woltach czas w sekundach lub napięcie w woltach Rys. 6. Układ współrzędnych na ekranie oscyloskopu. Przyciski MENU: VERTICAL Przyciski odchylania pionowego (czułości): są związane z wyborem funkcji: MEASURE (pomiar), CURSOR (kursor), ACQUIRE (akwizycja), DISPLAY (ekran), STORAGE (pamięć) i UTILITY (funkcje użytkowe). są związane z menu: CH1 (kanał 1), CH2 (kanał 2), MATH (funkcje matematyczne) i REF (odniesienia); przycisk OFF służy do wyłączenia aktualnie aktywnego przebiegu lub menu. 6

7 HORIZONTAL Przyciski odchylania poziomego (podstawy czasu): TRIGGER Przyciski wyzwalania: RUN CONTROL Przyciski akcji: Przyciski funkcyjne: Pokrętła: są związane z MENU podstawy czasu. są związane z MENU wyzwalania, natychmiastowego ustawienia poziomu wyzwalania na 50% i FORCE - wymuszania wyzwalania. AUTO (oscyloskop sam dobierze ustawienia dla podłączonego sygnału) i RUN/STOP (zatrzymanie przebiegu na ekranie). pięć szarych przycisków umieszczonych od góry do dołu, po prawej stronie ekranu ciekłokrystalicznego służących do wyboru rożnych operacji w aktualnie aktywnym menu. służące do regulacji (ustawiania) położenia przebiegu w kierunku pionowym i poziomym POSITION, wyboru podziałki SCALE oraz poziomu wyzwalania LEVEL. Blok odchylania pionowego ustawienia kanałów Każdy z kanałów oscyloskopu ma własne menu obsługowe, które rozwija po naciśnięciu odpowiedniego z przycisków CH1 lub CH2. Ustawienia wszystkich pozycji menu są przedstawione w poniższej tablicy. Menu Ustawienia Komentarze COUPLING Typ sygnału wejściowego AC DC GND BW LIMIT Ograniczenia szerokości pasma PROBE Sonda DIGITAL FILTER Filtr cyfrowy Volts/div INVERT Odwrócenie Wł. Wył. 1X 10X 100X 1000X Wybranie typu AC blokuje składową d.c. sygnału. Przy wybraniu typu DC przechodzi zarówno składowa d.c. jak i a.c. Wybranie typu GND odłącza sygnał wejściowy. Ogranicza szerokość pasma kanału do 20 MHz w celu redukcji wyświetlania zakłóceń. Po wybraniu,,wył." otrzymuje się pełne pasmo. Ustawić tłumienie sondy tak, aby dopasować je do czułości odchylania pionowego oscyloskopu (domyślnie 1X) - Ustawienia filtru cyfrowego Skokowo (Coarse) Płynnie (Fine) Wł. Wył. Przełącznikiem tym wybiera się zgrubnie rozdzielczość regulacji pokrętłem skali SCALE w sekwencji skoków Dokładne zmiany rozdzielczości małymi skokami między nastawami zgrubnymi. Włączenie funkcji odwrócenia sygnału wejściowego. Przywrócenie oryginalnego wyświetlania przebiegu. 7

8 Rys. 7. Przykładowe przebiegi w dwóch kanałach i menu obsługowe dla kanału CH2. Obsługa pokręteł ustawiania przebiegu w pionie POSITION i czułości SCALE Przy ustawianiu parametrów wyświetlania przebiegu można używać pokręteł regulacji odchylania pionowego. W ten sposób można wyregulować skalę (czułość) i położenie przebiegu na osi pionowej: 1. Regulacja pokrętłem POSITION Pokrętłem tym można przesuwać przebieg wyświetlony na ekranie w dół lub w górę (włącznie z przebiegami uzyskanymi w trybach MATH i REF). Aby porównać przebiegi można przesuwać jeden przebieg nad drugi lub nakładać (nasuwać) je na siebie. 2. Regulacja pokrętłem SCALE Pokrętłem tym można zmieniać rozmiar przebiegu wzdłuż osi pionowej (włącznie z przebiegami uzyskanymi w trybach MATH i REF). W ten sposób można wyświetlony na ekranie przebieg powiększyć (rozciągnąć) lub zmniejszyć w odniesieniu do poziomu masy (ziemi). Jeśli pokrętło Volts/div ustawi się w pozycji Skokowo (regulacja zgrubna), to pokrętłem SCALE można regulować czułość (skalę) oscyloskopu w zakresie od 2 mv do 5 V w sekwencji skoków Jeśli natomiast pokrętło Volts/div ustawi się w pozycji,,płynnie (regulacja dokładna), to pokrętłem SCALE można regulować dokładnie czułość oscyloskopu małymi skokami w zakresach ustawionych zgrubnie. Ustawiając rozmiary 8

9 przebiegu uzyskanego w trybie MATH, można pokrętłem SCALE zmieniać jego amplitudę w zakresie od 0,1% do 1000% w sekwencji skoków Dostęp do regulacji dokładniej pokrętłem,,fine uzyskuje się naciskając pokrętło SCALE. 3. Położenie i czułość można regulować tylko wtedy, gdy na ekranie jest wyświetlony przebieg. Gdy zmieni się położenie przebiegu na osi pionowej, to w lewym dolnym rogu ekranu jest wyświetlany komunikat informujący o tym fakcie. Blok odchylania poziomego Na ekranie oscyloskopu można odczytać ustawioną wartość podstawy czasu (podziałki skali) w jednostkach czasu na działkę. Ze względu na to, ze wszystkie aktywne (wyświetlone) w danym momencie przebiegi wykorzystują tę samą podstawę czasu, oscyloskop wyświetla jedną wartość dla wszystkich aktywnych kanałów, z wyjątkiem, gdy używa się funkcji Delayed Scan (opóźnionego odchylania). Pokrętłami regulacji podstawy czasu można zmieniać skale osi poziomej i położenie. Pozioma oś na środku ekranu stanowi odniesienie czasowe wyświetlanych przebiegów. Zmieniając skale osi poziomej powoduje się zwężanie lub rozciąganie przebiegów wzdłuż tej osi. Pokrętłem regulacji położenia podstawy czasu ustawia się punkt, w którym wyzwalany przebieg pojawia się na ekranie. Pokrętła regulacji podstawy czasu : POSITION: Pokrętłem podstawy czasu POSITION reguluje się położenie przebiegu wyświetlonego na ekranie wzdłuż osi czasu dla wszystkich kanałów, w tym też przebiegów uzyskanych za pomocą funkcji MATH i REF. Rozdzielczość ustawiania tych pokręteł zmienia się wraz ze zmianą wartości podstawy czasu. Oscyloskop przetwarza przebieg analogowy na cyfrowy pobierając dane poszczególnych punktów sygnału. Podstawa czasu pozwala sprawdzić, jak często są przetwarzane poszczególne wartości. SCALE: Aby ustawić wartość podstawy czasu odpowiadającą wymaganiom użytkownika oscyloskopu, należy użyć do tego pokrętło regulacji 9

10 podstawy czasu (skali czasu) SCALE. Pokrętłem SCALE wybiera się wartość podstawy czasu w jednostkach czasu na działkę (współczynnik skali) dla głównej lub opóźnionej podstawy czasu. Gdy uaktywni się funkcje Delayed Scan (odchylanie opóźnione), to szerokość okna będzie zmieniać się przez zmianę podstawy czasu funkcji opóźnionego odchylania. Aby wyświetlić menu podstawy czasu (odchylania poziomego), należy nacisnąć przycisk MENU. Ustawienia tego menu są wyszczególnione w poniższej tablicy: Menu Ustawienia Komentarz DELAYED Opóźnienie Wł. Wył. Wejście w tryb opóźnionego odchylania. Wyłączenie trybu opóźnionego odchylania TIME BASE Tryb pracy (podstawa czasu) Y-T X-Y Przedstawia zależność napięcia na osi pionowej w funkcji czasu na osi poziomej. Przyporządkowuje wartości w kanale CH1 osi X, a wartości w kanale CH2 osi Y. Rys. 8. Znaki i pasek stanu. Ważne uwagi: Y-T: Konwencjonalny format wyświetlania oscyloskopu. Przedstawia on jak napięcie przebiegu (na osi pionowej) zmienia się z czasem (na osi poziomej). 10 Znak ten zaznacza położenie w pamięci punktu wyzwalania. Znak ten [ ] reprezentuje aktualne położenie przebiegu w pamięci. Znak ten zaznacza położenie punktu wyzwalania w oknach przebiegu. Pasek stanu - wyświetlona ustawiona wartość podstawy czasu (głównej podstawy czasu). Pasek stanu - ustawiona wartość offsetu wyzwalania podstawy czasu w odniesieniu do środka okna.

11 X-Y: Format wyświetlania na osi poziomej wartości napięcia sygnału z kanału 1, a na osi pionowej napięcia sygnału z kanału 2. Time/div: Skala osi poziomej (podstawy czasu). Jeśli akwizycja sygnału zostanie zatrzymana (przez naciśnięcie przycisku RUN/STOP), to wyświetlony przebieg można rozciągać lub zmniejszać pokrętłem Time/div. Wyświetlanie w trybie przewijania (płynąca podstawa czasu): Gdy pokrętło Time/div ustawi się na wartość podstawy czasu równą 50 ms/dz lub wolniejszą a rodzaj wyzwalania na Auto, to oscyloskop wejdzie w tryb akwizycji przewijanej. W trybie tym przebieg jest odświeżany w kierunku z lewa na prawo. W trybie przewijania nie ma możliwości wyzwalania ani ustawiania wartości podstawy czasu przebiegów. Pomiar automatyczny Aby wyświetlić menu ustawień pomiaru automatycznego, należy nacisnąć przycisk MEASURE. Oscyloskop umożliwia pomiar 20 parametrów w trybie automatycznym włącznie z: Vpp (wartość międzyszczytowa), Vmax, Vmin, Vtop (wartość szczytowa), Vbase (wartość podstawy), Vamp (amplituda), Vavg (wartość średnia), Vrms (wartość skuteczna), Overshoot (wyskok napięcia). Preshoot (wyskok poprzedzający), Freq (częstotliwość), Period (okres), Rise Time (czas narastania), Fall Time (czas opadania), Delay 1 2 (opóźnienie), Delay 1 2 (opóźnienie), Width (szerokość impulsu dodatniego), -Width (szerokość impulsu ujemnego), +Duty (współczynnik wypełnienia dodatniego sygnału impulsowego), -Duty (współczynnik wypełnienia ujemnego sygnału impulsowego); włącznie z pomiarami 10 napięć i 10 czasów. Menu Ustawienia Komentarz Źródło (Source) CH1 CH2 Kanał 1 jako źródło mierzonego sygnału, Kanał 2 jako źródło mierzonego sygnału. Napięcie - Napięcie jako mierzony parametr. (Voltage) Czas - Czas jako mierzony parametr. (Time) Wyczyść (Clear) - Kasowanie wyników pomiaru wyświetlony na ekranie. 11

12 Pokaż wszystko (Display All) Wył. Wł. Wyłączyć wyświetlanie wszystkich wyników pomiaru. Włączyć wyświetlanie wszystkich wyników pomiaru. Pomiar napięcia (rys. 9) Menu Vpp Vmax Vmin Vavg Vrms Komentarz Wartość międzyszczytowa napięcia. Napięcie maksymalne przebiegu Napięcie minimalne przebiegu Wartość średnia napięcia przebiegu (AVG) Wartość skuteczna napięcia przebiegu (RMS) Pomiar czasu (rys. 9 i 10) Menu Częstotliwość (Freq) Komentarz Częstotliwość przebiegu (f) Okres Okres przebiegu (T) (Period) Czas Czas narastania przebiegu (tr) narastania (Rise time) Czas opadania Czas opadania przebiegu (tf) (Fall time) 12

13 Vmax Vrms Vpp T Rys. 9. Wybrane parametry sygnału sinusoidalnego. Rys. 10. Czas narastania i opadania impulsu napięciowego. Uwaga: Wyniki pomiarów automatycznych będą wyświetlane w dole ekranu. W tym samym czasie można wyświetlić maksymalnie trzy wyniki. Następny, nowy wynik pomiaru spowoduje przesunięcie na ekranie poprzednich wyników w lewo, o jedno miejsce. Pomiar z użyciem kursorów Funkcja pomiaru za pomocą kursora (przycisk CURSOR znajdujący się w menu na płycie czołowej) ma trzy tryby pracy: ręczny (Manual), śledzenie (Track) i pomiar automatyczny (Auto Measure). Ręczny (manual): W tym trybie pracy na ekranie są wyświetlane dwa kursory równoległe. Można przesuwać je wzdłuż wyświetlonego przebiegu tak, aby móc mierzyć napięcie lub czas sygnału. Otrzymane w ten sposób wyniki są 13

14 wyświetlane w kwadratach poniżej menu. Przed użyciem kursorów należy sprawdzić, czy ustawiono wcześniej źródło sygnału (Signal Source) tj. wybrano do pomiaru odpowiedni kanał. Śledzenie (track): W tym trybie pracy na ekranie są wyświetlane dwa kursory krzyżowe. Kursor krzyżowy automatycznie ustawia swoją pozycję na ekranie. Można regulować położenie kursora na przebiegu w poziomie kręcąc pokrętłem regulacji przebiegu w poziomie POSITION sprzężonego z kursorem. Oscyloskop wyświetla wtedy wartości współrzędnych położenia kursora w kwadratach poniżej menu. Pomiar automatyczny (Auto Measure): Ten tryb jest aktywny wyłącznie przy pomiarach automatycznych. W trakcie pomiaru parametrów oscyloskop wyświetli kursory automatycznie. Kursory te przedstawiają fizyczne znaczenia tych pomiarów. Uwaga: Tryb pomiaru automatycznego (Auto Masure) z użyciem kursorów jest skuteczny wyłącznie przy włączonych pomiarach automatycznych. Tryb ręczny (manual) Menu Ustawienia Komentarz Tryb (Mode) Ręczny Ręczny tryb pomiaru z użyciem kursorów (manual) Typ (Type) Źródło (Source) Napięcie (Voltage) Czas (Time) CH1 CH2 MATH Użyć kursor, aby zmierzyć parametry napięciowe przebiegu Użyć kursor, aby zmierzyć parametry czasowe przebiegu Wybrać jako źródło sygnału kanał 1 Wybrać jako źródło sygnału kanał 2 Wybrać jako źródło operacje matematyczne W trybie tym oscyloskop mierzy wartości współrzędnych kursorów dla napięcia lub czasu oraz przyrost (różnicę) wartości tych parametrów między dwoma punktami zaznaczonymi kursorami. 14

15 Menu Ustawienia Komentarz Napięcie Kręcąc pokrętłem regulacji położenia w pionie POSITION, Kursor A przesunąć kursor A w kierunku pionowym. Kręcąc Czas pokrętłem regulacji położenia w pionie POSITION, przesunąć kursor A w kierunku poziomym. Kursor B Napięcie Czas Kręcąc pokrętłem regulacji położenia w pionie POSITION, przesunąć kursor B w kierunku pionowym. Kręcąc pokrętłem regulacji położenia w pionie POSITION, przesunąć kursor B w kierunku poziomym. Uwaga: Przesuwanie kursora jest możliwe wyłącznie przy wyświetlonym menu funkcji kursora. Ważne wskazówki: Kursory napięciowe: Kursory napięciowe są wyświetlane na ekranie w postaci poziomych linii i służą do pomiaru parametrów wzdłuż osi pionowej. Kursory czasowe: Kursory czasowe są wyświetlane na ekranie w postaci pionowych linii i służą do pomiarów wzdłuż osi poziome 15

16 Sprzęt pomiarowy (wypełnić) Zadania Oscyloskop cyfrowy Generator funkcyjny Dekada rezystancyjna Dekada pojemnościowa Producent Typ Numer seryjny Zadanie 1 Pomiary amplitudy, okresu, wartości skutecznej Zmierzyć przy pomocy oscyloskopu amplitudę, okres, wartość międzyszczytową i wartość skuteczną ustawionych przez prowadzącego sygnałów okresowych. Schemat systemu pomiarowego przedstawiony jest na rys. 11. Generator funkcyjny przewód ekranowany Oscyloskop Rys. 11. Schemat układu pomiarowego. Wyniki odczytów i obliczeń zanotować w Tabelach 1 i 2. Uwaga: Zalecane jest, aby to zadanie każdy student wykonał samodzielnie! 16

17 SYGNAŁ SINUSOIDALNY Tabela 1. Wartości amplitudy i okresu wyznaczone na podstawie podziałki oscyloskopu oraz współczynników odchylania pionowego i poziomego. Współczynnik odchylania pionowego CH1 (lub CH2) Amplituda sygnału w centymetrach Amplituda w jednostkach napięcia Współczynnik odchylania poziomego Time Okres sygnału w centymetrach Okres sygnału w jednostkach czasu a y =...mv/cm, V/cm niepotrzebne skreślić h y =...cm Vmax = a y h y...mv, V niepotrzebne skreślić a x =... s/cm, ms/cm, s/cm niepotrzebne skreślić h x =...cm T = a x h x... s, ms, s niepotrzebne skreślić Tabela 2. Pomiary automatyczne amplitudy i okresu (przycisk MEASURE). Amplituda w jednostkach napięcia Wartość skuteczna (RMS) w jednostkach napięcia Okres sygnału w jednostkach czasu Vmax =...mv, V niepotrzebne skreślić Vrms =...mv, V niepotrzebne skreślić T =... s, ms, s niepotrzebne skreślić Zapisać przebieg z ekranu oscyloskopu na pendrive (przycisk STORAGE), typ pliku CSV. Przyciskiem EXTERNAL otwiera się katalog plików zapisanych na pendrive. Dalej: przycisnąć NEW FILE, wprowadzić nazwę pliku i przycisnąć SAVE. W sprawozdaniu należy: Otworzyć pliki CSV w arkuszu kalkulacyjnym MS Excel (najlepiej z poziomu menu Dane, Z tekstu). Dane liczbowe w pliku CSV są oddzielone przecinkami. Dodatkowo wartości liczbowe w pliku są z kropkami i należy zamienić je na przecinki (Znajdź, Zamień). Wtedy można sporządzić wykres punktowy). Zamieścić przebiegi z tytułami i opisami osi w sprawozdaniu. Zaznaczyć na nich Vpp, Vmax, Vrms, T. 17

18 Zadanie 2 - Pomiar przesunięcia fazowego pomiędzy napięciem i prądem oraz wartości skutecznej prądu w dwójniku szeregowym RC Rys. 12 a. Napięcie i prąd są zgodne w fazie. Rys. 12 b. Napięcie jest opóźnione względem prądu o Δt. W przypadku obciążenia czysto rezystancyjnego kąt fazowy pomiędzy napięciem a prądem wynosi Δφ=φ u -φ i =0. Oznacza to, że napięcie i prąd są zgodne w fazie (rys. 12 a). W przypadku obciążenia czysto pojemnościowego kąt fazowy pomiędzy napięciem a prądem wynosi Δφ=φ u -φ i = -90. Przesunięcie fazowe pomiędzy napięciem i prądem zasilającym dwójnik RLC zawiera się w przedziale <-90º; +90º>. W obwodzie RC napięcie jest opóźnione względem prądu (rys. 12 b). Opóźnienie Δt należy zmierzyć przy pomocy oscyloskopu w sekundach i przeliczyć na kąt fazowy φ w stopniach. Rys. 13. Schemat połączeń (G- generator, R dekada rezystancyjna, C dekada pojemnościowa, CH1 i CH2 kanały oscyloskopu). 18

19 Kolejność czynności: 1) Połączyć obwód według rys. 13. Dołączyć do czarnego pudełka dekady: rezystancyjną i pojemnościową, generator funkcyjny G i oscyloskop. Dane: C = 0,054 F; Vpp = 6 V; f = 15 khz, R z zakresu od 0 do 250 Ω. (lub inne wartości podane przez prowadzącego) 2) Zmierzyć okres T u sinusoidy napięcia zasilającego obwód. 3) Zmierzyć przy pomocy kursorów opóźnienie Δt pomiędzy przebiegami w obu kanałach. 4) Obliczyć przesunięcie fazowe pomiędzy przebiegami korzystając z zależności 360 t. T u 5) Wyniki pomiarów i obliczeń wpisać do Tabeli 3. 6) Obliczyć wartość skuteczną prądu płynącego przez ten obwód. Tabela 3. Wyniki: wartości skuteczne napięć i prądu, okres, przesunięcie fazowe. Ustawiona wartość rezystancji R=...Ω Okres Opóźnienie T u Δt μs μs Kąt fazowy Δφ Vrms(1) (CH1) Vrms(2) (CH2) Irms=Vrms(2)/150Ω V mv ma 19

20 W sprawozdaniu należy: Zamieścić obliczenia teoretycznej wartości kąta fazowego pomiędzy napięciem a prądem dla odczytanej wartości R z rezystora dekadowego oraz podanych wartości C i f. Porównać teoretyczną wartość kąta fazowego z wartością zmierzoną przy pomocy oscyloskopu. Zadanie 3 Wyznaczenie wartości rezystancji/pojemności, przy zadanej wartości przesunięcia fazowego pomiędzy napięciem i prądem w dwójniku szeregowym RC. Dane np: C = 0,054 F; Vpp = 6 V; f = 15 khz, Δφ z zakresu od -20 do -50º (lub inne wartości podane przez prowadzącego). Zadanie 4 - Wyznaczanie charakterystyki amplitudowej i fazowej transmitancji napięciowej w obwodzie RC. Transmitancję napięciowo-napięciową czwórnika w stanie jałowym (I 2 =0) określamy jako iloraz napięcia wyjściowego do napięcia wejściowego. W ogólnym przypadku jest ona liczbą zespoloną. Charakterystyką amplitudową tej transmitancji nazywamy stosunek amplitudy/wartości skutecznej napięcia wyjściowego do amplitudy/wartości skutecznej napięcia wejściowego. Charakterystyką fazową nazywamy przebieg wartości argumentu tej transmitancji w funkcji częstotliwości f (lub pulsacji ω). K u ( K U u U ( j ) U ( ) ( j ) 2 Ku ( ) 1( j ) e j arg K u ( ) 2 ) U1( ), arg K u ( ) arg U 2 ( ) arg U 1( ) 0 I 0 2 I 1 I 2 U 1 czwórnik U 2 wejście I 1 I 2 wyjście Rys. 14. Parametry wejściowe i wyjściowe czwórnika. 20

21 Badany układ jest filtrem dolnoprzepustowym o częstotliwości granicznej 1 f gr. 2 RC Częstotliwość graniczna tego filtru jest to wartość częstotliwości, dla której kończy się pasmo przepustowe filtru. Stosunek amplitud U 2 /U 1 równa się wtedy. Dla uproszczenia oznaczeń przyjmijmy dalej, że: K ( ), arg K u ( ). u K u R G U 1 C U 2 CH 2 CH 1 Rys. 15. Szeregowy obwód RC (G - generator funkcyjny, CH1 i CH2 kanały oscyloskopu). Kolejność czynności: 1. W układzie z rys. 15 nastawić na generatorze sygnał sinusoidalny o amplitudzie U 1 =5 V. Dla każdej wartości częstotliwości f w zakresie od 100 Hz do 1 MHz zmierzyć amplitudę napięcia wyjściowego U 2 oraz przesunięcie Δt w czasie pomiędzy napięciem wyjściowym i wejściowym (uwaga: oba przebiegi muszą być ustawione symetrycznie względem osi czasu, a przesunięcie należy mierzyć przy pomocy kursorów). 21

22 2. Obliczyć moduł transmitancji K u. Obliczyć przesunięcie fazowe Δφ ze wzoru t 2 2 f t. T Wyniki pomiarów i obliczeń zapisywać w tabeli 4. Tabela 4. Wyniki pomiarów i obliczeń. f khz 0,1 0,2 0, U 2 V K u - Δt Δφ μs rad f khz U 2 V K u - Δt Δφ μs rad Parametry obwodu RC: R=10 kω, C=1 nf W sprawozdaniu należy: Narysować charakterystykę amplitudową transmitancji K u w funkcji częstotliwości f. Narysować charakterystykę fazową transmitancji K u w funkcji częstotliwości f. Obliczyć i zaznaczyć na wykresach częstotliwość graniczną f gr. Zastosować na osi częstotliwości podziałkę logarytmiczną. Charakterystyki sporządzić w programie MS Excel lub wykreślić na papierze milimetrowym. 22

23 Literatura 1. Bolkowski S.: Teoria obwodów elektrycznych, WNT Warszawa Chwaleba A., Poniński M., Siedlecki A.: Metrologia elektryczna, WNT Warszawa Osiowski J., Szabatin J.: Podstawy teorii obwodów T.1, WNT Warszawa Kamieniecki A.: Współczesny oscyloskop: budowa i pomiary, Wydawnictwo BTC Legionowo Rydzewski J. : Pomiary oscyloskopowe, WNT Warszawa RIGOL DS5000 instrukcja obsługi (user manual). Wymagane wiadomości 1. Parametry podstawowych przebiegów okresowych. 2. Definicje wartości średniej i skutecznej przebiegu okresowego. 3. Dzielnik napięcia. 4. Przebieg modułu i kąta fazowego impedancji elementów R L C połączonych szeregowo i równolegle. 5. Wykresy wskazowe dla połączeń szeregowych i równoległych elementów R L C. 6. Czwórnik, definicje transmitancji i stałej czasowej w szeregowym obwodzie RC. 7. Definicja i podstawowe charakterystyki przy rezonansie napięć w szeregowym obwodzie RLC. 23

24 Wymagania BHP Warunkiem przystąpienia do praktycznej realizacji ćwiczenia jest zapoznanie się z instrukcją BHP i instrukcją przeciw pożarową oraz przestrzeganie zasad w nich zawartych. Wybrane urządzenia dostępne na stanowisku laboratoryjnym mogą posiadać instrukcje stanowiskowe. Przed rozpoczęciem pracy należy zapoznać się z instrukcjami stanowiskowymi wskazanymi przez prowadzącego. W trakcie zajęć laboratoryjnych należy przestrzegać następujących zasad. Sprawdzić, czy urządzenia dostępne na stanowisku laboratoryjnym są w stanie kompletnym, nie wskazującym na fizyczne uszkodzenie. Sprawdzić prawidłowość połączeń urządzeń. Załączenie napięcia do układu pomiarowego może się odbywać po wyrażeniu zgody przez prowadzącego. Przyrządy pomiarowe należy ustawić w sposób zapewniający stałą obserwację, bez konieczności nachylania się nad innymi elementami układu znajdującymi się pod napięciem. Zabronione jest dokonywanie jakichkolwiek przełączeń oraz wymiana elementów składowych stanowiska pod napięciem. Zmiana konfiguracji stanowiska i połączeń w badanym układzie może się odbywać wyłącznie w porozumieniu z prowadzącym zajęcia. W przypadku zaniku napięcia zasilającego należy niezwłocznie wyłączyć wszystkie urządzenia. Stwierdzone wszelkie braki w wyposażeniu stanowiska oraz nieprawidłowości w funkcjonowaniu sprzętu należy przekazywać prowadzącemu zajęcia. Zabrania się samodzielnego włączania, manipulowania i korzystania z urządzeń nie należących do danego ćwiczenia. W przypadku wystąpienia porażenia prądem elektrycznym należy niezwłocznie wyłączyć zasilanie stanowisk laboratoryjnych za pomocą wyłącznika bezpieczeństwa, dostępnego na każdej tablicy rozdzielczej w laboratorium. Przed odłączeniem napięcia nie dotykać porażonego. 24

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA. Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu TS1C 200 008 Kod AK Ćwiczenie pt.

Bardziej szczegółowo

Ćwiczenie 3. Wprowadzenie do obsługi oscyloskopu

Ćwiczenie 3. Wprowadzenie do obsługi oscyloskopu Ćwiczenie 3 Wprowadzenie do obsługi oscyloskopu Program ćwiczenia: 1. Funkcja samonastawności (AUTO) 2. Ustawianie parametrów osi pionowej 3. Ustawianie parametrów osi poziomej 4. Ustawienia układu wyzwalania

Bardziej szczegółowo

Ćwiczenie nr 28. Badanie oscyloskopu analogowego

Ćwiczenie nr 28. Badanie oscyloskopu analogowego Ćwiczenie nr 28 Badanie oscyloskopu analogowego 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania oraz nabycie umiejętności posługiwania się oscyloskopem analogowym. 2. Dane znamionowe

Bardziej szczegółowo

Ćwiczenie M3 BADANIE PRZEBIEGÓW NAPIĘCIOWYCH ZA POMOCĄ MULTIOSCYLOSKOPU

Ćwiczenie M3 BADANIE PRZEBIEGÓW NAPIĘCIOWYCH ZA POMOCĄ MULTIOSCYLOSKOPU Laboratorium Podstaw Miernictwa Wiaczesław Szamow Ćwiczenie M3 BADANIE PRZEBIEGÓW NAPIĘCIOWYCH ZA POMOCĄ MULTIOSCYLOSKOPU opr. tech. Mirosław Maś Uniwersytet Przyrodniczo - Humanistyczny Siedlce 2011 1.

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU

Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU Podstawy użytkowania i pomiarów za pomocą OSCYLOSKOPU Spis treści Wstęp...2 1. Opis podstawowych przełączników regulacyjnych oscyloskopu...3 1.1 Przełączniki sekcji odchylania pionowego (Vertical)...3

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Program ćwiczenia: 1. Pomiar częstotliwości z wykorzystaniem licznika 2. Pomiar okresu z wykorzystaniem licznika 3. Obserwacja działania pętli synchronizacji

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

BADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM

BADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Pomiary elektryczne wielkości nieelektrycznych 2 Kod przedmiotu:

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.

Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Program ćwiczenia: 1. Pomiar częstotliwości z wykorzystaniem licznika 2. Pomiar okresu z wykorzystaniem licznika 3. Obserwacja działania pętli synchronizacji

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

1. Przygotowanie oscyloskopu do pomiaru skompensowanie sondy pomiarowej.

1. Przygotowanie oscyloskopu do pomiaru skompensowanie sondy pomiarowej. Ćwiczenie 8 Pomiary z wykorzystaniem oscyloskopu Program ćwiczenia 1. Przygotowanie oscyloskopu do pomiaru skompensowanie sondy pomiarowej. 2. Pomiar podstawowych parametrów sygnałów o różnych kształtach:

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego ĆWICZENIE LABORATORYJNE TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się ze wzmacniaczem różnicowym, który

Bardziej szczegółowo

Analizy zakłóceń elektromagnetycznych w zakresie częstotliwości radiofalowych RF

Analizy zakłóceń elektromagnetycznych w zakresie częstotliwości radiofalowych RF Laboratorium Kompatybilności Elektromagnetycznej Analizy zakłóceń elektromagnetycznych w zakresie częstotliwości radiofalowych RF EMI10 EMI EMC Training System AMITEC ELECTRONICS LTD. URUCHAMIANIE SPRZĘTU

Bardziej szczegółowo

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych

Bardziej szczegółowo

Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników

Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników Przetwarzanie energii elektrycznej w fotowoltaice Ćwiczenie 12 Metody sterowania falowników wer. 1.1.2, 2016 opracowanie: Łukasz Starzak Politechnika Łódzka, Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

POMIARY PARAMETRÓW PRZEPŁYWU POWIETRZA

POMIARY PARAMETRÓW PRZEPŁYWU POWIETRZA POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS 04456 Ćwiczenie nr

Bardziej szczegółowo

1 Badanie aplikacji timera 555

1 Badanie aplikacji timera 555 1 Badanie aplikacji timera 555 Celem ćwiczenia jest zapoznanie studenta z podstawowymi aplikacjami układu 555 oraz jego działaniem i właściwościami. Do badania wybrane zostały trzy podstawowe aplikacje

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

DSO8060 Hantek oscyloskop cyfrowy, generator DDS, multimetr cyfrowy, miernik częstotliwości

DSO8060 Hantek oscyloskop cyfrowy, generator DDS, multimetr cyfrowy, miernik częstotliwości Gotronik PPHU Dane aktualne na dzień: 29-01-2017 06:47 Link do produktu: /dso8060-hantek-oscyloskop-cyfrowy-generator-dds-multimetr-cyfrowy-miernikczestotliwosci-p-74.html DSO8060 Hantek oscyloskop cyfrowy,

Bardziej szczegółowo

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika Przystawka oscyloskopowa z analizatorem stanów logicznych Seria DSO-29xxA&B Skrócona instrukcja użytkownika Zawartość zestawu: Przystawka DSO-29XXA lub DSO-29XXB Moduł analizatora stanów logicznych Sondy

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Ćw. 2: Wprowadzenie do laboratorium pomiarowego

Ćw. 2: Wprowadzenie do laboratorium pomiarowego Ćw. 2: Wprowadzenie do laboratorium pomiarowego Wstęp Celem ćwiczenia jest zapoznanie się z zasilaczem, multimetrem, generatorem, oraz oscyloskopem. Wymagane umiejętności po wykonaniu ćwiczenia: - Podłączenie

Bardziej szczegółowo

Układy i Systemy Elektromedyczne

Układy i Systemy Elektromedyczne UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 2 Elektroniczny stetoskop - głowica i przewód akustyczny. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

DPS-3203TK-3. Zasilacz laboratoryjny 3kanałowy. Instrukcja obsługi

DPS-3203TK-3. Zasilacz laboratoryjny 3kanałowy. Instrukcja obsługi DPS-3203TK-3 Zasilacz laboratoryjny 3kanałowy Instrukcja obsługi Specyfikacje Model DPS-3202TK-3 DPS-3203TK-3 DPS-3205TK-3 MPS-6005L-2 Napięcie wyjściowe 0~30V*2 0~30V*2 0~30V*2 0~60V*2 Prąd wyjściowy

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

Przetwarzanie AC i CA

Przetwarzanie AC i CA 1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA INSTRUKCJA DO ĆWICZENIA Temat: Pomiary oscyloskopowe. Budowa oscyloskopu 1. Cel ćwiczenia Poznanie obsługi i zasad wykorzystania oscyloskopu do obserwacji i pomiarów amplitudy napięcia przebiegów elektrycznych.

Bardziej szczegółowo

Lekcja 80. Budowa oscyloskopu

Lekcja 80. Budowa oscyloskopu Lekcja 80. Budowa oscyloskopu Oscyloskop, przyrząd elektroniczny służący do badania przebiegów czasowych dla na ogół szybkozmiennych impulsów elektrycznych. Oscyloskop został wynaleziony przez Thomasa

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

OBSŁUGA OSCYLOSKOPU. I. Cel ćwiczenia: Poznanie budowy, zasady działania, obsługi oraz podstawowych zastosowań oscyloskopu.

OBSŁUGA OSCYLOSKOPU. I. Cel ćwiczenia: Poznanie budowy, zasady działania, obsługi oraz podstawowych zastosowań oscyloskopu. Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie z ćwiczenia nr Temat ćwiczenia: PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA imię i nazwisko OBSŁGA OSCYLOSKOP rok szkolny klasa grupa data wykonania

Bardziej szczegółowo

OSCYLOSKOP. Panel oscyloskopu

OSCYLOSKOP. Panel oscyloskopu OSCYLOSKOP Oscyloskop jest uniwersalnym przyrządem pomiarowym, stosowanym do obserwacji odkształconych przebiegów elektrycznych i pomiaru ich parametrów. Odpowiednio dobrany układ pracy oscyloskopu pozwala

Bardziej szczegółowo

Ćwiczenie F3. Filtry aktywne

Ćwiczenie F3. Filtry aktywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ 1 Ćwiczenie F3 Filtry aktywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 7

Instrukcja do ćwiczenia laboratoryjnego nr 7 Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Interfejs analogowy LDN-...-AN

Interfejs analogowy LDN-...-AN Batorego 18 sem@sem.pl 22 825 88 52 02-591 Warszawa www.sem.pl 22 825 84 51 Interfejs analogowy do wyświetlaczy cyfrowych LDN-...-AN zakresy pomiarowe: 0-10V; 0-20mA (4-20mA) Załącznik do instrukcji obsługi

Bardziej szczegółowo

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Program ćwiczenia: 1. Pomiar bezpośredni napięcia stałego multimetrem cyfrowym 2. Pomiar bezpośredni napięcia stałego multimetrem

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE

POMIARY OSCYLOSKOPOWE Ćwiczenie 51 E. Popko POMIARY OSCYLOSKOPOWE Cel ćwiczenia: wykonanie pomiarów wielkości elektrycznych charakteryzują-cych przebiegi przemienne. Zagadnienia: prąd przemienny, składanie drgań, pomiar amplitudy,

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C

ELEMENTY ELEKTRONICZNE TS1C Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO

Bardziej szczegółowo

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem

Bardziej szczegółowo

Wprowadzenie do obsługi multimetrów analogowych i cyfrowych oraz analiza błędów i niepewności pomiarowych

Wprowadzenie do obsługi multimetrów analogowych i cyfrowych oraz analiza błędów i niepewności pomiarowych Ćwiczenie 1&2 (Elektronika i Telekomunikacja) Wprowadzenie do obsługi multimetrów analogowych i cyfrowych oraz analiza błędów i niepewności pomiarowych Program ćwiczenia: 1. Pomiar bezpośredni napięcia

Bardziej szczegółowo

Ćwiczenie 4: Pomiar parametrów i charakterystyk wzmacniacza mocy małej częstotliwości REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 4: Pomiar parametrów i charakterystyk wzmacniacza mocy małej częstotliwości REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie : Pomiar parametrów i charakterystyk wzmacniacza mocy małej

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

Ćwiczenie 12 Przetworniki analogowo-cyfrowe i cyfrowo-analogowe budowa i zastosowanie.

Ćwiczenie 12 Przetworniki analogowo-cyfrowe i cyfrowo-analogowe budowa i zastosowanie. Ćwiczenie 12 Przetworniki analogowo-cyfrowe i cyfrowo-analogowe budowa i zastosowanie. Program ćwiczenia: 1. Obserwacja i badanie działania toru przetwarzania A/C-C/A 2. Wyznaczenie charakterystyk i błędów

Bardziej szczegółowo

1.2 Funktory z otwartym kolektorem (O.C)

1.2 Funktory z otwartym kolektorem (O.C) Wydział EAIiIB Laboratorium Katedra Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 4. Funktory TTL cz.2 Data wykonania: Grupa (godz.): Dzień tygodnia:

Bardziej szczegółowo

Digital REAL - TIME Oscilloscope. TDS 210 Tektronix TDS 1002 Tektronix

Digital REAL - TIME Oscilloscope. TDS 210 Tektronix TDS 1002 Tektronix Digital REAL - TIME Oscilloscope TDS 210 Tektronix TDS 1002 Tektronix I. POJĘCIA PODSTAWOWE II. WYŚWIETLANY EKRAN III. PRZYKŁADY PRACY Z OSCYLOSKOPEM Opracował : Krzysztof SUŁOWSKI April 2002 - 2 - - 3

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STDIA DZIENNE e LABOATOIM PZYZĄDÓW PÓŁPZEWODNIKOWYCH Ćwiczenie nr Pomiar częstotliwości granicznej f T tranzystora bipolarnego Wykonując

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU

POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE INSTRUKCJA UŻYTKOWANIA PRZYSTAWKI PCSU1000 WRAZ Z OPROGRAMOWANIEM Warszawa 2016 SPIS TREŚCI 1. WSTĘP... 3 2. INSTALACJA SPRZĘTU

Bardziej szczegółowo

BADANIE DOLNOPRZEPUSTOWEGO FILTRU RC

BADANIE DOLNOPRZEPUSTOWEGO FILTRU RC Laboratorium Podstaw Elektroniki Wiaczesław Szamow Ćwiczenie E BADANIE DOLNOPRZEPSTOWEGO FILTR RC opr. tech. Mirosław Maś Krystyna Ługowska niwersytet Przyrodniczo - Humanistyczny Siedlce 0 . Wstęp Celem

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI OSCYLOSKOPY SERII DS5000

INSTRUKCJA OBSŁUGI OSCYLOSKOPY SERII DS5000 INSTRUKCJA OBSŁUGI OSCYLOSKOPY SERII DS5000 02-784 Warszawa, Janowskiego 15 tel./fax (0-22) 641-15-47, 644-42-50 http://www.ndn.com.pl e-mail: ndn@ndn.com.pl Bezpieczeństwo obsługi Aby uniknąć uszkodzenia

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

Zastosowania nieliniowe wzmacniaczy operacyjnych

Zastosowania nieliniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

b) Zastosować powyższe układy RC do wykonania operacji analogowych: różniczkowania, całkowania

b) Zastosować powyższe układy RC do wykonania operacji analogowych: różniczkowania, całkowania Instrukcja do ćwiczenia UKŁADY ANALOGOWE (NKF) 1. Zbadać za pomocą oscyloskopu cyfrowego sygnały z detektorów przedmiotów Det.1 oraz Det.2 (umieszczonych na spadkownicy). W menu MEASURE są dostępne komendy

Bardziej szczegółowo

Badanie wzmacniacza operacyjnego

Badanie wzmacniacza operacyjnego Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt 1. Cel ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem napięć i poborem mocy w obwodach trójfazowych połączonych w trójkąt:

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod

Bardziej szczegółowo

Mobilne przyrządy pomiarowe. Skopometry firmy Hantek

Mobilne przyrządy pomiarowe. Skopometry firmy Hantek 1 Mobilne przyrządy pomiarowe. Skopometry firmy Hantek, Marcin Zając Mobilne przyrządy pomiarowe. Skopometry firmy Hantek Złożoność nowoczesnych urządzeń elektronicznych stawia przyrządom pomiarowym nowe

Bardziej szczegółowo

Opis ultradźwiękowego generatora mocy UG-500

Opis ultradźwiękowego generatora mocy UG-500 R&D: Ultrasonic Technology / Fingerprint Recognition Przedsiębiorstwo Badawczo-Produkcyjne OPTEL Sp. z o.o. ul. Otwarta 10a PL-50-212 Wrocław tel.: +48 71 3296853 fax.: 3296852 e-mail: optel@optel.pl NIP

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

Spis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka Kod przedmiotu: ESC00 009 (studia stacjonarne)

Bardziej szczegółowo

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10 Politechnika iałostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ENS1200 013 DNE OWOD TRÓJFOWEGO ODORNKEM POŁĄONYM W TRÓJKĄT Numer ćwiczenia

Bardziej szczegółowo

MATRIX. Zasilacz DC. Podręcznik użytkownika

MATRIX. Zasilacz DC. Podręcznik użytkownika MATRIX Zasilacz DC Podręcznik użytkownika Spis treści Rozdział Strona 1. WSTĘP 2 2. MODELE 2 3 SPECYFIKACJE 3 3.1 Ogólne. 3 3.2 Szczegółowe... 3 4 REGULATORY I WSKAŹNIKI.... 4 a) Płyta czołowa.. 4 b) Tył

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

REGULOWANE ZASILACZE DC SERIA DPD

REGULOWANE ZASILACZE DC SERIA DPD REGULOWANE ZASILACZE DC SERIA DPD 3 WYJŚCIOWY KLASA LABORATORYJNA INSTRUKCJA OBSŁUGI SPIS TREŚCI 1. Wstęp 2. Informacje i wskazówki dotyczące bezpieczeństwa 3. Ogólne wskazówki 4. Specyfikacje 5. Regulatory

Bardziej szczegółowo

ASTOR IC200ALG320 4 wyjścia analogowe prądowe. Rozdzielczość 12 bitów. Kod: B8. 4-kanałowy moduł ALG320 przetwarza sygnały cyfrowe o rozdzielczości 12

ASTOR IC200ALG320 4 wyjścia analogowe prądowe. Rozdzielczość 12 bitów. Kod: B8. 4-kanałowy moduł ALG320 przetwarza sygnały cyfrowe o rozdzielczości 12 2.11 MODUŁY WYJŚĆ ANALOGOWYCH IC200ALG320 4 wyjścia analogowe prądowe, rozdzielczość 12 bitów IC200ALG321 4 wyjścia analogowe napięciowe (0 10 VDC), rozdzielczość 12 bitów IC200ALG322 4 wyjścia analogowe

Bardziej szczegółowo

Zastosowania pomiarowe oscyloskopu analogowego

Zastosowania pomiarowe oscyloskopu analogowego LABORATORIUM METROLOGII Wydział Elektrotechniki i Informatyki Katedra Automatyki i Metrologii Ćwiczenie nr.7 Zastosowania pomiarowe oscyloskopu analogowego Cel ćwiczenia: Zapoznanie studentów z budową,

Bardziej szczegółowo

Licznik prędkości LP100 rev. 2.48

Licznik prędkości LP100 rev. 2.48 Licznik prędkości LP100 rev. 2.48 Instrukcja obsługi programu PPH WObit mgr inż. Witold Ober 61-474 Poznań, ul. Gruszkowa 4 tel.061/8350-620, -800 fax. 061/8350704 e-mail: wobit@wobit.com.pl Instrukcja

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

Cyfrowy regulator temperatury

Cyfrowy regulator temperatury Cyfrowy regulator temperatury Atrakcyjna cena Łatwa obsługa Szybkie próbkowanie Precyzyjna regulacja temperatury Bardzo dokładna regulacja temperatury Wysoka dokładność wyświetlania wartości temperatury

Bardziej szczegółowo