WPŁYW MOCOWANIA ELEMENTU PÓŁPRZEWODNIKOWEGO NA JEGO PRZEJŚCIOWĄ IMPEDANCJĘ TERMICZNĄ

Wielkość: px
Rozpocząć pokaz od strony:

Download "WPŁYW MOCOWANIA ELEMENTU PÓŁPRZEWODNIKOWEGO NA JEGO PRZEJŚCIOWĄ IMPEDANCJĘ TERMICZNĄ"

Transkrypt

1 ELEKTRYKA 2014 Zeszyt 1 (229) Rok LX Krzysztof GÓRECKI, Janusz ZARĘBSKI Akademia Morska w Gdyni WPŁYW MOCOWANIA ELEMENTU PÓŁPRZEWODNIKOWEGO NA JEGO PRZEJŚCIOWĄ IMPEDANCJĘ TERMICZNĄ Streszczenie. W pracy przedstawiono wyniki badań wpływu sposobu mocowania elementu półprzewodnikowego na jego przejściową impedancję termiczną. Opisano zastosowaną przez autorów metodę pomiaru tego parametru oraz wyniki pomiarów czasowych przebiegów przejściowej impedancji termicznej wybranych typów tranzystorów pracujących przy różnych warunkach mocowania. Przy wykorzystaniu autorskiego programu ESTYM wyznaczono wartości parametrów modelu przejściowej impedancji termicznej i przeanalizowano wpływ sposobu mocowania na wartości tych parametrów. Badania przeprowadzono zarówno dla elementów pracujących pojedynczo, jak i dla analogowego układu scalonego oraz tranzystorów pracujących na wspólnym radiatorze. Słowa kluczowe: przejściowa impedancja termiczna, model termiczny, zjawiska termiczne, elementy półprzewodnikowe INFLUENCE OF THE MOUNTING OF A SEMICONDUCTOR DEVICE ON ITS TRANSIENT THERMAL IMPEDANCE Summary. In the paper some results of investigations of the influence of the manner of mounting semiconductor devices on its transient thermal impedance are presented. The applied by the authors the method of measurements of this parameter is described and some results of measurements of waveforms of the transient thermal impedance of selected types of transistors operating at different mounting conditions are shown. With the use of the authors program ESTYM the values of parameters of the model of the transient thermal impedance were estimated. The influence of the manner of mounting manner on the value of these parameters is analysed. Investigations were passed both for devices operating one by one, as and for the analog integrated circuit and transistors situating on the common heat-sink. Keywords: transient thermal impedance, thermal model, thermal phenomena, semiconductor devices 1. WPROWADZENIE Istotny wpływ na właściwości elementów półprzewodnikowych ma temperatura ich wnętrza [1, 2]. Wartość tej temperatury jest uzależniona od temperatury otoczenia oraz

2 58 K. Górecki, J. Zarębski skuteczności odprowadzania generowanego w nim ciepła [3, 4, 5]. Parametrem charakteryzującym zdolność elementu półprzewodnikowego do odprowadzania ciepła jest przejściowa impedancja termiczna Z(t). Parametr ten mierzony jest zwykle przy wykorzystaniu pośrednich impulsowych metod elektrycznych opisanych m.in. w pracach [6, 7, 8]. Na potrzeby komputerowej analizy układów elektronicznych stosowany jest opis analityczny przebiegu Z(t) za pomocą wzoru [1, 5, 9] Z( t) R th 1 N i1 t a i exp thi (1) gdzie R th oznacza rezystancję termiczną, a i to współczynniki wagowe odpowiadające poszczególnym termicznym stałym czasowym thi, natomiast N jest liczbą tych stałych czasowych. Jak wynika m.in. z wcześniejszych prac autorów [9, 10, 11], parametry opisujące przebieg Z(t) zależą m.in. od mocy wydzielanej w elemencie, temperatury otoczenia oraz wielkości radiatora. W cytowanych pracach rozpatrywane są właściwości cieplne pojedynczych elementów. Tymczasem, typową sytuacją jest jednoczesna praca wielu elementów elektronicznych umieszczonych w jednym urządzeniu i wzajemnie sprzężonych ze sobą termicznie przez wspólną obudowę, wspólną płytkę drukowaną lub wspólny radiator. W pracy przedstawiono wyniki badań wpływu sposobu mocowania na przejściową impedancję termiczną dwóch elementów półprzewodnikowych: tranzystora bipolarnego średniej mocy oraz tranzystora Darlingtona mocy. Na podstawie uzyskanych wyników badań przedyskutowano wpływ mocowania tranzystora na parametry opisującego jego przejściową impedancję termiczną oraz wpływ wzajemnych sprzężeń termicznych elementów umieszczonych we wspólnej strukturze półprzewodnikowej oraz na wspólnym radiatorze na wzajemną przejściową impedancję termiczną. 2. METODA POMIARU Prezentowane w niniejszej pracy wyniki pomiarów uzyskano przy wykorzystaniu pośredniej metody elektrycznej i krzywej chłodzenia [6]. W metodzie tej parametrem termoczułym PT jest napięcie na spolaryzowanym w kierunku przewodzenia złączu p-n, przy przepływie przez to złącze prądu o ustalonej, małej wartości. Pomiar wykonywany jest w trzech etapach. W pierwszym etapie pomiaru przez badany element płynie prąd pomiarowy o małej wartości i mierzona jest wartość parametru termoczułego PT przy temperaturze wnętrza elementu równej temperaturze otoczenia. Po ustaleniu się wartości parametru PT wyznaczane

3 Wpływ mocowania elementu półprzewodnikowego na jego przejściową 59 jest nachylenie F charakterystyki termometrycznej PT(T) przy wykorzystaniu kalibracji jednopunktowej [12]. W drugim etapie pomiaru Z(t) badany element pobudzany jest falą prostokątną mocy o wypełnieniu d bliskim jedności (d = 0,999), co zapewnia praktycznie pobudzenie badanego elementu uskokiem mocy. Przy wysokim poziomie wydzielanej mocy mierzone są wartości zaciskowych prądów i napięć elementu, niezbędne do określenia wartości wydzielanej w nim mocy, natomiast przy niskim poziomie mocy mierzone są wartości PT, niezbędne do wyznaczenia wartości temperatury wnętrza badanego elementu. Pomiary trwają do chwili ustalenia się wartości parametru PT. W etapie trzecim, po uzyskaniu stanu ustalonego, następuje przełączenie badanego elementu do warunków zasilania odpowiadających warunkom kalibracji charakterystyki termometrycznej i rejestrowany jest czasowy przebieg parametru termoczułego aż do uzyskania wartości temperatury wnętrza elementu równej temperaturze otoczenia. Przy pomiarze własnej przejściowej impedancji termicznej parametr termoczuły jest parametrem elementu (grzejnika), w którym wydzielana była moc w drugim etapie pomiaru, natomiast przy wyznaczaniu wzajemnej przejściowej impedancji termicznej rejestrowany jest przebieg czasowy zmian parametru termoczułego innego elementu (czujnika) sprzężonego termicznie z grzejnikiem. Na podstawie zmierzonego przebiegu czasowego PT(t) wyznaczany jest przebieg własnej lub wzajemnej przejściowej impedancji termicznej ze wzoru t PT t 0 1 PT Z ( t) F (2) P0 gdzie P 0 jest amplitudą impulsów mocy wydzielanej w grzejniku w drugim etapie pomiaru. 3. WYNIKI BADAŃ Wykorzystując metodę pomiaru Z(t) opisaną w poprzednim rozdziale zmierzono przebiegi Z(t) tranzystora BC211 pracującego przy różnych warunkach chłodzenia. Uzyskane przebiegi przedstawiono na rys. 1. Rozważano 4 sposoby mocowania badanego tranzystora: tranzystor bez radiatora (krzywa a), tranzystor umieszczony na radiatorze aluminiowym o wymiarach 25x14x9 mm (krzywa b), tranzystor umieszczony na radiatorze aluminiowym o wymiarach 100x92x9 mm (krzywa c) oraz tranzystor bez radiatora umieszczony w zamkniętym pojemniku teflonowym (krzywa d).

4 Z(t) [K/W] 60 K. Górecki, J. Zarębski W tabeli 1 zebrano wartości parametrów modelu przejściowej impedancji termicznej tranzystora BC211, odpowiadające warunkom mocowania tego elementu rozważanym na rys. 1. Wartości tych parametrów wyznaczono przy wykorzystaniu autorskiego programu ESTYM [9] BC211 0,0001 0,001 0,01 0, t [s] d b a c Rys. 1. Zmierzone przebiegi Z(t) tranzystora BC211 przy różnych warunkach chłodzenia Fig. 1. Measured waveforms of the Z(t) of transistor BC211 at different cooling conditions Tabela 1 Wartości parametrów modelu Z th (t) tranzystora BC211 pracującego przy różnym mocowaniu Parametr Krzywa a Krzywa b Krzywa c Krzywa d R th [K/W] 168,4 60,87 23,19 194,9 a 1 0,865 0,631 0,088 0,185 th1 [s] 81,7 252,4 691,2 326 a 2 0,023 0,199 0,262 0,733 th2 [s] 61,17 2,115 3,175 79,85 a 3 0,013 0,053 0,136 0,018 th3 [s] 5,99 0,0191 0,886 0,348 a 4 0,018 0,101 0,04 0,034 th4 [ms] 313,2 2,17 500,8 10,24 a 5 0,013 0,016 0,074 0,026 th5 [ms] 136,4 1,09 63,45 1,32 a 6 0,021 0,168 0,004 th6 [ms] 9,69 8,93 0,04 a 7 0,035 0,229 th7 [ms] 1,71 1,39 a 8 0,01 0,162 th8 [ms] 0,04 0,16 Analizując uzyskane wyniki pomiarów, można łatwo zauważyć, że sposób mocowania istotnie wpływa na przebieg przejściowej impedancji termicznej. W zakresie małych wartości czasu, nieprzekraczających 2 s, przebiegi przejściowej impedancji termicznej uzyskane przy wszystkich rozważanych warunkach chłodzenia są praktycznie takie same, gdyż w tym zakresie o jej przebiegu decyduje konstrukcja obudowy elementu. Różnice między uzyskanym przebiegiem Z(t) są wyraźnie widoczne w zakresie dużych czasów. W tym zakresie widać, że sposób mocowania wpływa zarówno na wartość rezystancji termicznej, jak i na czas niezbędny do uzyskania stanu ustalonego. W rozważanym przypadku wartość

5 Z(t) [K/W] Wpływ mocowania elementu półprzewodnikowego na jego przejściową 61 rezystancji termicznej zmienia się nawet dziesięciokrotnie, a czas niezbędny do uzyskania stanu ustalonego nawet tysiąckrotnie. Wartości rezystancji termicznej wyznaczone za pomocą programu ESTYM przyjmują wartości z zakresu od około 23 K/W dla tranzystora umieszczonego na dużym radiatorze do prawie 195 K/W dla tranzystora umieszczonego w pojemniku teflonowym. Z kolei, dominująca termiczna stała czasowa ma najmniejszą wartość, równą około 82 s, dla tranzystora bez radiatora. Wraz ze wzrostem objętości radiatora wartość najdłuższej termicznej stałej czasowej rośnie i dla dużego radiatora osiąga ponad 690 s. Warto jednak zauważyć, że na skutek wysokiej skuteczności konwekcji, dla rozważanego systemu chłodzenia największą wartość ma współczynnik wagowy a 2 związany z termiczną stałą czasową równą 3,175 s. Na rys. 2 przedstawiono zmierzone przebiegi przejściowej impedancji termicznej w tranzystorze Darlingtona mocy umieszczonym na radiatorze wykonanym z kształtki A4129 o długości 142 mm. Tranzystor Darlintona BU323A zawiera dwa tranzystory bipolarne (wejściowy i wyjściowy), dwa rezystory oraz diodę [13]. Pomiary wykonano przy wydzielaniu w badanym elemencie mocy równej około 30 W. Przy tej wartości mocy ciepło jest generowane głównie w tranzystorze wyjściowym. Ciepło to powoduje wzrost temperatury nie tylko tranzystora wyjściowego, ale także tranzystora wejściowego oraz innych przyrządów półprzewodnikowych umieszczonych na tym samym radiatorze. Na rysunku tym krzywa Z 11 (t) reprezentuje własną przejściową impedancję termiczną tranzystora wyjściowego, charakteryzującą proces samonagrzewania w tranzystorze wyjściowym. Z kolei, krzywa Z 12 (t) reprezentuje wzajemną przejściową impedancję termiczną między tranzystorem wejściowym a wyjściowym, charakteryzującą wzajemne sprzężenia termiczne między tranzystorami zawartymi w rozważanej strukturze tranzystora Darlingtona przez wspólną strukturę półprzewodnikową. Krzywa Z M (t) oznacza wzajemną przejściową impedancję termiczną, charakteryzującą wzajemne sprzężenia termiczne między dwoma tranzystorami Darlingtona umieszczonymi na wspólnym radiatorze. 3,5 3 2,5 2 1,5 1 0,5 BU323A Z 11 (t) Z 12 (t) Z M (t) 0 0,001 0,01 0, t [s] Rys. 2. Zmierzone przebiegi własnej i wzajemnych przejściowych impedancji termicznych w tranzystorze Darlingtona Fig. 2. Measured waveforms of own and mutual transient thermal impedance in Darlington transistor

6 62 K. Górecki, J. Zarębski Jak można zauważyć, zgodnie z oczekiwaniami największe wartości przyjmuje własna przejściowa impedancja termiczna, a wzajemne przejściowe impedancje termiczne są tym mniejsze, im większa jest odległość między sprzężonymi elementami. W tabeli 2 zebrano, uzyskane za pomocą programu ESTYM, wartości parametrów modelu przejściowej impedancji termicznej dla krzywych przedstawionych na rys. 2. Tabela 2 Wartości parametrów modelu własnej i wzajemnych przejściowych impedancji termicznych tranzystora Darlingtona BU323A pracującego na dużym radiatorze Parametr Z 11 (t) Z 12 (t) Z M (t) R th [K/W] 3,37 2,95 1,64 a 1 0,381 0,435 0,763 th1 [s] 1609,4 1433,3 1498,8 a 2 0,121 0,082 0,237 th2 [s] 538,2 317,25 432,6 a 3 0,172 0,258 th3 [s] 14,15 9,459 a 4 0,208 0,121 th4 [s] 3,619 2,519 a 5 0,062 0,05 th5 [ S] 278,5 310,55 a 6 0,05 0,042 th6 [ S] 14,45 32,49 a 7 0,006 0,012 th7 [ S] 0,04 4,12 Uzyskane przebiegi przejściowych impedancji termicznych oraz wartości parametrów modelu Z(t) potwierdzają, że temperatura maleje wraz ze wzrostem odległości od źródła ciepła. Wartość rezystancji termicznej własnej osiąga 3,37 K/W, a wartość rezystancji termicznej wzajemnej między tranzystorami umieszczonymi na wspólnym radiatorze jest ponaddwukrotnie mniejsza. Z kolei, najdłuższa termiczna stała czasowa w opisie wszystkich przejściowych impedancji termicznych przyjmuje podobne wartości z zakresu od 1400 do 1600 s. Warto zauważyć, że na przebiegach Z 11 (t) oraz Z 12 (t) wyraźnie widać narastanie już dla czasów t > 1 ms, natomiast przebieg Z M (t) aż do czasu t równego około 20 s praktycznie przyjmuje zerową wartość. W tym ostatnim przypadku element nagrzewa się od zewnątrz, tzn. od radiatora. 4. PODSUMOWANIE Z przedstawionych danych pomiarowych wynika, że sposób mocowania elementu półprzewodnikowego wpływa w istotny sposób na przebieg jego przejściowej impedancji termicznej. Warto zwrócić uwagę na fakt, że zastosowanie radiatora powoduje istotny spadek wartości rezystancji termicznej, a utrudnienie konwekcji poprzez zamknięcie elementu

7 Wpływ mocowania elementu półprzewodnikowego na jego przejściową 63 w pojemniku teflonowym powoduje wzrost wartości tego parametru nawet o 15%. Wzrost rozmiarów radiatora powoduje wydłużanie czasu niezbędnego do uzyskania stanu ustalonego. Jednak przy bardzo dużych rozmiarach radiatora czas ustalania przebiegu Z(t) ulega znacznemu skróceniu, co odpowiada prawie idealnemu chłodzeniu badanego elementu. W przypadku badania tranzystora Darlingtona mocy stwierdzono istnienie znacznie silniejszych sprzężeń termicznych między elementami umieszczonymi we wspólnej obudowie niż elementami w różnych obudowach umieszczonych na wspólnym radiatorze. W rozpatrywanym w pracy przypadku różnice wartości rezystancji termicznej są niemal dwukrotne. W przypadku sprzężenia termicznego elementów umieszczonych na wspólnym radiatorze stwierdzono, że inercja termiczna jest w tym przypadku znacznie większa niż dla elementów zawartych we wspólnej strukturze półprzewodnikowej. Przeprowadzone przez autorów pomiary i obliczenia dowodzą, że wartości parametrów modelu termicznego są uzależnione od sposobu mocowania elementu, a znaczenie wzajemnych sprzężeń termicznych między elementami półprzewodnikowymi może mieć bardzo istotne znaczenie z punktu widzenia oceny ich stanu cieplnego. Dlatego w celu weryfikacji poprawności projektu systemu chłodzenia elementu półprzewodnikowego celowy jest pomiar własnej i wzajemnych przejściowych impedancji termicznych elementów wchodzących w skład rozważanego układu. PODZIĘKOWANIE Projekt został sfinansowany ze środków Narodowego Centrum Nauki przyznanych na podstawie decyzji numer DEC-2011/01/B/ST7/ BIBLIOGRAFIA 1. Zarębski J.: Modelowanie, symulacja i pomiary przebiegów elektrotermicznych w elementach półprzewodnikowych i układach elektronicznych. Prace Nauk. WSM w Gdyni, Gdynia Mawby P.A., Igic P.M., Towers M.S.: Physically based compact device models for circuit modelling applications. Microelectronics Journal 2001, Vol. 32, p Blackburn D.L.: Temperature Measurements of Semiconductor Devices A Review. 20 th IEEE Semiconductor Thermal Measurement and Menagement Symposium SEMI- THERM, 2004, p Bagnoli P.E., Casarosa C., Ciampi M., Dallago E.: Thermal Resistance Analysis by Induced Transient (TRAIT) Method for Power Electronic Devices Thermal

8 64 K. Górecki, J. Zarębski Characterization Part I: Fundamentals and Theory. IEEE Transactions on Power Electronics 1998, Vol. 13, No. 6, 1998, p Szekely V.: A New Evaluation Method of Thermal Transient Measurement Results. Microelectronic Journal 1997, Vol. 28, No.3, 1997, p Blackburn D.L., Oettinger F.F.: Transient Thermal Response Measurements of Power Transistors. IEEE Transactions on Industrial Electronics and Control Instrum., IECI-22, 1976, No. 2, p Zarębski J., Górecki K.: A Method of Measuring the Transient Thermal Impedance of Monolithic Bipolar Switched Regulators. IEEE Transactions on Components and Packaging Technologies 2007, Vol. 30, No. 4, p Górecki K., Zarębski J.: System mikrokomputerowy do pomiaru parametrów termicznych elementów półprzewodnikowych i układów scalonych. Metrologia i Systemy Pomiarowe 2001, t. VIII, Nr 4, s Górecki K., Zarębski J.: Badanie wpływu wybranych czynników na parametry cieplne tranzystorów mocy MOS. Przegląd Elektrotechniczny 2009, Vol. 85, No. 4, p Górecki K., Zarębski J.: Modeling the influence of selected factors on thermal resistance of semiconductor devices. IEEE Transactions on Components, Packaging and Manufacturing Technology 2014, Vol. 4, No. 3, p Górecki K., Zarębski J.: Nonlinear compact thermal model of power semiconductor devices. IEEE Transactions on Components and Packaging Technologies 2010, Vol. 33, No. 3, p Górecki K., Zarębski J.: Badanie charakterystyk termometrycznych elementów półprzewodnikowych ze złączem p-n. Metrologia i Systemy Pomiarowe 2001, t. VIII, Nr 4, s Zarębski J., Górecki K.: Modelowanie tranzystora Darlingtona mocy z uwzględnieniem oddziaływań elektrotermicznych. Kwartalnik Elektroniki i Telekomunikacji 1999, t. 45, z. 3-4, s Dr hab. inż. Krzysztof Górecki, prof. nzw AMG Prof. dr hab. inż. Janusz Zarębski Akademia Morska w Gdyni Katedra Elektroniki Morskiej ul. Morska Gdynia gorecki@am.gdynia.pl zarebski@am.gdynia.pl

PARAMETRY CIEPLNE WYBRANYCH PANELI FOTOWOLTAICZNYCH

PARAMETRY CIEPLNE WYBRANYCH PANELI FOTOWOLTAICZNYCH Ewa Krac, Krzysztof Górecki Akademia Morska w Gdyni PARAMETRY CIEPLNE WYBRANYCH PANELI FOTOWOLTAICZNYCH W artykule przedstawiono metodę pomiaru przejściowej impedancji termicznej oraz rezystancji termicznej

Bardziej szczegółowo

WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET

WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET Kamil Bargieł, Damian Bisewski, Janusz Zarębski, Ewelina Szarmach Akademia Morska w Gdyni WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET W pracy zaprezentowano wyniki pomiarów rezystancji

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 173831 (13) B1 (21) Numer zgłoszenia: 304562 Urząd Patentowy (22) Data zgłoszenia: 03.08.1994 Rzeczypospolitej Polskiej (51) IntCl6: G01R 31/26 (54)

Bardziej szczegółowo

Modelowanie modułów LED z uwzględnieniem zjawisk cieplnych

Modelowanie modułów LED z uwzględnieniem zjawisk cieplnych dr hab. inż. Krzysztof Górecki, prof. nadzw. AMG mgr inż. Przemysław Ptak Wydział Elektryczny Akademia Morska w Gdyni ul. Morska 83, 81-225 Gdynia Modelowanie modułów LED z uwzględnieniem zjawisk cieplnych

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI CIEPLNYCH TRANZYSTORA MOS MOCY CHŁODZONEGO CIECZĄ

BADANIA WŁAŚCIWOŚCI CIEPLNYCH TRANZYSTORA MOS MOCY CHŁODZONEGO CIECZĄ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Damian BISEWSKI* Janusz ZARĘBSKI* BADANIA WŁAŚCIWOŚCI CIEPLNYCH TRANZYSTORA MOS MOCY CHŁODZONEGO CIECZĄ W pracy zaprezentowano

Bardziej szczegółowo

Zależność parametrów modelu przejściowej impedancji termicznej tranzystora MOS mocy od konstrukcji układu chłodzenia

Zależność parametrów modelu przejściowej impedancji termicznej tranzystora MOS mocy od konstrukcji układu chłodzenia Damian BISEWSKI, Krzysztof GÓRECKI, Janusz ZARĘBSKI Akademia Morska w Gdyni, Katedra Elektroniki Morskiej doi:.599/8.5.. Zależność parametrów modelu przejściowej impedancji termicznej tranzystora MOS mocy

Bardziej szczegółowo

POMIARY PARAMETRÓW TERMICZNYCH DŁAWIKÓW

POMIARY PARAMETRÓW TERMICZNYCH DŁAWIKÓW Zeszyty problemowe Maszyny Elektryczne Nr 0/013 cz. I 135 Krzysztof Górecki, Katarzyna Górecka Katedra Elektroniki Morskiej, Akademia Morska w Gdyni Kalina Detka Pomorska Wyższa Szkoła Nauk Stosowanych

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK WYBRANYCH DIOD LED MOCY Z UWZGLĘDNIENIEM ZJAWISK CIEPLNYCH

MODELOWANIE CHARAKTERYSTYK WYBRANYCH DIOD LED MOCY Z UWZGLĘDNIENIEM ZJAWISK CIEPLNYCH Przemysław Ptak Akademia Morska w Gdyni MODELOWANIE CHARAKTERYSTYK WYBRANYCH DIOD LED MOCY Z UWZGLĘDNIENIEM ZJAWISK CIEPLNYCH W pracy rozważany jest problem modelowania diod LED mocy przy wykorzystaniu

Bardziej szczegółowo

WPŁYW WARUNKÓW CHŁODZENIA NA CHARAKTERYSTYKI LINIOWEGO STABILIZATORA NAPIĘCIA

WPŁYW WARUNKÓW CHŁODZENIA NA CHARAKTERYSTYKI LINIOWEGO STABILIZATORA NAPIĘCIA ELEKTRYKA 21 Zeszyt 3 (215) Rok LVI Krzysztof GÓRECKI, Janusz ZARĘBSKI Katedra Elektroniki Morskiej, Akademia Morska w Gdyni WPŁYW WARUNKÓW CHŁODZENIA NA CHARAKTERYSTYKI LINIOWEGO STABILIZATORA NAPIĘCIA

Bardziej szczegółowo

LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH

LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Damian BISEWSKI* Janusz ZARĘBSKI* LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH W pracy zaprezentowano

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 84 Electrical Engineering 2015 Damian BISEWSKI* Janusz ZARĘBSKI* OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU W pracy przedstawiono

Bardziej szczegółowo

MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE

MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE Damian Bisewski, Janusz Zarębski Akademia Morska w Gdyni MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE Praca dotyczy problematyki modelowania tranzystorów MESFET z

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

(54) Sposób i układ do pomiaru rezystancji termicznej inteligentnego unipolarnego obwodu PL B1 G01R 31/26

(54) Sposób i układ do pomiaru rezystancji termicznej inteligentnego unipolarnego obwodu PL B1 G01R 31/26 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 187668 (21) Numer zgłoszenia 329954 (22) Data zgłoszenia: 25.11.1998 (13) B1 (51) IntCl7 G01R 31/26 (54)

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Badanie właściwości wybranych modeli tranzystorów bipolarnych z izolowaną bramką

Badanie właściwości wybranych modeli tranzystorów bipolarnych z izolowaną bramką doi:.599/.7.7.9 Paweł GÓRECKI, Krzysztof GÓRECKI, Janusz ZARĘBSKI Akademia Morska w Gdyni, Katedra Elektroniki Morskiej Badanie właściwości wybranych modeli tranzystorów bipolarnych z izolowaną bramką

Bardziej szczegółowo

WPŁYW WARUNKÓW ZASILANIA TRANSFORMATORA NA ROZKŁAD TEMPERATURY NA JEGO POWIERZCHNI

WPŁYW WARUNKÓW ZASILANIA TRANSFORMATORA NA ROZKŁAD TEMPERATURY NA JEGO POWIERZCHNI Krzysztof Górski, Krzysztof Górecki Akademia Morska w Gdyni WPŁYW WARUNKÓW ZASILANIA TRANSFORMATORA NA ROZKŁAD TEMPERATURY NA JEGO POWIERZCHNI W artykule przedstawiono wyniki badań eksperymentalnych, ilustrujące

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania 3 SPIS TREŚCI Przedmowa... 11 1. WPROWADZENIE... 13 1.1. Budowa rozjazdów kolejowych... 14 1.2. Napędy zwrotnicowe... 15 1.2.1. Napęd zwrotnicowy EEA-4... 18 1.2.2. Napęd zwrotnicowy EEA-5... 20 1.3. Współpraca

Bardziej szczegółowo

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia Zadanie 1. Jednym z najnowszych rozwiązań czujników

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

Tranzystory w pracy impulsowej

Tranzystory w pracy impulsowej Tranzystory w pracy impulsowej. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości impulsowych tranzystorów. Wyniki pomiarów parametrów impulsowych tranzystora będą porównane z parametrami obliczonymi.

Bardziej szczegółowo

PL B1. Sposób zabezpieczania termiczno-prądowego lampy LED oraz lampa LED z zabezpieczeniem termiczno-prądowym

PL B1. Sposób zabezpieczania termiczno-prądowego lampy LED oraz lampa LED z zabezpieczeniem termiczno-prądowym PL 213343 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213343 (13) B1 (21) Numer zgłoszenia: 391516 (51) Int.Cl. F21V 29/00 (2006.01) F21S 8/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO

BADANIE TRANZYSTORA BIPOLARNEGO BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo

Modelowanie diod półprzewodnikowych

Modelowanie diod półprzewodnikowych Modelowanie diod półprzewodnikowych Programie PSPICE wbudowane są modele wielu elementów półprzewodnikowych takich jak diody, tranzystory bipolarne, tranzystory dipolowe złączowe, tranzystory MOSFET, tranzystory

Bardziej szczegółowo

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM 2/1 Archives of Foundry, Year 200, Volume, 1 Archiwum Odlewnictwa, Rok 200, Rocznik, Nr 1 PAN Katowice PL ISSN 1642-308 WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM D.

Bardziej szczegółowo

Podzespoły i układy scalone mocy część II

Podzespoły i układy scalone mocy część II Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2 Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod

Bardziej szczegółowo

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits Bibliografia [1] Hałgas S., Algorytm lokalizacji uszkodzeń w nieliniowych układach elektronicznych, Materiały XVI Seminarium z Podstaw Elektrotechniki i Teorii Obwodów, SPETO 93, 247-253, 1993. [2] Hałgas

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 Zadania z elektroniki na zawody II stopnia z rozwiązaniami Instrukcja dla zdającego 1. Czas trwania zawodów:

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

Uniwersytet Pedagogiczny

Uniwersytet Pedagogiczny Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR UNIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C

ELEMENTY ELEKTRONICZNE TS1C Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO

Bardziej szczegółowo

OBSZARY BADAŃ NAUKOWYCH

OBSZARY BADAŃ NAUKOWYCH OBSZARY BADAŃ NAUKOWYCH WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI OKRĘTOWEJ SYSTEMY MODUŁOWYCH PRZEKSZTAŁTNIKÓW DUŻEJ MOCY INTEGROWANYCH MAGNETYCZNIE Opracowanie i weryfikacja nowej koncepcji przekształtników

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Ćwiczenie 2b. Pomiar napięcia i prądu z izolacją galwaniczną Symulacje układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2b. Pomiar napięcia i prądu z izolacją galwaniczną Symulacje układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego Liniowe układy scalone Budowa scalonego wzmacniacza operacyjnego Wzmacniacze scalone Duża różnorodność Powtarzające się układy elementarne Układy elementarne zbliżone do odpowiedników dyskretnych, ale

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL

Bardziej szczegółowo

E104. Badanie charakterystyk diod i tranzystorów

E104. Badanie charakterystyk diod i tranzystorów E104. Badanie charakterystyk diod i tranzystorów Cele: Wyznaczenie charakterystyk dla diod i tranzystorów. Dla diod określa się zależność I d =f(u d ) prądu od napięcia i napięcie progowe U p. Dla tranzystorów

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR BIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK WYBRANYCH RDZENI FERROMAGNETYCZNYCH

MODELOWANIE CHARAKTERYSTYK WYBRANYCH RDZENI FERROMAGNETYCZNYCH Małgorzata Godlewska, Krzysztof Górecki Akademia Morska w Gdyni MODELOWANIE CHARAKTERYSTYK WYBRANYCH RDZENI FERROMAGNETYCZNYCH Praca dotyczy modelowania charakterystyk wybranych rdzeni ferromagnetycznych.

Bardziej szczegółowo

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi:

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: 1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: A. 10 V B. 5,7 V C. -5,7 V D. 2,5 V 2. Zasilacz dołączony jest do akumulatora 12 V i pobiera z niego prąd o natężeniu

Bardziej szczegółowo

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego

Bardziej szczegółowo

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów

Bardziej szczegółowo

UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora

UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie transoptora Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie studentów z jednym

Bardziej szczegółowo

Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę.

Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę. WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Badanie działania

Bardziej szczegółowo

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r.

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r. LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, kwiecień 1999 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 602-62-32-71 str.2 SPIS TREŚCI 1.OPIS

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK PRZETWORNICY BUCK Z MONOLITYCZNYM REGULATOREM LT1073 W PROGRAMIE SPICE

MODELOWANIE CHARAKTERYSTYK PRZETWORNICY BUCK Z MONOLITYCZNYM REGULATOREM LT1073 W PROGRAMIE SPICE 243 in 4G Communication Systems // MIXDES. 2003. 4. Корляков А.В., Лучинин В.В. Перспективная элементная база микросистемной техники. 200. 5. An Introduction to MEMS, Prime Faraday Technology Watch. 2001.

Bardziej szczegółowo

TRANZYSTORY BIPOLARNE

TRANZYSTORY BIPOLARNE Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Wyznaczanie parametrów cieplnych przyrządów półprzewodnikowych dużej mocy metodą eksperymentalną

Wyznaczanie parametrów cieplnych przyrządów półprzewodnikowych dużej mocy metodą eksperymentalną Andrzej DOMINO, Piotr MAZUREK, Jan SIKORA, Krzysztof ZYMMER Instytut Elektrotechniki, ul Pożaryskiego 28, 04-703 Warszawa doi:1015199/4820160546 Wyznaczanie parametrów cieplnych przyrządów półprzewodnikowych

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA METOD POMIARU IMPEDANCJI PĘTLI ZWARCIOWEJ PRZY ZASTOSOWANIU PRZETWORNIKÓW ANALOGOWYCH

ANALIZA PORÓWNAWCZA METOD POMIARU IMPEDANCJI PĘTLI ZWARCIOWEJ PRZY ZASTOSOWANIU PRZETWORNIKÓW ANALOGOWYCH Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 54 Politechniki Wrocławskiej Nr 54 Studia i Materiały Nr 23 2003 Andrzej STAFINIAK * metody pomiarowe,impedancje pętli zwarciowej impedancja

Bardziej szczegółowo

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza

Bardziej szczegółowo

ZŁĄCZOWY TRANZYSTOR POLOWY

ZŁĄCZOWY TRANZYSTOR POLOWY L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWY TRANZYSTOR POLOWY RE. 2.0 1. CEL ĆWICZENIA - Pomiary charakterystyk prądowo-napięciowych tranzystora. - Wyznaczenie podstawowych parametrów tranzystora

Bardziej szczegółowo

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik 1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony

Bardziej szczegółowo

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego

CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

Rys Schemat parametrycznego stabilizatora napięcia

Rys Schemat parametrycznego stabilizatora napięcia ĆWICZENIE 12 BADANIE STABILIZATORÓW NAPIĘCIA STAŁEGO 12.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasady działania, budowy oraz podstawowych właściwości różnych typów stabilizatorów półprzewodnikowych

Bardziej szczegółowo

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits

[3] Hałgas S., An algorithm for fault location and parameter identification of analog circuits Bibliografia [1] Hałgas S., Algorytm lokalizacji uszkodzeń w nieliniowych układach elektronicznych, Materiały XVI Seminarium z Podstaw Elektrotechniki i Teorii Obwodów, SPETO 93, 247-253, 1993. [2] Hałgas

Bardziej szczegółowo

Inżynieria Rolnicza 5(93)/2007

Inżynieria Rolnicza 5(93)/2007 Inżynieria Rolnicza 5(9)/7 WPŁYW PODSTAWOWYCH WIELKOŚCI WEJŚCIOWYCH PROCESU EKSPANDOWANIA NASION AMARANTUSA I PROSA W STRUMIENIU GORĄCEGO POWIETRZA NA NIEZAWODNOŚĆ ICH TRANSPORTU PNEUMATYCZNEGO Henryk

Bardziej szczegółowo

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH

WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WOJSKOWA AKADEMIA TECHNICZNA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH Inżynieria Rolnicza 2(100)/2008 METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH Krzysztof Nalepa, Maciej Neugebauer, Piotr Sołowiej Katedra Elektrotechniki i Energetyki, Uniwersytet Warmińsko-Mazurski w Olsztynie

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NWERSYTET TECHNOLOGCZNO-PRZYRODNCZY W BYDGOSZCZY WYDZAŁ NŻYNER MECHANCZNEJ NSTYTT EKSPLOATACJ MASZYN TRANSPORT ZAKŁAD STEROWANA ELEKTROTECHNKA ELEKTRONKA ĆWCZENE: E7 BADANE DODY PROSTOWNCZEJ DODY ZENERA

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu.

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu. Prostowniki. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem transformatora

Bardziej szczegółowo

Laboratorium Podstaw Elektroniki. Badanie przekształtnika obniżającego napięcie. Opracował: dr inż. Rafał Korupczyński

Laboratorium Podstaw Elektroniki. Badanie przekształtnika obniżającego napięcie. Opracował: dr inż. Rafał Korupczyński Laboratorium Podstaw Elektroniki Badanie przekształtnika obniżającego napięcie Opracował: dr inż. Rafał Korupczyński Zakład Gospodarki Energetycznej, Katedra Podstaw Inżynierii.Cel ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Ćwiczenie 5 Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Układ Super Alfa czyli tranzystory w układzie Darlingtona Zbuduj układ jak na rysunku i zaobserwuj dla jakiego położenia potencjometru

Bardziej szczegółowo

OCENA DOKŁADNOŚCI FIRMOWEGO MAKROMODELU TRANZYSTORA SiC-JFET

OCENA DOKŁADNOŚCI FIRMOWEGO MAKROMODELU TRANZYSTORA SiC-JFET POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 95 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.95.0007 Kamil BARGIEŁ *, Damian BISEWSKI * OCENA DOKŁADNOŚCI FIRMOWEGO MAKROMODELU TRANZYSTORA

Bardziej szczegółowo

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

Badanie dławikowej przetwornicy podwyŝszającej napięcie

Badanie dławikowej przetwornicy podwyŝszającej napięcie LABORATORIUM ZASILANIE URZĄDZEŃ ELETRONICZNYCH Badanie dławikowej przetwornicy podwyŝszającej napięcie Opracował: Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Budowa, parametry i zasada działania

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Badanie elementów składowych monolitycznych układów scalonych II

Badanie elementów składowych monolitycznych układów scalonych II 1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo