STATYSTYCZNE STEROWANIE PROCESAMI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "STATYSTYCZNE STEROWANIE PROCESAMI"

Transkrypt

1 STATYSTYCZNE STEROWANIE PROCESAMI ARTUR MACIASZCZYK COPYRIGHTS 2002 Artur Maciaszczyk, tel ! STATYSTYCZNE MONITOROWANIE JAKOŚCI Bogu ufamy. Wszyscy pozostali niech przedstawią dane... Ulepszanie jakości wymaga ciągłego śledzenia i optymalizacji pewnych parametrów wyrobów i usług. W określaniu i monitorowaniu jakości pomocne są wykresy kontrolne. SPC polega na śledzeniu parametrów procesu usługowego poprzez pobieranie próbek i obserwacji: - średniej jakości - zmienności jakości SPC służy do: - wyłapywania zakłóceń procesu - obserwacji poziomu jakości COPYRIGHTS 2002 Artur Maciaszczyk, tel

2 Statystyczne Sterowanie Procesami (SPC) Osiągniemy wzrost jakości poprzez polepszenie procesu, osiągniemy polepszenie procesu poprzez zmniejszenie jego zmienności E.W. Deming SPC może być użyte do ostrzegania o zaistnieniu jakiejś nieprawidłowości. lub niskiej jakości Wykresy kontrolne używane są głównie do zapobiegania produkcji braków. Przykład: Co może być wykryte przez SPC: nagłe zwiększenie się procentowej wadliwości wyrobów. zwiększenie się średniej liczby dziennych zażaleń w hotelu. permanentnie zbyt niskie średnice produkowanych wałów korbowych, lub zwiększenie się liczby osób reklamujących zbyt późną wypłatę odszkodowań przez firmę ubezpieczeniową. Czy wzrost odsetek braków jest sygnałem alarmowym, czy też zwykłym zbiegiem okoliczności? SPC pomaga w podejmowaniu decyzji, czy należy podejmować działania korekcyjne. SPC wyrywkowe badanie odbiorcze. COPYRIGHTS 2002 Artur Maciaszczyk, tel Rozkład danych Jeżeli zważylibyśmy większą ilość opakowań płatków owsianych napełnionych przez maszynę, to dane na wykresie punktowym miałyby tendencje do układania się według pewnego wzorca (rozkład danych). Taki rozkład charakteryzuje się średnią oraz rozrzutem. Jeżeli zmienność procesu wynika jedynie ze zwykłej losowości, rozkład danych jest zazwyczaj symetryczny, z większością pomiarów skupionych wokół średniej. 1. Średnia to suma pomiarów podzielona przez ich liczbę: n gdzie x i = zaobserwowana wartość (np. waga) x i n = całkowita liczba pomiarów i = 1 x = x = średnia n 2. Rozrzut jest miernikiem rozproszenia zaobserwowanych wartości od średniej. Miarami rozrzutu (zmienności) używanymi w praktyce jest rozstęp i odchylenie standardowe. COPYRIGHTS 2002 Artur Maciaszczyk, tel

3 Odchylenie standardowe można policzyć w następujący sposób: σ = ( i x) x n 1 2 lub σ = ( xi 2 ) xi n n 1 Oszacowanie σ z rozstępu ( R ) Rozstęp jest różnicą pomiędzy największą i najmniejszą wartością zaobserwowaną w próbce. Jeżeli zmienne losowe pochodzą z rozkładu normalnego to: σ = R / d 2 gdzie d 2 jest stałą z tabeli Dlaczego d 2 zwiększa się wraz ze zwiększaniem się liczebności próbki? 2 gdzie σ = odchylenie standardowe n = całkowita liczba pomiarów x = średnia x i = zaobserwowana wartość Liczebność d 2 próbki 2 1, , , , , , , , , , ,735 COPYRIGHTS 2002 Artur Maciaszczyk, tel Niektóre rozkłady średnich z próbek można aproksymować poprzez rozkład normalny. Dzięki takiej aproksymacji możemy skorzystać z tabeli rozkładu normalnego. Mamy możliwość wyznaczenia prawdopodobieństwa, że jakaś średnia z próbek wykroczy poza pewne granice. Na przykład prawdopodobieństwo, iż jakaś średnia z próbek wykroczy poza dwa odchylenia standardowe od średniej wynosi 4,56% (100-95,44). Procentowy udział ilości elementów w poszczególnych przedziałach rozkładu normalnego. COPYRIGHTS 2002 Artur Maciaszczyk, tel

4 PRZYCZYNY ZMIENNOŚCI Proces produkcyjny posiada wiele źródeł zmienności, PRZYKŁAD: nawet jeżeli proces działa prawidłowo, jego produkty nigdy nie będą idealnie identyczne. Średnice dwóch wałów korbowych, mogą różnić się z powodu istnienia różnic - w stopniu zużycia narzędzi, -w twardości materiału, - w umiejętnościach pracowników lub - innych temperatur na hali produkcyjnej w momencie ich wytwarzania. Czas potrzebny na wydanie karty kredytowej może różnić się ze względu na - obciążenie działu kredytowego, - sytuację finansową osoby występującej o wydanie karty kredytowej, -umiejętności i zachowania pracowników. Nie można całkowicie wyeliminować zmienności produktu, ale w celu jej zmniejszenia, można badać jej przyczyny. Istnieją dwa rodzaje przyczyn zmienności wyjścia: przyczyny systemowe i przyczyny specjalne COPYRIGHTS 2002 Artur Maciaszczyk, tel PRZYCZYNY SYSTEMOWE (ZWYCZAJNE) ZMIENNOŚCI Przyczyny systemowe powodują naturalną zmienność procesu przy danych uwarunkowaniach. Są nieodłącznie związane z procesem. Są spowodowane zmiennością wejść i zmiennością samego procesu Przyczyny systemowe nakładają się na siebie powodując ogólną zmienność wyjścia Mają charakter losowy i przypadkowy Mogą wynikać z:: - niedoskonałości sprzętu - niedoskonałości systemu produkcyjnego - niedoskonałości pracowników - niedoskonałości materiałów itp. Np. Maszyna napełniająca pudełka płatkami owsianymi, nie zapakuje do każdego opakowania takiej samej ilości płatków, co wynika z: - ograniczonej dokładności urządzenia ważącego - różnych umiejętności operatorów - różnej wagi poszczególnych płatków - zmian temperatury, wilgotności itp. Ich zmniejszenie wymaga zmian w systemie i udziału kierownictwa COPYRIGHTS 2002 Artur Maciaszczyk, tel

5 PRZYCZYNY SPECJALNE ZMIENNOŚCI Przyczyny specjalne to sporadyczne, specyficzne i lokalne przyczyny, których powstania nie można przewidzieć. Można je stosunkowo łatwo zidentyfikować i wyeliminować. Mogą to być nie przeszkolony pracownik, uszkodzony sprzęt czy narzędzie, wady materiałowe... Często mogą być zidentyfikowane i skorygowane przez pracownika wykonawczego Wpływ przyczyn specjalnych na rozkład procesu napełniania opakowań. Proces jest pod kontrolą statystyczną, jeżeli kształt i rozmiary jego rozkładu nie zmieniają się wraz z upływem czasu. Wpływ przyczyn specjalnych na stabilność procesu COPYRIGHTS 2002 Artur Maciaszczyk, tel DECYZJE PRZY WDRAŻANIU SPC Należy odpowiedzieć na pytania: - jak mierzyć jakość? -jakiej wielkości próbki zbierać? - na jakim etapie procesu mierzyć jakość? COPYRIGHTS 2002 Artur Maciaszczyk, tel

6 WYKRESY KONTROLNE Wykres zorientowany czasowo, na który nanosi się próbki. Pomagają stwierdzić czy zaobserwowana zmienność jest nieprawidłowością Zawiera: - centralną oś, zazwyczaj reprezentującą wartość średnią - granice kontrolne określone na podstawie rozkładu średnich z próbek. Granice kontrolne pozwalają na określenie momentu, w którym należy podjąć działania korekcyjne - górna wartość reprezentuje górną granicę kontrolną (UCL - Upper Control Limit), - dolna wartość reprezentuje dolną granicę kontrolną (LCL - Lower Control Limit). Jeżeli średnia z próbki zawiera się w przedziale pomiędzy UCL i LCL, oznacza to, iż proces podlega jedynie systemowym przyczynom zmienności; Jeżeli średnia z próbki wyjdzie poza granice kontrolne oznacza to, iż proces prawdopodobnie podlega specjalnym przyczynom zmienności. COPYRIGHTS 2002 Artur Maciaszczyk, tel Próbki wykraczające poza granice kontrolne, nie zawsze oznaczają słabą jakość procesu. Przykład: Przyczyna specjalna może wynikać z wdrożenia nowej procedury rejestrowania klientów, która została wprowadzona w celu zmniejszenia liczby pomyłek. Jeżeli odsetek pomyłek lub średni czas oczekiwania spadnie poniżej dolnej granicy, oznacza to, iż prawdopodobnie nowa procedura usprawniła proces rejestracji Umiejscowienie granic kontrolnych na rozkładzie średnich z próbek z trzema różnymi próbkami. COPYRIGHTS 2002 Artur Maciaszczyk, tel

7 TWORZENIE KART KONTROLNYCH Wykresy X i R (wykresy kontrolne dla zmiennych). Służą do śledzenia średniej i zmienności rozkładu procesu. 1. Pobieramy i próbek o liczebności n. 2. Dla każdej próbki obliczamy: n i j = 1 - średnią próbki X = ( x ) / n - rozpiętość próbki Ri = xi max xi min 3. Dla k próbek obliczamy: - Średnią ze średnich z próbek X = ( X ) / k ij k i= 1 i - Średnią rozpiętość próbek R = ( R ) / k k i= 1 i COPYRIGHTS 2002 Artur Maciaszczyk, tel TWORZENIE KART KONTROLNYCH Wykresy X i R (wykresy kontrolne dla zmiennych). Służą do śledzenia średniej i zmienności pewnego parametru jakości. Wykresy typu X (wykres wartości średnich x) - używany do obserwacji średniej procesu. Granice kontrolne dla wykresu typu X wynoszą: LCL = X A2R UCL = X + A2R X X X = centralna linia wykresu - średnia ze średnich z próbek. A 2 = stała dla wyznaczenia granic kontrolnych (±3-sigma). Wykresy typu R. (wykresy rozstępu)-służą do monitorowania zmienności mierzonego parametru. Granice kontrolne dla wykresu typu R: LCL D3R R = UCL D4R R = COPYRIGHTS 2002 Artur Maciaszczyk, tel

8 WSPÓŁCZYNNIKI DO OBLICZANIA GRANIC ±3 σ DLA WYKRESÓW TYPU X ORAZ R. Współczynnik do obliczania UCL X i LCL X Współczynnik do obliczania LCL R (D 3 ) Współczynnik do obliczania UCL R (D 4 ) (A 2 ) 2 1, , , , , , , , , , ,419 0,076 1, ,373 0,136 1, ,337 0,184 1, ,308 0,223 1, ,223 0,348 1, ,180 0,414 1,586 Liczebność próbki (n) COPYRIGHTS 2002 Artur Maciaszczyk, tel PRZYKŁAD 1: Monitorowanie procesu przy pomocy wykresów typu R i X. Średnia średnica produkowanych śrub wynosi 0,5025 cala, a średni rozstęp wynosi 0,0020 cala. Dane z ostatnich pięciu próbek podane są w poniższej tabeli. Rozmiar próbki wynosi 4. Czy proces jest pod kontrolą statystyczną? Numer próbki Pomiary w próbce ,5014 0,5022 0,5009 0, ,5021 0,5041 0,5032 0, ,5018 0,5026 0,5035 0, ,5008 0,5034 0,5024 0, ,5041 0,5056 0,5034 0,5039 COPYRIGHTS 2002 Artur Maciaszczyk, tel

9 ROZWIĄZANIE Krok 1. W celu stworzenia wykresu typu R, należy wybrać odpowiednie stałe D 4 oraz D 3 dla próbki o liczebności 4. Granice kontrolne wynoszą: UCL R = LCL R = D 4 D 3 R = 2,282 (0,0020) = 0,00456 cala R= 0 (0,0020) = 0 cala Krok 2. Dla każdej próbki obliczyć jej rozstęp: próbka nr 1: R = 0,5027-0,5009 = 0,0018 cala. próbka nr 2: R= 0,0021; próbka nr 3: R = 0,0017; próbka nr 4: R = 0,0026; próbka nr 5: R = 0,0022 Krok 3. Nanieść rozstępy z poszczególnych próbek na wykres typu R. Żaden z rozstępów próbek nie wykracza poza granice kontrolne. COPYRIGHTS 2002 Artur Maciaszczyk, tel Krok 4. Do śledzenia średniej procesu należy stworzyć wykres typu X. X= 0,5025 cala, R = 0,0020 cala, a więc: UCL = X + A2R = 0, ,729 (0,0020) = 0,5040 cala X LCL = X A2R = 0,5025-0,729 (0,0020) = 0,5010 cala X Krok 5. Należy obliczyć średnią dla każdej próbki. X 1= 0,5018 cala; X 2=0,5029; X 3=0,5026; X 4=0,5020; X 5=0,5043 Krok 6. Należy nanieść średnie z próbek na wykres kontrolny. Średnia z próbki nr 5 wykracza ponad górną granicę kontrolną, wskazując iż średnia procesu jest poza kontrolą statystyczną. COPYRIGHTS 2002 Artur Maciaszczyk, tel

10 INTERPRETACJA WYKRESÓW KONTROLNYCH Często można zauważyć, iż coś złego dzieje się z procesem, nawet jeżeli granice kontrolne nie zostały przekroczone. Proces jest pod kontrolą statystyczną. Nie należy podejmować żadnych działań. Nieprawidłowość zwana przebiegiem, czyli sekwencja obserwacji posiadająca pewne właściwości. W tym przypadku przebieg jest trendem malejącym. PRZYKŁAD: Stopniowe zużywanie się narzędzia. Jest to sygnał do wymiany narzędzia lub konieczności ustawienia maszyny na wartość zawierającą się pomiędzy wartością nominalną i UCL w celu przedłużenia eksploatacji narzędzia. Zwiększanie się odsetku opóźnionych przylotów. Przyczyną może być powolne zwiększanie się intensywności i zatłoczenia lądujących samolotów. Może być konieczna zmiana harmonogramu lotów. COPYRIGHTS 2002 Artur Maciaszczyk, tel Gwałtowna zmiana zachowania się procesu, polegająca na zwiększeniu zmienności. Sygnał ostrzegawczy, nawet jeżeli granice kontrolne nie zostały jeszcze przekroczone. Kilka kolejnych punktów znajduje się powyżej lub poniżej wartości nominalnej. Należy podjąć działania korekcyjne, pomimo że granice kontrolne nie zostały przekroczone Proces dwukrotnie nie jest pod kontrolą statystyczną ponieważ dwie średnie z próbek wykroczyły poza granice kontrolne. Istnieje wysokie prawdopodobieństwo, iż zmienił się rozkład procesu. COPYRIGHTS 2002 Artur Maciaszczyk, tel

Statystyczne sterowanie procesem

Statystyczne sterowanie procesem Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu

Bardziej szczegółowo

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne.

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Wydział Matematyki Politechniki Wrocławskiej Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę.

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

Zarządzanie procesami

Zarządzanie procesami Metody pomiaru stosowane w organizacjach Zarządzanie procesami Zakres Rodzaje pomiaru metod pomiaru Klasyczne metody pomiaru organizacji Pomiar całej organizacji Tradycyjny rachunek kosztów (np. ROI) Rachunek

Bardziej szczegółowo

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi

Bardziej szczegółowo

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49

Bardziej szczegółowo

Zarządzanie jakością ćwiczenia

Zarządzanie jakością ćwiczenia Zarządzanie jakością ćwiczenia mgr inż. Anna Wąsińska Zakład Zarządzania Jakością pok. 311 B1, tel. 320-42-82 anna.wasinska@pwr.wroc.pl Statystyczne sterowanie procesami SPC kontrolna Konsultacje: SO 13:00

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Analiza składników podstawowych - wprowadzenie (Principal Components Analysis

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 11 Anna Skowrońska-Szmer lato 2016/2017 Powtórzenie materiału 2 Zadanie 1 Wykład 1 Eksperyment polega na pojedynczym rzucie symetryczną kostką. Przestrzeń zdarzeń

Bardziej szczegółowo

TRADYCYJNE NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ

TRADYCYJNE NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ TRADYCYJNE NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ Ewa Matuszak Paulina Kozłowska Aleksandra Lorek CZYM SĄ NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ? Narzędzia zarządzania jakością to instrumenty pozwalające zbierać i przetwarzać

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Zarządzanie jakością. cią. Zarządzanie jakością - wykład 5. W. Prussak Kontrola w zarządzaniu jakością

Zarządzanie jakością. cią. Zarządzanie jakością - wykład 5. W. Prussak Kontrola w zarządzaniu jakością Jakość produktu Pojęcie i zasady zarządzania System zarządzania Planowanie Metody i narzędzia projakościowe Doskonalenie Zarządzanie. jakości cią Wykład 05/07 Statystyczna kontrola procesu (SPC) 5.1 inspekcyjna

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

4) zmienność procesu w czasie wymaga od zespołu jednoczesnego monitorowania dokładności

4) zmienność procesu w czasie wymaga od zespołu jednoczesnego monitorowania dokładności 6. Jeśli dąży się do porównania dwóch wykresów należy pamiętać, aby ich skale były sobie równe. Jeśli jest to niemożliwe ze względu na porównanie wartości bezwzględnych (np. 15 szt. i 150 szt.), trzeba

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo

Karta kontrolna budowa i zastosowanie

Karta kontrolna budowa i zastosowanie STATYSTYCZNE STEROWANIE PROCESAMI PRAKTYCZNE PRZYKŁADY ZASTOSOWANIA Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania, Zakład Zarządzania Jakością; Magazyn ZARZĄDZANIE JAKOŚCIĄ

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Metody statystyczne kontroli jakości i niezawodności Lekcja I: Wprowadzenie

Metody statystyczne kontroli jakości i niezawodności Lekcja I: Wprowadzenie Metody statystyczne kontroli jakości i niezawodności Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Czym jest jakość? Na to pytanie nie ma jednoznacznej odpowiedzi. Można rozumieć

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

ZASTOSOWANIE KART SHEWHARTA DO KONTROLI JAKOŚCI PRODUKCJI ELEMENTÓW UZBROJENIA

ZASTOSOWANIE KART SHEWHARTA DO KONTROLI JAKOŚCI PRODUKCJI ELEMENTÓW UZBROJENIA Dr Agnieszka Mazur-Dudzińska DOI: 10.17814/mechanik.2015.7.268 Politechnika Łódzka, Katedra Zarządzania Dr inż. Jacek Dudziński Wojskowa Akademia Techniczna, Katedra Mechatroniki ZASTOSOWANIE KART SHEWHARTA

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr Temat: Karty kontrolne przy alternatywnej ocenie właściwości.

Bardziej szczegółowo

ANALIZA SYSTEMU POMIAROWEGO (MSA)

ANALIZA SYSTEMU POMIAROWEGO (MSA) StatSoft Polska, tel. 1 484300, 601 414151, info@statsoft.pl, www.statsoft.pl ANALIZA SYSTEMU POMIAROWEGO (MSA) dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997 PN-ISO 3951:1997 METODY STATYSTYCZNEJ KONTROI JAKOŚCI WG OCENY ICZBOWEJ ciągła seria partii wyrobów sztukowych dla jednej procedury analizowana jest tylko jedna wartość, która musi być mierzalna w skali

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU

PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU Tomasz Demski, StatSoft Polska Sp. z o.o. Przykład przedstawia tworzenie karty kontrolnej p dla nowego procesu, określanie wartości granic kontrolnych

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:

Bardziej szczegółowo

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 3

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 3 Zestaw 3 Zadanie. 1. Dla zmiennej losowej o rozkładzie normalnym N (100; 10) obliczyć: a) P(X

Bardziej szczegółowo

Teoria Estymacji. Do Powyżej

Teoria Estymacji. Do Powyżej Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;

Bardziej szczegółowo

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

LABORATORIUM PROCESÓW STOCHASTYCZNYCH

LABORATORIUM PROCESÓW STOCHASTYCZNYCH WOJSKOWA AKADEMIA TECHICZA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PROCESÓW STOCHASTYCZYCH Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził. Skład podgrupy 1....

Bardziej szczegółowo

Analiza wskaźnika poziomu wad

Analiza wskaźnika poziomu wad 1 Jacek Mazurkiewicz Opracowanie to z drobnymi zmianami zostało wydane w Joanna Breguła Steel Times International 24r V. 28 N. 4 p.42 Analiza wskaźnika poziomu wad Streszczenie Standardową ocenę wskaźnika

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14 Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Analiza statystyczna w naukach przyrodniczych

Analiza statystyczna w naukach przyrodniczych Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej.

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Andrzej Hantz Dyrektor Centrum Metrologii RADWAG Wagi Elektroniczne Pomiary w laboratorium

Bardziej szczegółowo

Wprowadzenie. Typowe i nietypowe sytuacje

Wprowadzenie. Typowe i nietypowe sytuacje NIESTANDARDOWE KARTY KONTROLNE CZYLI JAK SOBIE RADZIĆ W NIETYPOWYCH SYTUACJACH dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie SPC (statystyczne sterowanie

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

mgr inż. Wojciech Wójcicki Lumel-Śląsk Sp. z o.o. Analizatory parametrów sieci 3-fazowej Inwestycja dla oszczędności

mgr inż. Wojciech Wójcicki Lumel-Śląsk Sp. z o.o. Analizatory parametrów sieci 3-fazowej Inwestycja dla oszczędności mgr inż. Wojciech Wójcicki Lumel-Śląsk Sp. z o.o. Analizatory parametrów sieci 3-fazowej Inwestycja dla oszczędności ANALIZATORY PARAMETRÓW SIECI 3-FAZOWEJ - INWESTYCJA DLA OSZCZĘDNOŚCI mgr inż. Wojciech

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM

OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM POZNAŃ / kwiecień 2013 Wasilewski Cezary 1 Cel: Obniżenie kosztów wytwarzania Kontrolowanie jakości wyrobu Zasady postępowania Odpowiednio

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Kontrola i zapewnienie jakości wyników

Kontrola i zapewnienie jakości wyników Kontrola i zapewnienie jakości wyników Kontrola i zapewnienie jakości wyników QA : Quality Assurance QC : Quality Control Dobór systemu zapewnienia jakości wyników dla danego zadania fit for purpose Kontrola

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

Monitorowanie procesów wytwarzania

Monitorowanie procesów wytwarzania POLITECHNIKA KOSZALIŃSKA WYDZIAŁ MECHANICZNY kierunek Mechanika i Budowa Maszyn Monitorowanie procesów wytwarzania Ocena zdolności jakościowej procesów Koszalin Umiejętności i kompetencje: Umiejętności

Bardziej szczegółowo

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ WAŻNE INFORMACJE: 1. Sprawdzane będą wyłącznie wyniki w oznaczonych polach, nie czytam tego co na marginesie, nie sprawdzam pokreślonych i niedbałych pól. 2. Wyniki proszę podawać z dokładnością do dwóch

Bardziej szczegółowo

1.Wstęp. Prąd elektryczny

1.Wstęp. Prąd elektryczny 1.Wstęp. Celem ćwiczenia pierwszego jest zapoznanie się z metodą wyznaczania charakterystyki regulacyjnej silnika prądu stałego n=f(u), jako zależności prędkości obrotowej n od wartości napięcia zasilania

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy) Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach Opis danych statystycznych

3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach Opis danych statystycznych 3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach 1995-2005 3.1. Opis danych statystycznych Badanie zmian w potencjale opieki zdrowotnej można przeprowadzić w oparciu o dane dotyczące

Bardziej szczegółowo

3.14. Histogram (Histogram)

3.14. Histogram (Histogram) 3. Linie kontrolne powinny być kalkulowane na nowo tylko w przypadku znaczących zmian w procesie. 4. Skala wykresu powinna zawierać wartości nieco wyższe niż granice kontrolne. 5. Karty kontrolne spełniają

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Konspekt SPC jako metoda pomiaru i doskonalenia procesów.

Konspekt SPC jako metoda pomiaru i doskonalenia procesów. Opracowali: Agata Murmyło Piotr Pokrzywa Michał Sabik Konspekt SPC jako metoda pomiaru i doskonalenia procesów. 1. Istota podejścia SPC. 2. Narzędzia do analizy stabilności procesu 2.1. Karty kontrolne

Bardziej szczegółowo