UNIWERSYTET SZCZECIŃSKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "UNIWERSYTET SZCZECIŃSKI"

Transkrypt

1 UNIWERSYTET SZCZECIŃSKI WYDZIAŁ MATEMATYCZNO-FIZYCZNY WYDZIAŁ ZARZĄDZANIA I EKONOMIKI USŁUG PAKIET INFORMACYJNY ECTS dla studentów KIERUNEK STUDIÓW MIĘDZYWYDZIAŁOWE STUDIA NIESTACJONARNE I STOPNIA MATEMATYKA SPECJALNOŚĆ ANALITYKA PROCESÓW GOSPODARCZYCH Rok akademicki 2009/2010 Wydział Matematyczno-Fizyczny Wydział Zarządzania i Instytut Matematyki Ekonomiki Usług SZCZECIN SZCZECIN ul. Wielkopolska 15 ul. Cukrowa 8 tel tel

2 SPIS TREŚCI Programy studiów... 3 Przedmioty ogólne Przedmioty podstawowe Odpowiedzialność WMF Odpowiedzialność WZiEU Przedmioty kierunkowe - obowiązkowe Odpowiedzialność WMF Odpowiedzialność WZiEU Przedmioty kierunkowe do wyboru (ścieżka kształcenia analityka instytucji finansowych) Odpowiedzialność WMF Odpowiedzialność WZiEU Przedmioty kierunkowe do wyboru (ścieżka kształcenia analityka dzialalności przedsiębiorstwa) Odpowiedzialność WMF Odpowiedzialność WZiEU Przedmioty kursu wyrównawczego (na I roku studiów) Program ciągłej praktyki zawodowej Sylwetka absolwenta Zasady tworzenia kodów przedmiotów

3 PROGRAMY STUDIÓW 3

4 I ROK L Nazwa Liczba godzin w semestrze Forma Punkty Kody p. przedmiotu egzaminu ECTS przedmiotów Σ W C K L S (zaliczenia) SEMESTR I 1. Technologia informacyjna Z II17.A03 2. Wstęp do logiki i teorii E II17.B101 mnogości 3. Analiza matematyczna E II17.B Algebra liniowa Z II17.B Wstęp do informatyki i matematyki obliczeniowej Z II17.B Międzynarodowe stosunki gospodarcze E II17.B Podstawy zarządzania Z II17.B Mikroekonomia E II17.B203 SUMA PUNKTÓW 30 SEMESTR II 1. Lektorat języka obcego Z II17.A05 (język angielski, francuski lub niemiecki) 2. Analiza matematyczna E II17.B Algebra liniowa E II17.B Podstawy geometrii i Z II17.B105 topologii 5. Rachunek Z II17.B106 prawdopodobieństwa 6. Wstęp do informatyki i Z II17.B108 matematyki obliczeniowej 7. Makroekonomia E II17.B Elementy prawa Z II17.B Podstawy organizacji Z II17.C1201 przedsiębiorstwa SUMA PUNKTÓW 30 ROCZNA SUMA PUNKTÓW 60 4

5 II ROK (ścieżka kształcenia analityka instytucji finansowych) L p. Nazwa przedmiotu 1. Lektorat języka obcego (język angielski, francuski lub niemiecki) Liczba godzin w semestrze Forma Punkty Kody egzaminu ECTS przedmiotów Σ W C K L S (zaliczenia) SEMESTR III Z II17.A05 2. Analiza matematyczna E II17.B Algebra E II17.B Podstawy geometrii i topologii Z II17.B Rachunek E II17.B106 prawdopodobieństwa 6. Podstawy statystyki E II17.B Bazy danych Z II17.C Polityka społecznogospodarcza Z II17.C Metody oceny projektów E II17.C1203 gospodarczych 10 Wychowanie fizyczne Z 1 SUMA PUNKTÓW 30 SEMESTR IV 1. Lektorat języka obcego Z II17.A05 (język angielski, francuski lub niemiecki) 2. Analiza matematyczna E II17.B Statystyka matematyczna Z II17.C Bazy danych Z II17.C Finanse i bankowość Z II17.C Podstawy badań E II17.C1205 rynkowych 7. Badania operacyjne E II17.C Elementy matematyki finansowej Z II17.C Ekonomika instytucji finansowych E II17.C Elementy finansów instytucji publicznych Z II17.C Marketing usług bankowych Z II17.C Rachunkowość Z II17.C Wychowanie fizyczne Z 1 SUMA PUNKTÓW 30 ROCZNA SUMA PUNKTÓW 60 5

6 II ROK (ścieżka kształcenia analityka działalności przedsiębiorstwa) L p. Nazwa przedmiotu 1. Lektorat języka obcego (język angielski, francuski lub niemiecki) Liczba godzin w semestrze Forma Punkty Kody egzaminu ECTS przedmiotów Σ W C K L S (zaliczenia) SEMESTR III Z II17.A05 2. Analiza matematyczna E II17.B Algebra E II17.B Podstawy geometrii i topologii Z II17.B Rachunek E II17.B106 prawdopodobieństwa 6. Podstawy statystyki E II17.B Bazy danych Z II17.C Polityka społecznogospodarcza Z II17.C Metody oceny projektów E II17.C1203 gospodarczych 10 Wychowanie fizyczne Z 1 SUMA PUNKTÓW 30 SEMESTR IV 1. Lektorat języka obcego Z II17.A05 (język angielski, francuski lub niemiecki) 2. Analiza matematyczna E II17.B Statystyka matematyczna Z II17.C Bazy danych Z II17.C Finanse i bankowość Z II17.C Podstawy badań E II17.C1205 rynkowych 7. Badania operacyjne E II17.C Procesy stochastyczne Z II17.C Nowoczesne zarzadzanie przedsiębiorstwem E II17.C Nowoczesne strategie finansowe przedsiębiorstw Z II17.C Marketing przedsiębiorstwa Z II17.C Rachunkowość Z II17.C Wychowanie fizyczne Z 1 SUMA PUNKTÓW 30 ROCZNA SUMA PUNKTÓW 60 6

7 III ROK (ścieżka kształcenia analityka instytucji finansowych) L Nazwa Liczba godzin w semestrze Forma Punkty Kody p. przedmiotu egzaminu ECTS przedmiotów Σ W C K L S (zaliczenia) SEMESTR V 1. Psychologia II17.A01 2. Lektorat języka obcego Z II17.A05 (język angielski, francuski lub niemiecki) 3. Analiza matematyczna E II17.B Ekonometria E II17.B Statystyka matematyczna E II17.C Analiza ekonomiczna E II17.C Inżynieria finansowa E II17.C Matematyka ubezpieczeń Z II17.C2104 na życie 9. Użytkowe programy Z II17.C2106 finansowe 10 Budowa portfela E II17.C2204 inwestycyjnego 11 Giełda i instrumenty rynku Z II17.C2205 kapitałowego 12 Podstawy prawa Z II17.C2208 ubezpieczeń 13 Obsługa klienta na rynku finansowym Z II17.C2209 SUMA PUNKTÓW 30 SEMESTR VI 1. Socjologia Z II17.A02 2. Ochrona własności Z II17.A04 intelektualnej 3. Lektorat języka obcego (język angielski, francuski lub niemiecki) E II17.A05 4. Seminarium Z II17.C E II17.C System pośrednictwa finansowoubezpieczeniowego 6. Seminarium Z II17.C Matematyka ubezpieczeń Z II17.C2104 na życie 8. Ubezpieczenia majątkowe Z II17.C Użytkowe programy finansowe 10 Efektywność ekonomiczna inwestycji 11 Ryzyko w działalności instytucji finansowych SUMA PUNKTÓW 20 ROCZNA SUMA PUNKTÓW Z II17.C Z II17.C E II17.C2207 7

8 III ROK (ścieżka kształcenia analityka działalności przedsiębiorstwa) L Nazwa Liczba godzin w semestrze Forma Punkty Kody p. przedmiotu egzaminu ECTS przedmiotów Σ W C K L S (zaliczenia) SEMESTR V 1. Psychologia II17.A01 2. Lektorat języka obcego Z II17.A05 (język angielski, francuski lub niemiecki) 3. Analiza matematyczna E II17.B Ekonometria E II17.B Statystyka matematyczna E II17.C Analiza ekonomiczna E II17.C Procesy stochastyczne Z II17.C Teoria gier w ekonomii E II17.C Matematyka instrumentów Z II17.C3104 finansowych 10 Programy użytkowe do Z II17.C3106 analiz ekonomicznych 11 Prawo gospodarcze Z II17.C Metody oceny E II17.C3204 efektywności inwestycji 13 Analiza giełdowa Z II17.C Prognozowanie w analizie Z II17.C3209 przedsiębiorstwa SUMA PUNKTÓW 30 SEMESTR VI 1. Socjologia Z II17.A02 2. Ochrona własności Z II17.A04 intelektualnej 3. Lektorat języka obcego (język angielski, francuski lub niemiecki) E II17.A05 4. Seminarium Z II17.C E II17.C System pośrednictwa finansowoubezpieczeniowego 6. Seminarium Z II17.C Matematyka instrumentów Z II17.C3104 finansowych 8. Ryzyko działalności Z II17.C3105 gospodarczej 9. Programy użytkowe do analiz ekonomicznych 10 Wycena wartości przedsiębiorstwa 11 Modele wczesnego ostrzegania SUMA PUNKTÓW 20 ROCZNA SUMA PUNKTÓW Z II17.C E II17.C Z II17.C3210 8

9 I ROK KURS WYRÓWNAWCZY L Nazwa Liczba godzin w semestrze Forma Kody p. przedmiotu egzaminu przedmiotów (zaliczenia) Σ W C K L S SEMESTR I 1. Funkcje elementarne Z 11.1II17.O01 2. Podstawy geometrii Z 11.1II17.O02 SEMESTR II 1. Funkcje elementarne Z 11.1II17.O01 2. Podstawy geometrii Z 11.1II17.O02 3. Podstawy algebry Z 11.1II17.O03 9

10 A. PRZEDMIOTY OGÓLNE 10

11 Psychologia wykłady 14.4II17.A01 2 V 1 Przedmiot ogólny. 1. Podstawowe pojęcie psychologii społecznej; postawy, konformizm, stereotypy, propaganda, przekonywanie, pierwsze wrażenie, hallo-efekt, atrakcyjność interpersonalna. 2. Psychologia grupy. Dynamika rozwoju grup pracowniczych. Syndrom grupowego myślenia. 3. Techniki zmiany postaw. 4. Psychologia kierowania. Podstawowe funkcje lidera. Style kierowania grupą. Przywództwo. 5. Teorie wywierania wpływu społecznego. Sposoby i techniki wywierania wpływu, dostosowanie strategii działania do cech zespołu. Socjotechnika 6. Rola motywacji w procesie kierowania. Psychologiczne teorie motywacji. 7. Komunikacja w procesie zarządzania. 8. Stres w pracy. Metody zwalczania stresu. 9. Zarządzanie konfliktami. Typologia konfliktów. 10. Negocjacje. 11. Psychologia reklamy i zachowań rynkowych. 12. Psychologia rekrutacji i oceny pracowników. Zapoznanie z podstawami psychologii dla ekonomistów. Wykłady. Nie jest wymagane wcześniejsze przygotowanie do przedmiotu. Literatura przedmiotu. Przedmiot kończy się zaliczeniem. Domachowski W.: Przewodnik po psychologii społecznej. PWN, Warszawa, 1998 Nęcki Z.: Komunikowanie interpersonalne. Ossolineum, Wrocław, 1992 Nęcki Z.: Negocjacje w biznesie. Wydawnictwo Profesjonalnej Szkoły Biznesu, Kraków, 1991 Argyle M.: Psychologia stosunków międzyludzkich, PWN, Warszawa, 1991 Kożusznik B.: Psychologia zespołu pracowniczego. Wydawnictwo Uniwersytetu Śląskiego, Katowice

12 Socjologia wykłady 14.2II17.A02 2 VI 2 Przedmiot ogólny. 1. Opis świata społecznego w rysie historycznym. Konceptualizacje zjawisk społecznych. 2. Fenomen rzeczywistości społecznej. Procesualna natura świata społecznego. 3. Struktura społeczna - klasyfikacja cech. 4. Interakcja społeczna. 5. Stratyfikacja społeczna - mobilność społeczna. 6. Instytucje - formy stabilizacji życia społecznego. 7. Fenomeny kultury - ujęcie klasyczne i w kategoriach memetyki. 8. Rozwój metod badań socjologicznych. 9. Zagadnienia socjologii wsi i miasta. 10. Problematyka środowisk lokalnych. 11. Osobliwości socjologiczne. Celem wykładów jest przedstawienie szerokiej panoramy problematyk socjologii współczesnej i jej związku z innymi naukami społecznymi. Szczególnie akcentowana będzie natura prawidłowości socjologicznych. Wykłady. Nie jest wymagane wcześniejsze przygotowanie do przedmiotu. Literatura przedmiotu. Przedmiot kończy się zaliczeniem. Kłosowska A.: Socjologia kultury Menterys A.: Wielość rzeczywistości w teoriach socjologicznych Turner J.H.: Socjologia. Koncepcje i ich zastosowanie Bokszański Z.: Stereotypy a kultura Mcraeh.: Świat w roku 2000 Biedrzycki M.: Genetyka kultury J. Ortega Y Basset: Bunt mas i inne pisma socjologiczne Popper K. R.: Mit schematu pojęciowego. W obronie nauki i racjonalności 12

13 Technologia informacyjna laboratoria 11.3II17.A03 2 I 2 Przedmiot ogólny. Środowisko Windows. Tworzenie i redagowanie dokumentów tekstowych. Procesor tekstu Latex. Grafika i multimedia. Materiały prezentacyjne. Arkusze kalkulacyjne. Relacyjne bazy danych. Lokalne sieci komputerowe. Globalne sieci komputerowe. Usługi sieciowe. Technologie internetowe, projektowanie witryn WWW. Środowisko systemu Linux. Prawne i etyczne aspekty informatyki. Pakiety matematyczne: MatCad, Mathematica, Maple. Przygotowanie studentów do efektywnego korzystania z podstawowych narzędzi informatycznych i programów komputerowych potrzebnych w trakcie studiów (edytory tekstów, arkusze kalkulacyjne, prezentacje multimedialne, technologie internetowe i projektowanie stron WWW, programy matematyczne). Laboratoria w pracowni komputerowej. Znajomość obsługi komputera i podstaw informatyki. Obsługa narzędzi w środowisku Windows. Laboratorium komputerowe z komputerami pracującymi w środowisku Windows i dostępem do Internetu. Oprogramowanie: MS Office, TeX, MatCad, Mathematica, Maple. Przedmiot kończy się zaliczeniem. Aktualnie podawana na zajęciach. 13

14 Ochrona własności intelektualnej wykłady 10.9II17.A04 2 V 1 Przedmiot ogólny. 1. Prawo autorskie i prawo pokrewne przedmiot, podmiot i treść prawa autorskiego czas trwania autorskich praw majątkowych przejście autorskich praw majątkowych (dziedziczenie, umowa: rodzaje umów, cechy charakterystyczne, elementy konieczne) ochrona autorskich praw osobistych i majątkowych, ochrona wizerunku, adresata korespondencji i tajemnicy źródeł informacji odpowiedzialność karna 2. Prawa prasowe geneza prawa prasowego i jego główne funkcje prawa i obowiązki dziennikarzy; kwestia cenzury organizacja działalności prasowej sprostowania i odpowiedzi; komunikaty i ogłoszenia odpowiedzialność prawna 3. Prawo własności przemysłowej przedmiot ustawy: wynalazki (pojęcie wynalazku, przesłanki jego ochrony, zakres ochrony), wzory użytkowe (pojęcie, prawo ochronne), wzory przemysłowe (definicja, ochrona), projekty racjonalizatorskie, znaki towarowe (definicja, zakres ochrony), oznaczenia geograficzne. prawo osobiste i majątkowe twórców przedmiotów własności przemysłowej. umowy zawierane w obrocie przedmiotami własności przemysłowej. Zapoznanie studentów z przepisami prawa autorskiego, prasowego i własności przemysłowej. Wykłady. Nie jest wymagane wcześniejsze przygotowanie do przedmiotu. Literatura przedmiotu. Przedmiot kończy się zaliczeniem. Barta J., Czajkowska-Dąbrowska M., Ćwąkalski Z., Markiewicz R., Traple E., Komentarz do ustawy o prawie autorskim i prawach pokrewnych, Warszawa Kotarba W., Ochrona własności przemysłowej w gospodarce polskiej w dostosowaniu do wymogów Unii Europejskiej i Światowej Organizacji Handlu, Warszawa Michalski P., Podstawowe problemy prawa prasowego, Warszawa

15 B1. PRZEDMIOTY PODSTAWOWE (Odpowiedzialność WMF) 15

16 Wstęp do logiki i teorii mnogości 11.1II17.B101 2/2 I 5 Przedmiot podstawowy. Rachunek zdań. Algebra zbiorów. Rachunek kwantyfikatorów. Liczby naturalne, aksjomaty Peano, zasada indukcji matematycznej. Produkt zbiorów, relacje. Relacje równoważności, zasada abstrakcji, konstrukcje liczbowe. Funkcje i ich własności, ciągi skończone i nieskończone, indeksowane rodziny zbiorów. Uogólnione działania na zbiorach, obrazy i przeciwobrazy zbiorów wyznaczone przez funkcje oraz ich własności. Odwracanie i składanie funkcji. Równoliczność zbiorów, zbiory skończone i nieskończone, moc zbioru. Porównywanie liczebności zbiorów, twierdzenie Cantora- Bernsteina, zbiór potęgowy, twierdzenie Cantora. Relacje porządku, typy porządkowe. Zbiory dobrze uporządkowane, indukcje pozaskończone. Lemat Kuratowskiego-Zorna. Uzyskanie podstawowej wiedzy z logiki i teorii mnogości niezbędnej do opanowania innych przedmiotów podstawowych oraz przedmiotów kierunkowych. Znajomość materiału przewidzianego programem liceum ogólnokształcącego (kierunek ogólny). Podręczniki i zbiory zadań z logiki i teorii mnogości. Przedmiot kończy się egzaminem. W. Guzicki, P. Zakrzewski; Wykłady ze wstępu do matematyki, J. Słupecki, K. Hałkowska; K. Piróg-Rzepecka, Logika matematyczna, H. Rasiowa; Wstęp do matematyki współczesnej 16

17 Analiza matematyczna 11.1II17.B102 2/2, 2/2, 2/2, 1/1, 1/1 I, II, III, IV, V 43 Przedmiot podstawowy. Zbiory liczbowe: oznaczenia, zbiór liczb naturalnych i zasada indukcji matematycznej, zbiór liczb rzeczywistych i oś liczbowa, podzbiory ograniczone zbioru liczb rzeczywistych, kres górny i dolny zbioru. Wartość bezwzględna i otoczenie punktu na osi liczbowej. Ciągi liczbowe: definicja ciągu nieskończonego, ciągi monotoniczne i ograniczone, granica i zbieżność ciągu, własności algebraiczne i porządkowe ciągów zbieżnych, podciągi i twierdzenie Bolzano-Weierstrassa, ciągi Cauchy ego, zupełność zbioru liczb rzeczywistych, granice niewłaściwe, granice dolne i górne. Szeregi liczbowe: definicja, zbieżność szeregu liczbowego, szereg geometryczny, warunek Cauchy ego dla szeregu, warunek konieczny zbieżności szeregu, szereg harmoniczny, szeregi o wyrazach nieujemnych oraz kryteria badania ich zbieżności (porównawcze, d Alamberta, Cauchy ego, Raabego), zbieżność bezwzględna, szeregi naprzemienne i kryterium Leibnitza, kryterium Abela, grupowanie wyrazów szeregu, permutacje wyrazów szeregu, twierdzenie Riemanna, mnożenie szeregów i twierdzenie Cauchy ego. Funkcje: pojęcie funkcja, funkcje monotoniczne i ograniczone, funkcje parzyste, nieparzyste i okresowe, granica funkcji w punkcie, granice jednostronne, ciągłość funkcji w punkcie i na zbiorze, ciągłość funkcji elementarnych, własności funkcji ciągłej na przedziale domkniętym, twierdzenie o ciągłości jednostajnej, twierdzenie Weierstrassa, własność Darboux, funkcje różnowartościowe i funkcje odwrotne. Ciągi funkcyjne: definicja, zbieżność punktowa i jednostajna, kryteria zbieżności jednostajnej, warunek Cauchy ego, twierdzenie o granicy jednostajnej ciągu funkcji ciągłych. Szeregi funkcyjne: zbieżność punktowa i jednostajna, kryteria Weierstrassa i Dirichleta. Rachunek różniczkowy: pochodna funkcji w punkcie i na zbiorze, różniczkowalność funkcji, styczna do krzywej, interpretacja geometryczna pochodnej, pochodne funkcji elementarnych i wzory na obliczanie pochodnych, ekstrema funkcji i twierdzenie Fermata, twierdzenie Rolle a, twierdzenia o wartości średniej Lagrange a i Cauchy ego, pochodna a monotoniczność, reguła de l Hôspitala, warunki dostateczne istnienia ekstremum, asymptoty krzywej, różniczkowanie ciągów i szeregów funkcyjnych, pochodne i różniczki wyższych rzędów, wzór Taylora i McLaurina, rozwijanie funkcji w szereg potęgowy, szeregi potęgowe funkcji elementarnych, warunki dostateczne istnienia ekstremum z użyciem pochodnych wyższych rzędów, wypukłość i punkty przegięcia. Rachunek całkowy: funkcja pierwotna i całka nieoznaczona, całki nieoznaczone funkcji elementarnych, całkowanie przez części i przez podstawianie, całkowanie funkcji wymiernych, całkowanie funkcji niewymiernych, całkowanie funkcji trygonometrycznych. Całka Riemanna: określenie i interpretacja geometryczna, kryteria całkowalności funkcji, funkcje całkowalne, własności całki Riemanna, twierdzenia o wartości średniej rachunku całkowego, twierdzenie o istnieniu funkcji pierwotnej, zastosowanie całki oznaczonej do obliczania pól figur płaskich, długości krzywych, objętości i pól powierzchni bocznej brył obrotowych, całkowanie ciągów i szeregów funkcyjnych. Przestrzeń R n : określenie, dodawanie wektorów i mnożenie przez skalar, iloczyn skalarny, długość wektora, metryka, kula otwarta i domknięta, otoczenie punktu, zbiory otwarte i domknięte, topologia przestrzeni R n, wnętrze i domknięcie zbioru, zbiory spójne, obszary, zbiory ograniczone, zbieżność ciągu w R n, związek domknięcia zbioru ze zbieżnością ciągów, twierdzenie Bolzano-Weierstrassa, zbiory zwarte w R n, iloczyn wektorowy w R 3. Funkcje: określenie funkcji n zmiennych, definicja granicy funkcji w punkcie, pojęcie funkcja ciągła w punkcie i na zbiorze, wielomiany n zmiennych, własności funkcji ciągłej na zbiorze zwartym i na zbiorze spójnym. Rachunek różniczkowy: pochodne 17

18 cząstkowe funkcji wielu zmiennych, różniczkowalność funkcji w sensie Stolza, różniczka funkcji, płaszczyzna styczna, pochodne cząstkowe funkcji złożonej, funkcje o wartościach wektorowych, przekształcenia przestrzeni skończenie wymiarowych, pochodne cząstkowe przekształceń, macierz i jakobian przekształcenia, operator różniczkowy nabla Hamiltona, elementy teorii pola (gradient funkcji skalarnej, dywergencja funkcji wektorowej, rotacja funkcji wektorowej), pochodne i różniczki rzędu drugiego i wyższych rzędów funkcji wielu zmiennych, wzór Taylora dla funkcji wielu zmiennych, ekstrema funkcji wielu zmiennych, funkcje uwikłane, przekształcenia uwikłane, dyffeomorfizmy, ekstrema funkcji uwikłanych. Rachunek całkowy: określenie całki n-krotnej na przedziale n-wymiarowym, interpretacja geometryczna, włąsności całki, kryteria całkowalności, zbiory mierzalne wg Jordana, zbiory miary Jordana zero, zamiana całki na przedziale n-wymiarowym na całki iterowane, określenie całki n-krotnej na dowolnym zbiorze, obszary regularne i normalne, zamiana całki n-krotnej na obszarze normalnym na całki iterowane, zamiana zmiennych w całce wielokrotnej, zastosowania całek podwójnych i potrójnych w matematyce i fizyce, określenia całki krzywoliniowej nieskierowanej i skierowanej w R 2 i R 3, własności tych całek, zamiana na całki zwykłe, twierdzenie Greena, niezależność całki krzywoliniowej od drogi całkowania, funkcja pierwotna dla funkcji wektorowej dwóch zmiennych, zastosowania całek krzywoliniowych w matematyce i fizyce, określenie całki powierzchniowej niezorientowanej i zorientowanej w R 3, własności tych całek, zamiana na całki podwójne, twierdzenie Gaussa-Ostrogradskiego, twierdzenie Stokesa, zastosowania całek powierzchniowych w matematyce i fizyce. Uzyskanie podstawowej wiedzy z analizy matematycznej niezbędnej do opanowania innych przedmiotów podstawowych oraz przedmiotów kierunkowych. Umiejętność stosowania zdobytej wiedzy, zarówno do rozwiązywania zagadnień teoretycznych jak i zagadnień praktycznych w innych dziedzinach. Znajomość materiału przewidzianego programem liceum ogólnokształcącego (kierunek ogólny) na pierwszym roku studiów, a na dalszych latach znajomość wcześniejszych zagadnień. Podręczniki i zbiory zadań z rachunku różniczkowego i całkowego. Przedmiot kończy się egzaminem po każdym semestrze. G.M. Fichtenholtz, Rachunek różniczkowy i całkowy; PWN Warszawa 1985, G.M. Fichtenholtz, Rachunek różniczkowy i całkowy II; PWN Warszawa 1985, K. Kuratowski; Rachunek różniczkowy i całkowy. Funkcje jednej zmiennej, Biblioteka Matematyczna PWN t. 22, Warszawa 1967, W. Krysicki, L. Włodarski; Analiza matematyczna w zadaniach część I, PWN Warszawa 1983, F. Leja: Rachunek różniczkowy i całkowy, Biblioteka Matematyczna PWN t.2, Warszawa

19 Algebra liniowa 11.1II17.B103 2/2, 2/2 I, II 9 Przedmiot podstawowy. Działania wewnętrzne, działania zewnętrzne, podstawowe własności i przykłady. Definicja i najprostsze własności grupy. Konstrukcja liczb zespolonych, własności dodawania i mnożenia liczb zespolonych. Postać algebraiczna i sprzężenie liczby zespolonej. Moduł i argument liczby zespolonej, interpretacje geometryczne równań i nierówności z argumentem oraz modułem. Postać trygonometryczna liczby zespolonej, wzór de Moivre a, rozwiązania równania x n =z. Wielomiany podstawowe definicje i własności, twierdzenie Bezout a. Zasadnicze twierdzenie algebry (bez dowodu), pewne równania algebraiczne. Definicja i najprostsze własności ciała, przykłady. Macierze - podstawowe określenia, działania na macierzach. Definicja indukcyjna wyznacznika, pewne własności. Dalsze własności wyznacznika, twierdzenie Laplace a, twierdzenia Cauchy ego. Macierze odwracalne, algorytm Gaussa. Macierze układu, twierdzenie Cramera. Metoda eliminacji Gaussa dla dowolnych układów równań. Podstawowe własności przestrzeni liniowych, przykłady. Podprzestrzenie przestrzeni liniowej, powłoki liniowe, przestrzenie skończenie generowane. Liniowa zależność i niezależność wektorów, baza i wymiar przestrzeni liniowej, twierdzenie Grassmana. Uporządkowana baza przestrzeni, współrzędne wektora w bazie. Izomorfizm przestrzeni liniowych, przestrzenie izomorficzne, przykłady. Rząd macierzy, metody obliczania rzędu macierzy, twierdzenie Kroneckera-Cappelliego. Twierdzenia pomocne w rozwiązywaniu układów równań. Wymiar przestrzeni rozwiązań układu równań liniowych jednorodny, fundamentalny układ rozwiązań. Przekształcenia liniowe, jądro i obraz przekształcenia liniowego. Macierz przekształcenia liniowego, izomorfizm przestrzeni Hom(V,W) oraz M mxn (K). Funkcjonały liniowe, przestrzeń dualna, baza dualna. Wektory własne i wartości własne endomorfizmu, wielomian charakterystyczny, wartości własne i wektory własne macierzy. Diagonalizacja endomorfizmu, informacja o twierdzeniu Jordana, Macierze podobne, macierz klatkowa Jordana, informacja o twierdzeniu Jordana o macierzy. Twierdzenie Cayleya- Hamiltona. Iloczyn skalarny, norma wektora, ortogonalność wektorów, bazy ortogonalne. Rzut ortogonalny wektora na podprzestrzeń, metoda najmniejszych kwadratów, przybliżone rozwiązania sprzecznych układów równań. Uzyskanie podstawowej wiedzy z algebry liniowej niezbędnej do opanowania innych przedmiotów podstawowych oraz przedmiotów kierunkowych. Znajomość materiału przewidzianego programem liceum ogólnokształcącego (kierunek ogólny). Podręczniki i zbiory zadań z algebry liniowej. Przedmiot kończy się zaliczeniem po II i egzaminem po III semestrze. B. Gleigewicht; Algebra, PWN Warszawa 1983, A. Białynicki-Birula; Algebra liniowa z geometrią, Z. Opial; Algebra wyższa, A. Sieklucki; Geometria i topologia cz.1, N. W. Jefimow, Rozendor; Algebra liniowa wraz z geometrią wielowymiarową, Cz. Wowk; Algebra liniowa w problemach i zadaniach. 19

20 Algebra 11.1II17.B104 1/1 III 3 Przedmiot podstawowy. Grupy: definicja, podgrupa i dzielnik normalny, twierdzenie Lagrange a i zastosowania, homomorfizmy grup, grupy ilorazowe, izomorfizmy, twierdzenia o izomorfiźmie, działanie grupy na zbiorze, twierdzenia Sylowa, grupy permutacji, twierdzenie Cayley a, uwagi o reprezentacjach grup. Pierścienie: definicja, ideały i pierścienie ilorazowe, ideały pierwsze i maksymalne, pierścienie ideałów głównych, pierścienie z jednoznacznością rozkładu, pierścienie noetherowskie. Ciała: rozszerzenia skończone i algebraiczne, domknięcie algebraiczne ciała, rozszerzenie normalne, automorfizmy ciała. Uzyskanie podstawowej wiedzy z algebry niezbędnej do opanowania innych przedmiotów podstawowych oraz przedmiotów kierunkowych. Znajomość materiału przewidzianego programem liceum ogólnokształcącego (kierunek ogólny). Znajomość podstaw logiki i teorii mnogości. Podręczniki i zbiory zadań z algebry. Przedmiot kończy się zaliczeniem. A. Białynicki-Birula; Algebra, PWN Warszawa 1977, J. Browkin; Teoria ciał, PWN Warszawa 1977, S. Lang; Algebra, PWN Warszawa 1977, I.I. Kargapolov, Yu.I. Merzljakov; Podstawy teorii grup (ros.), Mir Moskwa

21 Podstawy geometrii i topologii 11.1II17.B105 1/1 II, III 3 Przedmiot podstawowy. Układ współrzędnych prostokątnych. Odległość punktów. Zapis biegunowy. Wektory zaczepione w początku układu współrzędnych. Iloczyn skalarny i jego własności. Składowa wektora na osi. Równanie normalne prostej (interpretacja geometryczna). Równanie ogólne prostej. Odległość punktu od prostej. Równanie parametryczne prostej. Warunek równoległości i prostopadłości prostej. Kąt między prostymi. Wyznaczniki 2x2 i 3x3. Pole trójkąta. Warunek współliniowości punktów. Okrąg. Równanie okręgu przez 3 punkty. Przesunięcia, obroty, odbicia w prostych i w punktach. Przekształcenia afiniczne. Ukośnokątne układy współrzędnych. Elipsa. Własność optyczna i inne : średnice sprzężone. Hiperbola. Własność optyczna i inne : średnice sprzężone. Parabola. Własność optyczna i inne. Klasyfikacja afiniczna krzywych stopnia drugiego. Klasyfikacja metryczna krzywych stopnia drugiego. Układ współrzędnych prostokątnych w przestrzeni. Wektory zaczepione w (0,0,0). Dodawanie, mnożenie przez skalary, mnożenie skalarne i iloczyn wektorowy. Składowa wektorowa na osi. Równanie (normalne) płaszczyzny. Odległość punktu od płaszczyzny. Równanie parametryczne płaszczyzny i prostej. Objętość czworościanu. Warunek współpłaszczyznowości czterech punktów. Sfera. Sfera przez 4 punkty. Sferyczne i cylindryczne opisanie punktów w E 3. Metryka, przestrzeń metryczna, przykłady przestrzeni metrycznych, kula otwarta, kula domknięta. Klasa zbiorów otwartych, baza. Zbieżność ciągów w przestrzeni metrycznej, punkt skupienia zbioru. Ciąg Cauchy ego, zupełność, uzupełnienie przestrzeni metrycznej. Ciągłość odwzorowań w przestrzeniach metrycznych. Topologia, przestrzeń topologiczna, klasa zbiorów domkniętych, baza przestrzeni topologicznej, pierwszy i drugi aksjomat przeliczalności. Wnętrze i domknięcie zbioru, ośrodkowość przestrzeni. Ciągłość odwzorowań w przestrzeniach topologicznych. Homeomorfizm, równoważność metryk. Przestrzenie topologiczne zwarte. Przestrzenie topologiczne spójne, własności dziedziczne przestrzeni topologicznych. Iloczyn kartezjański skończonej liczby przestrzeni topologicznych. Uzyskanie podstawowej wiedzy z geometrii analitycznej i topologii. Znajomość materiału przewidzianego programem liceum ogólnokształcącego (kierunek ogólny). Podręczniki i zbiory zadań z geometrii analitycznej i topologii. Przedmiot kończy się zaliczeniem. F. Leja; Geometria analityczna, B. Gdowski, E. Pluciński; Zbiór zadań z geometrii analitycznej, M. Stark; Geometria analityczna. 21

22 Rachunek prawdopodobieństwa 11.1II17.B106 1/1 II, III 10 Przedmiot podstawowy. Doświadczalne podstawy rachunku prawdopodobieństwa. Różne podejścia do definicji prawdopodobieństwa. Przestrzeń zdarzeń elementarnych. σ ciało zdarzeń. Relacje między zdarzeniami. Przestrzeń probabilistyczna. Aksjomatyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Przykłady przestrzeni probabilistycznych. Przykłady definiowania i obliczania prawdopodobieństw schemat klasyczny (skończony zbiór zdarzeń elementarnych), przeliczalny zbiór zdarzeń elementarnych, nieprzeliczalny zbiór zdarzeń elementarnych (prawdopodobieństwo geometryczne). Prawdopodobieństwo warunkowe. Wzór na prawdopodobieństwo całkowite i wzór Bayesa. Niezależność zdarzeń i doświadczeń. Schemat Bernoulliego. Zmienne losowe jednowymiarowe. Definicja zmiennej losowej. Rozkład i dystrybuanta zmiennej losowej. Zmienne losowe typu skokowego. Zmienne losowe typu ciągłego. Funkcje zmiennej losowej. Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana, wariancja. Momenty wyższych rzędów. Standaryzacja zmiennej losowej. Nierówność Czebyszewa. Zmienne losowe wielowymiarowe (wektory losowe). Definicja, rozkład i dystrybuanta 2-wymiarowej zmiennej losowej. Rozkłady brzegowe. Wektory losowe typu skokowego i ciągłego. n-wymiarowe zmienne losowe. Niezależność zmiennych losowych. Zbieżność ciągów zmiennych losowych. Twierdzenia graniczne rachunku prawdopodobieństwa. Prawa wielkich liczb. Centralne twierdzenie graniczne Poznanie podstawowych pojęć i metod rachunku prawdopodobieństwa oraz uzyskanie podstawowej wiedzy z tej dziedziny, która będzie podstawą w statystyce matematycznej. Znajomość zagadnień teorii mnogości oraz analizy matematycznej. Podręczniki i zbiory zadań z rachunku prawdopodobieństwa, tablice statystyczne, kalkulator. Przedmiot kończy się zaliczeniem po II i egzaminem po III semestrze. Borowkow; Rachunek prawdopodobieństwa, PWN Warszawa 1977, M. Fisz: Rachunek prawdopodobieństwa i statystyka matematyczna; PWN Warszawa 1969, L.T. Kubik; Rachunek prawdopodobieństwa podręcznik dla kierunków nauczycielskich, PWN Warszawa 1976, A. Plucińska, E. Pluciński; Elementy probabilistyki, PWN Warszawa

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19 Matematyka dla kierunków ekonomicznych : przykłady i zadania wraz z repetytorium ze szkoły średniej / Henryk Gurgul, Marcin Suder. wyd. 6 uzup. i popr., uwzględniające podstawowy program matematyki również

Bardziej szczegółowo

EGZAMIN LICENCJACKI NA KIERUNKU MATEMATYKA ROK AKADEMICKI 2016/2017

EGZAMIN LICENCJACKI NA KIERUNKU MATEMATYKA ROK AKADEMICKI 2016/2017 EGZAMIN LICENCJACKI NA KIERUNKU MATEMATYKA ROK AKADEMICKI 2016/2017 1. Analiza matematyczna 1. Zdefiniuj pojęcia kresów podzbiorów zbioru liczb rzeczywistych. 2. Omów pojęcie granicy ciągu liczb rzeczywistych

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA... 13

SPIS TREŚCI PRZEDMOWA... 13 SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Nazwa przedmiotu MATEMATYKA I Kod CH 1.1 Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S Sposób zaliczenia E Katedra Centrum Nauczania Matematyki i Kształcenia na

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

niestacjonarne IZ2106 Liczba godzin Wykład Ćwiczenia Laboratorium Projekt Seminarium Studia stacjonarne 30 0 0 0 0 Studia niestacjonarne 24 0 0 0 0

niestacjonarne IZ2106 Liczba godzin Wykład Ćwiczenia Laboratorium Projekt Seminarium Studia stacjonarne 30 0 0 0 0 Studia niestacjonarne 24 0 0 0 0 1. Informacje ogólne Nazwa przedmiotu Kod kursu Ekonomia stacjonarne ID1106 niestacjonarne IZ2106 Liczba godzin Wykład Ćwiczenia Laboratorium Projekt Seminarium Studia stacjonarne 0 0 0 0 0 Studia niestacjonarne

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Przedmioty podstawowe - matematyka Przedmioty: Nazwa jednostki prowadzącej przedmiot Instytut Matematyki kierunek specjalność

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/3 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Kierunek Ekonomia Rok I Lp. Przedmioty Blok Wymiar

Kierunek Ekonomia Rok I Lp. Przedmioty Blok Wymiar Kierunek Ekonomia Rok I Semestr 1 Semestr 2 Matematyka wstęp 60 1 30 30 1 Matematyka A 60 6 30 30 E 2 Podstawy statystyki A 60 6 30 30 E 3 Podstawy mikroekonomii A 60 6 30 30 E 4 Podstawy makroekonomii

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Załącznik nr 2 do SIWZ Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Zakres materiału Z-1; sem. 1 1. Funkcje jednej zmiennej i ich własności: a) Wartość bezwzględna definicja, rozwiązywanie równań

Bardziej szczegółowo

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Wydział Nauk Ekonomicznych i Zarządzania Kierunek Analityka Gospodarcza Studia stacjonarne I stopnia ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Zagadnienia ogólnoekonomiczne 1. Aktualna sytuacja na europejskim

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr Rok I/ I i II semestr Specjalność Bez specjalności Kod

Bardziej szczegółowo

WYKAZ PRZEDMIOTÓW OBOWIĄZKOWYCH ZAWARTYCH W STANDARDACH KSZTAŁCENIA

WYKAZ PRZEDMIOTÓW OBOWIĄZKOWYCH ZAWARTYCH W STANDARDACH KSZTAŁCENIA STANDARDACH KSZTAŁCENIA (Rozporządzenie MNiSzW z dnia 12.07.2007 r. Dz.U.Nr 164) Studia stacjonarne i niestacjonarne I stopnia X) EKONOMIA Matematyka, statystyka opisowa, ekonometria, mikroekonomia, podstawy

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

Finanse i Rachunkowość

Finanse i Rachunkowość Wydział Nauk Ekonomicznych i Technicznych Państwowej Szkoły Wyższej im. Papieża Jana Pawła II w Białej Podlaskiej Zestaw pytań do egzaminu licencjackiego na kierunku Finanse i Rachunkowość 1 Zestaw pytań

Bardziej szczegółowo

Makroekonomia - opis przedmiotu

Makroekonomia - opis przedmiotu Makroekonomia - opis przedmiotu Informacje ogólne Nazwa przedmiotu Makroekonomia Kod przedmiotu 14.3-WK-MATP-Ma-W-S14_pNadGen6IRKR Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii Matematyka

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Algebra liniowa z geometrią Kod przedmiotu/

Bardziej szczegółowo

Matryca efektów kształcenia w odniesieniu do form zajęć

Matryca efektów kształcenia w odniesieniu do form zajęć Nazwa modułu: Ekonomia Rok akademicki: 2015/2016 Kod: ZIP-3-803-s Punkty ECTS: 4 Wydział: Zarządzania Kierunek: Inżynieria Produkcji Specjalność: - Poziom studiów: Studia III stopnia Forma i tryb studiów:

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Ekonomia Rok akademicki: 2015/2016 Kod: MEI-1-501-s Punkty ECTS: 1 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Edukacja Techniczno Informatyczna Specjalność: - Poziom

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna I (ANA011) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60 /

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Studia III stopnia

Karta (sylabus) modułu/przedmiotu Studia III stopnia Karta (sylabus) modułu/przedmiotu Studia III stopnia Przedmiot: Ekonomia Rok: II Semestr: III Rodzaj zajęć Wykład 30 Ćwiczenia - Laboratorium - Projekt - punktów ECTS: 3 Cel przedmiotu C1 Zaznajomienie

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Ekonomia - opis przedmiotu

Ekonomia - opis przedmiotu Ekonomia - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonomia Kod przedmiotu 14.2-WP-SOCP-EKON-W_pNadGenAEXKR Wydział Kierunek Wydział Pedagogiki, Psychologii i Socjologii Socjologia Profil ogólnoakademicki

Bardziej szczegółowo

Spis treści. Rozdział I ELEMENTARNE POJĘCIA I PRZEDMIOT EKONOMII

Spis treści. Rozdział I ELEMENTARNE POJĘCIA I PRZEDMIOT EKONOMII Spis treści Rozdział I ELEMENTARNE POJĘCIA I PRZEDMIOT EKONOMII Wstępne określenie przedmiotu ekonomii 7 Ekonomia a inne nauki 9 Potrzeby ludzkie, produkcja i praca, środki produkcji i środki konsumpcji,

Bardziej szczegółowo

Bardzo dobra Dobra Dostateczna Dopuszczająca

Bardzo dobra Dobra Dostateczna Dopuszczająca ELEMENTY EKONOMII PRZEDMIOTOWY SYSTEM OCENIANIA Klasa: I TE Liczba godzin w tygodniu: 3 godziny Numer programu: 341[02]/L-S/MEN/Improve/1999 Prowadzący: T.Kożak- Siara I Ekonomia jako nauka o gospodarowaniu

Bardziej szczegółowo

Zestawy zagadnień na egzamin dyplomowy (licencjacki) dla kierunku ZARZĄDZANIE (studia I stopnia)

Zestawy zagadnień na egzamin dyplomowy (licencjacki) dla kierunku ZARZĄDZANIE (studia I stopnia) Zestawy zagadnień na egzamin dyplomowy (licencjacki) dla kierunku ZARZĄDZANIE (studia I stopnia) Obowiązuje od 01.10.2014 Zgodnie z Zarządzeniem Rektora ZPSB w sprawie Regulaminu Procedur Dyplomowych,

Bardziej szczegółowo

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 Z-EKO-476 Analiza matematyczna Calculus A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Makro- i mikroekonomia na kierunku Administracja

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Makro- i mikroekonomia na kierunku Administracja Dr hab. Maria Majewska Katedra Nauk Ekonomicznych Poznań, 1.10.2016 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Makro- i mikroekonomia na kierunku Administracja I. Informacje ogólne 1. Nazwa modułu

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Analiza matematyczna 1A (03-MO1S-12-AMa1A) 1. Informacje ogólne koordynator

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Wstęp do ekonomii i przedsiębiorczości na kierunku Prawo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Wstęp do ekonomii i przedsiębiorczości na kierunku Prawo Dr hab. Maria Majewska Katedra Nauk Ekonomicznych Poznań, 1.10.2015 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Wstęp do ekonomii i przedsiębiorczości na kierunku Prawo I. Informacje ogólne 1.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Statystyka Wszystkie specjalności Data wydruku: 31.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane podstawowe

Bardziej szczegółowo

ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA

ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA ANALITYKA GOSPODARCZA, STUDIA LICENCJACKIE WIEDZA Ma podstawową wiedzę o charakterze nauk ekonomicznych oraz ich miejscu w AG1_W01 systemie nauk społecznych i w relacjach do innych nauk. Ma wiedzę o sposobach

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2015/2016 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2015/2016 Politechnika Wrocławska

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

Zestawy zagadnień na egzamin magisterski dla kierunku EKONOMIA (studia II stopnia)

Zestawy zagadnień na egzamin magisterski dla kierunku EKONOMIA (studia II stopnia) Zestawy zagadnień na egzamin magisterski dla kierunku EKONOMIA (studia II stopnia) Obowiązuje od 01.10.2014 Zgodnie z Zarządzeniem Rektora ZPSB w sprawie Regulaminu Procedur Dyplomowych, na egzaminie magisterskim

Bardziej szczegółowo

Ekonomia. turystyka i rekreacja. Jednostka organizacyjna: Kierunek: Kod przedmiotu: TR L - 4. Rodzaj studiów i profil: Nazwa przedmiotu:

Ekonomia. turystyka i rekreacja. Jednostka organizacyjna: Kierunek: Kod przedmiotu: TR L - 4. Rodzaj studiów i profil: Nazwa przedmiotu: Jednostka organizacyjna: Rodzaj studiów i profil: Nazwa przedmiotu: Akademia Wychowania Fizycznego i Sportu w Gdańsku SYLABUS W ROKU AKADEMICKIM 2012/2013 i 2013/2014 Wydział Turystyki i Rekreacji I stopień,

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Podstawy ekonomii finansów i prawa w biznesie Rok akademicki: 2015/2016 Kod: IEL-1-308-s Punkty ECTS: 2 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Elektronika Specjalność:

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa:

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa: Matematyka Matematyka dyskretna (MAD) Analiza matematyczna i algebra liniowa z geometrią analityczną (AAL) Rachunek prawdopodobieństwa i statystyka (RRR) Kod modułu: MAT Rodzaj modułu: podstawowy, obowiązkowy

Bardziej szczegółowo

MATEMATYKA SYLABUS. A. Informacje ogólne

MATEMATYKA SYLABUS. A. Informacje ogólne MATEMATYKA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Podstawy ekonomii Kierunek: Inżynieria Środowiska Rodzaj przedmiotu: treści ogólnych, moduł Rodzaj zajęć: wykład Profil kształcenia: ogólnoakademicki Poziom kształcenia: I stopnia Liczba

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Matematyka I Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane

Bardziej szczegółowo

Matematyka - opis przedmiotu

Matematyka - opis przedmiotu Matematyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka Kod przedmiotu 11.1-WZ-EkoP-M-W-S14_pNadGenAT6Y9 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

Imiona, nazwiska oraz tytuły/stopnie członków zespołu dydaktycznego Beata Harasim / mgr

Imiona, nazwiska oraz tytuły/stopnie członków zespołu dydaktycznego Beata Harasim / mgr Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/III i IV Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS

Bardziej szczegółowo

WIEDZA zna na poziomie podstawowym co najmniej jeden pakiet oprogramowania, służący do obliczeń symbolicznych

WIEDZA zna na poziomie podstawowym co najmniej jeden pakiet oprogramowania, służący do obliczeń symbolicznych Przedmiot: Narzędzia i metody technologii informacyjnej Rok/Semestr: 1/1 Liczba godzin zajęć: 30 LA ECTS: 3 Forma zaliczenia: ZO Liczba stron dokumentu: 1 K_W09 zna na poziomie podstawowym co najmniej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom

Bardziej szczegółowo

liczba godzin ogółem

liczba godzin ogółem liczba godzin ogółem ćwiczenia przedmioty obieralne liczba godzin % liczba godzin % stacjonarne gospodarka przemysłowa 80 75 40,6 540 9,5 informatyka w ekonomii 80 780 4,6 55 8,69 niestacjonarne 60,66%

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Ekonomia Rok akademicki: 2014/2015 Kod: BGE-3-605-s Punkty ECTS: 6 Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Geologia Specjalność: - Poziom studiów: Studia III stopnia Forma

Bardziej szczegółowo

Spis treści. Wstęp Konstrukcja modelu matematycznego... 1

Spis treści. Wstęp Konstrukcja modelu matematycznego... 1 Spis treści Wstęp........................................................ XI 1. Konstrukcja modelu matematycznego............................. 1 2. Relacje. Teoria preferencji konsumenta...........................

Bardziej szczegółowo

1 26671 ABC zdrowia dziecka 978-83-200-3869-9. 2 469 Analiza finansowa przedsiębiorstwa 978-83-01-14871-3

1 26671 ABC zdrowia dziecka 978-83-200-3869-9. 2 469 Analiza finansowa przedsiębiorstwa 978-83-01-14871-3 Lp. Ibuk ID Tytuł ISBN 1 26671 ABC zdrowia dziecka 978-83-200-3869-9 2 469 Analiza finansowa przedsiębiorstwa 978-83-01-14871-3 3 2307 Analiza finansowa w procesie decyzyjnym współczesnego przedsiębiorstwa

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo