Analiza i zarządzanie ryzykiem inwestycyjnym przedsiębiorstwa w przedsięwzięciach międzynarodowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza i zarządzanie ryzykiem inwestycyjnym przedsiębiorstwa w przedsięwzięciach międzynarodowych"

Transkrypt

1 Analza zarządzane ryzykem nwestycyjnym przedsęborstwa w przedsęwzęcach mędzynarodowych Projekt Enterprse Europe Network Central Poland jest współfnansowany przez Komsję Europejską ze środków pochodzących z programu COSME (na lata ) na podstawe umowy o udzelene dotacj nr EEN-CP oraz Mnsterstwo Rozwoju ze środków budżetu państwa.

2 Co ma nnowacyjne przedsęwzęce do planów fnansowych? Cykl życa nnowacyjnego produktu!!!

3 Cykl życa produktu a zysk Ttle of the presentaton Date #

4 Opracowane nnowacyjnego produktu, procesu, usług obarczone jest ryzykem

5 Net Present Value - Wartość zaktualzowana netto NPV I n C ( r) Gdze dodatne I oznacza welkość początkowego nakładu, C są to dodatne przepływy penężne kolejne okresy czasowe.

6 Uwaga. Jeżel wartość wskaźnka NPV jest dodatna oznacza to, że nwestycja jest opłacalna. Przy ujemnej wartośc tego wskaźnka nwestycję uważamy za neopłacalną. Uwaga 2. Jeżel dane są dwe nwestycje o tym samym NPV, to korzystnejsza jest ta, która angażuje mnejszy kaptał.

7 Bznes plan analza ryzyka - analza płynnośc fnansowej - analza przychodów - analza kosztów - analza przepływów penężnych

8 Innowacje = ryzyko Potrzebne są zatem metody oceny ryzyka Metoda Monte Carlo + Bznes Plan Innowacyjnego przedsęwzęca = Ocena kontrola ryzyka nwestycyjna nnowacyjnego przedsęwzęca

9 Unwersalne metody umożlwające ocenę zarządzane ryzykem w mędzynarodowych przedsęwzęcach nwestycyjnych 4.. Metoda Monte Carlo - symulacja bznes planu, symulacja NPV 4.2. Metody oparte na Instrumentach pochodnych - opcje fnansowe opcje realne, kontrakty 4.3. Metody oparte na drzewach decyzyjnych - teora decyzj w warunkach ryzyka 4.4. Metody ekonometryczne - modele klasyczne szeregów czasowych

10 Co to jest symulacja Monte Carlo? Podstawową deą symulacj metodą Monte Carlo jest przeprowadzene dużej lośc oblczeń wartośc wyjścowej, przy zastosowanu różnych danych wejścowych, wylosowanych zgodne z określonym dla nch rozkładam prawdopodobeństw.

11 Dlaczego warto stosować symulację Monte Carlo? Dlatego, że pozwala budować różnego rodzaju scenarusze w oparcu o fnansową część bznes planu. Wpsuje sę w cykl życa produktu (rozkład normalny)

12 W przypadku przepływów penężnych możemy także zastosować symulację Monte Carlo Warant Bznes plan Przychody Wynk fnansowy Zysk Blans NPV I n C ( r) Warant 2 Koszty Strata Aktywa Pasywa n n C C NPV I ( r ) ( r)

13 NPV jest często stosowany w ocene mało skomplkowanych przedsęwzęć nwestycyjnych. W przypadku nnowacyjnych przedsęwzęć pojawają sę problemy take jak.: zmenność przepływów penężnych (cykl życa produktu), odpowedna stopa dyskontowa, brak przepływów penężnych, czy wcześnejsze zakończene projektu B+R.

14 Czynnk wpływające na wartość opcj fnansowej realnej Opcja fnansowa Cena nstrumentu (V) Cena wykonana (X) Czas do wygaśnęca opcj (T) Stopa wolna od ryzyka (r f ) Zmenność cen nstrumentu (σ) Oczekwane dywdendy (б) Opcja realna Beżąca wartość korzyśc z przedsęwzęca nwestycyjnego (V) Nakłady nwestycyjne (X) Czas do wygaśnęca możlwośc nwestycyjnej (T) Stopa dyskontowa będąca stopą wolną od ryzyka (r f ) Zmenność przepływów penężnych (σ) Utracone przepływy penężne (б) Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008

15 Model Blacka-Scholesa Główne założena modelu Blacka-Scholesa to: - brak arbtrażu na rynku, co oznacza, że stneje możlwość osągnęca zysku bez ponoszena ryzyka; w rzeczywstośc take sytuacje sę zdarzają, ale natychmast są korygowane przez rynek, - rozkład zwrotów cen aktywa jest normalny, - rynek dzała w sposób cągły, a cena aktywa jest opsana geometrycznym ruchem Browna, - uczestncy rynku mogą pożyczyć nwestować środk według tej samej stopy procentowej wolnej od ryzyka r; r ne zmena sę w okrese ważnośc opcj. Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008

16 wszystke walory są doskonale podzelone, tzn. można handlować nstrumentam o cene będącej częścą ceny nstrumentu posadaczom akcj ne są wypłacane dywdendy w czase trwana opcj ne uwzględna sę kosztów transakcj an podatków ne ma kary za zajmowane tzw. krótkej pozycj (np. sprzedaż pożyczonych akcj) opcja jest typu europejskego, tzn. może być wykonana tylko w termne wygaśnęca Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008

17 Twórcy modelu, tj. F.Black M.Scholes, założyl, że procesem wywołującym zmany cen aktywa bazowego jest geometryczny ruch Browna, naczej geometryczny proces Wenera zakładający, że wartość aktywa bazowego zmena sę w czase w sposób cągły (stąd obecność w modelu lczby e=2,7828), że rozkład tych zman w dowolnym przedzale czasu jest rozkładem normalnym. Następne wyprowadzl on wzór na oblczene wartośc europejskej opcj kupna (call). Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008

18 T d d T r T X V d T r T X V d d N Xe d VN C t t r t T ln 2 ln ) ( ) ( Gdze: V cena nstrumentu - zmenność cen nstrumentu X cena wykonana r f stopa procentowa wolna od ryzyka T czas do wygaśnęca opcj Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008

19 Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008 Ttle of the presentaton Date # N(d), N(d2) skumulowany rozkład normalny zmennych d, d2; e -rt jest współczynnkem dyskonta, F(d) jest odwrotnoścą współczynnka zabezpeczena, F(d2) to prawdopodobeństwo, że wartość rynkowa opcj w momence realzacj przewyższy cenę wykonana (jej realzacja będze opłacalna). Przy założenu pozostałych czynnków nezmenonych, wartość opcj kupna wzrasta wraz ze: wzrostem cen nstrumentu V, spadkem ceny wykonana opcj X, wzrostem czasu do wygaśnęca opcj T, wzrostem stopy dyskontowej wolnej od ryzyka r rf, wzrostem zmennośc cen nstrumentu σ.

20 Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008 Ttle of the presentaton Date # Model dwumanowy Metoda dwumanowa opsana przez J.Coxa, S.Rossa M.Rubnstena, chocaż opera sę na tych samych co model Blacka-Scholesa założenach, czyl na raku możlwośc arbtrażu o utworzenu portfela replkującego, pozwala na wększą elastyczność w modelowanu. Jest to bowem metoda dyskretna, w której czas do wygaśnęca opcj podzelony jest na okresy (stąd może ona dotyczyć równeż opcj amerykańskch) zakłada, że w każdym z tych okresów aktualna wartość aktywa bazowego zmena sę skokowo w procese dwumanowym, tzn. od wartośc V rośne do uv z prawdopodobeństwem q lub spada do dv z prawdopodobeństwem - q. Wartość u d są czynnkam odpowedno wzrostu spadku wartośc aktywa bazowego, gdze u=/d. Aby unknąć arbtrażu, mus być spełnony warunek u>+rf>d, gdze rf jest stopą wolną od ryzyka.

21 Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008 Ttle of the presentaton Date # Dla opcj europejskch w marę zmnejszena sę długośc okresów, w których zmena sę wartość aktywa (np.. Z okresu rocznego do okresu dnowego), wartość opcj zblża sę do wartośc wyznaczonej przy pomocy metody cągłej ostateczne jej lmtem jest wynk otrzymany z równana Black-Scholes. Drzewo dwumanowe, przedstawone na rysunku, obrazuje rozkład wartośc V w dyskretnym ujęcu czasowym. Wartość aktywa bazowego V w danym czase zależy zatem od czynnka wzrostu u oraz czynnka spadku d.

22 Warto dodać, że w przypadku utraty wartośc aktywa należy uwzględnć w powyższym drzewe efekt dywdendy, W momence, w którym nkasowany jest przepływ (CF) wartość aktywa bazowego mus być zredukowana o tę wartość. V(t))=V(t)-CF(t), gdze V(t)* jest wartoścą aktywa bazowego w czase t po korekce wartośc aktywa bazowego V(t) w czase t o efekt dywdendy CF(t). Proces ten powtarzamy dla każdego punktu czasowego na drzewe wartośc aktywa bazowego, kedy to efekt dywdendy występuje. Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008

23 Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008 Ttle of the presentaton Date # u 4 V u 3 V u 2 V u 3 dv uv u 2 dv u V udv 2 d 2 V dv ud 2 V d 2 V ud 3 V d 3 V d 4 V Schemat ewolucj aktywa bazowego u 5 V u 4 dv u 3 d 2 V u 2 d 3 V ud 4 V d 5 V

24 t r d u t r d u t r f f f e P q P q P e C q C q C d u d e q ) ( ) ( Źródło: Rogowsk W.: Opcje realne w przedsęwzęcach nwestycyjnych Ofcyna Wydawncza SGH. Warszawa 2008

25 Źródło: Samuelson W.F., Marks S.G.: Ekonoma Menadżerska. PWE. Warszawa 998 Ttle of the presentaton Date # Metoda oparta o drzewa decyzyjne Przykład: Prace nad lekem przecwzakrzepowym Frma farmaceutyczna mus dokonać wyboru jednej z dwóch konkurencyjnych metod prowadzena prac badawczo-rozwojowych. Zysk rozkład prawdopodobeństwa zwązane z zastosowanem tych metod są następujące:

26 Źródło: Samuelson W.F., Marks S.G.: Ekonoma Menadżerska. PWE. Warszawa 998 Ttle of the presentaton Date # Metoda Welkość nakładów (w mld dol.) Wynk Zysk ( w mln dol.; bez uwzględnena wydatków na B+R) Prawdopodobeństwo Bochemczna 0 Duży sukces Umarkowany sukces ,7 0,3 Bogenetyczna 20 Sukces Nepowodzene ,2 0,8

27 Inwestując w równoczesne badana nad obema metodam, przedsęborstwo Ttle of the presentaton osąga Date # oczekwany zysk równy 72,4 mln dol. Wynk przedstawone w mln dol. 72,4 Sukces obu programów 0,4 70 Sukces tylko metody bogenetycznej 0,06 Bochemczna Bogenetyczna 70 Bogenetyczna Bochemczna ,56 0,24 Źródło: Samuelson W.F., Marks S.G.: Ekonoma Menadżerska. PWE. Warszawa 998 Sukces tylko metody bochemcznej Fasko obu programów 60 20

28 Sekwencyjny program B+R: najperw metoda bochemczna. Ttle of the presentaton Wynk Date # przedstawone w mln dol. Sukces metody bochemcznej Rozpoczęce od metody bochemcznej 72,4 Wdrożene metody bochemcznej 0,7 Fasko metody bochemcznej Wdrożene metody bochemcznej 0,3 Źródło: Samuelson W.F., Marks S.G.: Ekonoma Menadżerska. PWE. Warszawa 998 Badana nad metodą bogenetyczną Badana nad metodą bogenetyczną Sukces metody bogenetycznej 0,2 0,8 Fasko metody bogenetycznej Sukces metody bogenetycznej 0,2 0,8 Fasko metody bogenetycznej

29 Sekwencyjny program B+R: najperw metoda bogenetyczna. Rozpoczynając program badań od metody bogenetycznej ( jeżel zajdze taka potrzeba przechodząc następne do metody bochemcznej), frma farmaceutyczna maksymalzuje swój oczekwany zysk. Wynk przedstawono w mln dol. Rozpoczęce od metody bogenetycznej Sukces metody bogenetycznej 74,4 0,2 0,8 Fasko metody bogenetycznej 80 Podjęce badań nad metodą bochemczną 48 Nepodjęce badań Ttle of the presentaton Date # Ulepszene metody bochemcznej 48 0,7 0,3 Brak ulepszeń metody bochemcznej Źródło: Samuelson W.F., Marks S.G.: Ekonoma Menadżerska. PWE. Warszawa 998

30 Źródło: Samuelson W.F., Marks S.G.: Ekonoma Menadżerska. PWE. Warszawa 998 Zestawene warantów wyboru frmy farmaceutycznej w dzedzne B+R. Wynk przedstawono w mln dol. Ttle of the presentaton Date # Ne nwestować Badana nad metodą bochemczną Badana nad metodą bogenetyczną Program równoczesnych B+R Sekwencyjny program B+R: najperw metoda bochemczna Sekwencyjny program B+R: najperw metoda bogenetyczna ,4 72,4 74,4

31 Lnowy model regresj welu zmennych Y 0 X 2 X 2... k X k Y zmenna objaśnana X k zmenne objaśnające β 0 β β k neznane parametry strukturalne modelu ε - składnk losowy k numeruje kolejne zmenne objaśnające

32 Metoda najmnejszych kwadratów opera sę na koncepcj poszukwana takch wartośc b 0 b b k parametrów strukturalnych β 0, β β k przy których suma kwadratów reszt osąga mnmum n n Y Y e SSE 2 2 ) ˆ ( n X b X b b Y ) ( mn n e 2

33 Weryfkacja modelu ekonometrycznego. Badane dopasowana modelu do danych obserwowanych współczynnk determnacj współczynnk zbeżnośc współczynnk zmennośc losowej 2. Badane stotnośc parametrów strukturalnych β test t-studenta test F 3. Badane własnośc odchyleń losowych losowość składnka losowego normalność rozkładu składnka losowego jednorodność warancj składnka losowego autokorelacja składnka losowego

34 Ogólnym modelem opsującym stacjonarny proces stochastyczny jest model ARMA (p.q). Model ARMA procesu stochastycznego Yt ma postać: q q p p q t q t t p t p t t t t u u u B u u u A gdze Y Y Y u B Y u A... ) (... ) ( lub ) ( ) ( Jest operatorem autoregresj rzędu p Jest operatorem średnej ruchomej rzędu q t jest procesem bałego szumu

35 Uogólnonym modelem ARCH, czyl modelem GARCH, jest: y T t x t t q p 2 0 t h t h gdze oznaczena zmennych parametrów jak w równanach w celu zapewnena dodatnośc warunkowej warancj zakłada sę ponadto: 0 >0 0 0 grance sumowana q p wyznaczają stopeń modelu GARCH, mówmy o modelu GARCH(q, p) stacjonarność procesu (tj. skończoność bezwarunkowej warancj) opsanego modelem GARCH(q,p) jest zapewnona jeśl spełnony jest q p warunek Warancja bezwarunkowa dana jest wzorem: 2 t

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki

Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki Dr nż. Robert Smusz Poltechnka Rzeszowska m. I. Łukasewcza Wydzał Budowy Maszyn Lotnctwa Katedra Termodynamk Projekt jest współfnansowany w ramach programu polskej pomocy zagrancznej Mnsterstwa Spraw Zagrancznych

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

-ignorowanie zmiennej wartości pieniądza w czasie, -niemoŝność porównywania projektów o róŝnych klasach ryzyka.

-ignorowanie zmiennej wartości pieniądza w czasie, -niemoŝność porównywania projektów o róŝnych klasach ryzyka. Podstawy oceny ekonomcznej przedsęwzęć termo-modernzacyjnych modernzacyjnych -Proste (statyczne)-spb (prosty czas zwrotu nakładów nwestycyjnych) -ZłoŜone (dynamczne)-dpb, NPV, IRR,PI Cechy metod statycznych:

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH SCRIPTA COMENIANA LESNENSIA PWSZ m. J. A. Komeńskego w Leszne R o k 0 0 8, n r 6 TOMASZ ŚWIST* WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

Bardziej szczegółowo

Biznes plan innowacyjnego przedsięwzięcia

Biznes plan innowacyjnego przedsięwzięcia Biznes plan innowacyjnego przedsięwzięcia DELab UW Enterprise Europe Network ul. Dobra 56/66, 00-312 Warszawa tel. +48 (22) 55 27 606 delab.uw.edu.pl een@uw.edu.pl 1 Model biznesowy i innowacje BADANIA

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Komsa Egzamnacyna dla Aktuaruszy LXVIII Egzamn dla Aktuaruszy z 29 wrześna 14 r. Część I Matematyka fnansowa WERSJA TESTU A Imę nazwsko osoby egzamnowane:... Czas egzamnu: 0 mnut 1 1. W chwl T 0 frma ABC

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3.

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3. PZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFOMTYCZNYCH 3. 3. Istota, defncje rodzaje ryzyka Elementem towarzyszącym każdej decyzj, w tym decyzj nwestycyjnej, jest ryzyko. Wynka to z faktu, że decyzje operają

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

Markowa. ZałoŜenia schematu Gaussa-

Markowa. ZałoŜenia schematu Gaussa- ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów

Bardziej szczegółowo

Biznes plan innowacyjnego przedsięwzięcia

Biznes plan innowacyjnego przedsięwzięcia Biznes plan innowacyjnego przedsięwzięcia 1 Co to jest biznesplan? Biznes plan można zdefiniować jako długofalowy i kompleksowy plan działalności organizacji gospodarczej lub realizacji przedsięwzięcia

Bardziej szczegółowo

CAPM i APT. Ekonometria finansowa

CAPM i APT. Ekonometria finansowa CAPM APT Ekonometra fnansowa 1 Lteratura Elton, Gruber, Brown, Goetzmann (2007) Modern portfolo theory and nvestment analyss, John Wley and Sons. (rozdz. 13-16 [, 5, 7]) Campbell, Lo, MacKnlay (1997) The

Bardziej szczegółowo

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI.

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI. Dywersyfkacja ortfela orzez nwestycje alternatywne. Prowadzący: Jerzy Nkorowsk, Suerfund TFI. Część I. 1) Czym jest dywersyfkacja Jest to technka zarządzana ryzykem nwestycyjnym, która zakłada osadane

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH,

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH, Opcje - wprowadzenie Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony wcześniej kurs terminowy. W dniu rozliczenia transakcji terminowej forward:

Bardziej szczegółowo

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

TEORIA PORTFELA MARKOWITZA

TEORIA PORTFELA MARKOWITZA TEORIA PORTFELA MARKOWITZA Izabela Balwerz 28 maj 2008 1 Wstęp Teora portfela została stworzona w 1952 roku przez amerykańskego ekonomstę Harry go Markowtza Opera sę ona na mnmalzacj ryzyka nwestycyjnego

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI dr Janusz Wątroba, StatSoft Polska Sp. z o.o. Prezentowany artykuł pośwęcony jest wybranym zagadnenom analzy korelacj regresj. Po przedstawenu najważnejszych

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

Mikroekonometria 15. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 15. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 15 Mkołaj Czajkowsk Wktor Budzńsk Mkroekonometra podsumowane kursu Zagadnena ogólne NLOGIT Metoda maksymalzacj funkcj ML Testy statystyczne Metody numeryczne, symulacje Metody wyceny nerynkowej

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie Agata Gnadkowska * Wpływ płynnośc obrotu na kształtowane sę stopy zwrotu z akcj notowanych na Gełdze Paperów Wartoścowych w Warszawe Wstęp Płynność aktywów na rynku kaptałowym rozumana jest przez nwestorów

Bardziej szczegółowo

Makroekonomia Gospodarki Otwartej Wykład 8 Polityka makroekonomiczna w gospodarce otwartej. Model Mundella-Fleminga

Makroekonomia Gospodarki Otwartej Wykład 8 Polityka makroekonomiczna w gospodarce otwartej. Model Mundella-Fleminga Makroekonoma Gospodark Otwartej Wykład 8 Poltyka makroekonomczna w gospodarce otwartej. Model Mundella-Flemnga Leszek Wncencak Wydzał Nauk Ekonomcznych UW 2/29 Plan wykładu: Założena analzy Zaps modelu

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

FINANSOWE SZEREGI CZASOWE WYKŁAD 3 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Modelowanie struktury stóp procentowych na rynku polskim - wprowadzenie

Modelowanie struktury stóp procentowych na rynku polskim - wprowadzenie Mgr Krzysztof Pontek Katedra Inwestycj Fnansowych Ubezpeczeń Akadema Ekonomczna we Wrocławu Modelowane struktury stóp procentowych na rynku polskm - wprowadzene Wprowadzene Na rynku stóp procentowych analzowana

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Ekonomika Transportu Morskiego wykład 08ns

Ekonomika Transportu Morskiego wykład 08ns Ekonomika Transportu Morskiego wykład 08ns dr Adam Salomon, Katedra Transportu i Logistyki Wydział Nawigacyjny, Akademia Morska w Gdyni ETM 2 Wykład ostatni merytoryczny ETM: tematyka 1. Dynamiczne metody

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

MODEL NADWYŻKI FINANSOWEJ PRZEDSIĘBIORSTWA DEWELOPERSKIEGO. SYMULACYJNE STUDIUM PRZYPADKU

MODEL NADWYŻKI FINANSOWEJ PRZEDSIĘBIORSTWA DEWELOPERSKIEGO. SYMULACYJNE STUDIUM PRZYPADKU Tadeusz Czernk Unwersytet Ekonomczny w Katowcach Wydzał Fnansów Ubezpeczeń Katedra Matematyk Stosowanej tadeusz.czernk@ue.katowce.pl Danel Iskra Unwersytet Ekonomczny w Katowcach Wydzał Fnansów Ubezpeczeń

Bardziej szczegółowo

Nota 1. Polityka rachunkowości

Nota 1. Polityka rachunkowości Nota 1. Poltyka rachunkowośc Ops przyjętych zasad rachunkowośc a) Zasady ujawnana prezentacj nformacj w sprawozdanu fnansowym Sprawozdane fnansowe za okres od 01 styczna 2009 roku do 31 marca 2009 roku

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Wskaźniki efektywności inwestycji

Wskaźniki efektywności inwestycji Wskaźniki efektywności inwestycji Efektywność inwestycji Realizacja przedsięwzięć usprawniających użytkowanie energii najczęściej wymaga poniesienia nakładów finansowych na zakup materiałów, urządzeń,

Bardziej szczegółowo

Trzecie laboratoria komputerowe ze Staty Testy

Trzecie laboratoria komputerowe ze Staty Testy Trzece laboratora komputerowe ze Staty Testy Korzystać będzemy z danych dane_3.dta. Chcemy (jak zwykle ) oszacować model zarobków. Tym razem nteresująca nas postać modelu to: p0 = β + β pd0 + β pl08 +

Bardziej szczegółowo

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 OPCJE NA GPW Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 CO TO JEST OPCJA, RODZAJE OPCJI Opcja - prawo do kupna, lub sprzedaży instrumentu bazowego po

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo

Usługi KPMG oferowane polskim przedsiębiorcom

Usługi KPMG oferowane polskim przedsiębiorcom Usług KPMG oferowane polskm przedsęborcom Czyl jak w czym pomagamy polskm frmom kpmg.pl 1 Usług KPMG oferowane polskm przedsęborcom 2013 Usług KPMG oferowane polskm przedsęborcom Doradztwo fnansowe ksęgowe

Bardziej szczegółowo

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji OeconomA coperncana 2013 Nr 3 ISSN 2083-1277, (Onlne) ISSN 2353-1827 http://www.oeconoma.coperncana.umk.pl/ Klber P., Stefańsk A. (2003), Modele ekonometryczne w opse wartośc rezydualnej nwestycj, Oeconoma

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe

Ekonometria ćwiczenia Kolokwium 1 semestr 20/12/08. / 5 pkt. / 5 pkt. / 5 pkt. / 5 pkt. /20 pkt. Regulamin i informacje dodatkowe Ekonometra IE Kolokwum 0/1/08 mę, nazwsko, nr ndeksu: Ekonometra ćwczena Kolokwum 1 semestr 0/1/08 Zadane 1 Zadane Zadane 3 Zadane 4 Razem / 5 pkt / 5 pkt / 5 pkt / 5 pkt /0 pkt Skala ocen: do 8,00 punktów

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

ZASTOSOWANIE MODELU PANELOWEGO DO BADANIA NADWYśEK KAPITAŁOWYCH W BANKACH KOMERCYJNYCH W POLSCE WSTĘP

ZASTOSOWANIE MODELU PANELOWEGO DO BADANIA NADWYśEK KAPITAŁOWYCH W BANKACH KOMERCYJNYCH W POLSCE WSTĘP Monka Gładysz, Katedra Ekonom Polyk Gospodarczej SGGW, e-mal: gladysz@alpha.sggw.waw.pl ZASTOSOWANIE MODELU PANELOWEGO DO BADANIA NADWYśEK KAPITAŁOWYCH W BANKACH KOMERCYJNYCH W POLSCE Streszczene: Dane

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo