7) Przed przeceną plecak kosztował 42 zł, a po przecenie 29,40 zł. O ile procent obniżono cenę?

Wielkość: px
Rozpocząć pokaz od strony:

Download "7) Przed przeceną plecak kosztował 42 zł, a po przecenie 29,40 zł. O ile procent obniżono cenę?"

Transkrypt

1 1) Ile cegieł o wymiarach cm potrzeba, aby wybudować murowane ogrodzenie o długości 4,5 m, wysokości 2 m i grubości 0,25 m, wiedząc, że 20% objętości muru stanowi zaprawa murarska. Zapisz obliczenia. 2) Przyrodnicy muszą kupić 49 namiotów. Mają na ten cel 14000zł. W sklepie znajdują się namioty w dwóch gatunkach. Namioty I gatunku kosztują 350zł/szt., zaś namioty II gatunku 250zł/szt. Jaką największą liczbę namiotów I gatunku mogą kupić przyrodnicy? 3) Jeden metr sześcienny puszystego śniegu waży 100kg. Ile ton śniegu trzeba usunąć z uliczki, której długość wynosi 250m, szerokość 10mm, a warstwa śniegu ma 0,2m grubości. 4) Zasolenie Morza Martwego wynosi około 30%. Ile kilogramów wody z Morza Martwego potrzeba, aby po całkowitym jej odparowaniu pozostało 0,6 kg soli? Zapisz obliczenia. 5) Uczniowie piszący egzamin rozmieszczeni są w salach w następiujący sposób: 48 uczniów w sali gimnastycznej, pozostali uczniowie w salach lekcyjnych po 15 osób.gdyby w każdej sali lekcyjnej egzamin pisało po dwóch uczniów mniej to zdający zajęliby o jedą salę lekcyjną więcej, a na sali gimnastycznej musiałby pisać o jeden uczeń więcej. Ilu uczniów klas III było w gimnazjum? 6).Ewa usiadła na ławce w odległości 6 m od domu Adama. Odbity od kałuży słoneczny promień poraził ją w oczy. To Adam z okna swego pokoju przesłał Ewie "zajączka". Oblicz, na jakiej wysokości Adam błysnął lusterkiem, jeśli promień odbił się w odległości 0,75 metra od Ewy, a jej oczy znajdowały się na wysokości 1 metra nad ziemią. Zrób rysunek pomocniczy. 7) Przed przeceną plecak kosztował 42 zł, a po przecenie 29,40 zł. O ile procent obniżono cenę? 8) Jedna akcja pewnej firmy r kosztowała 3,85 zł i w stosunku do dnia poprzedniego zyskała na wartości 10%. Ile pieniędzy zarobił posiadacz 800 akcji tej firmy w dniu r, jeśli nabył je r (nie uwzgledniając prowizji)? 9) Na zlecenie klienta makler ma kupić akcje spółek A i B za 1000 zł. Cena jednej akcji spółki A jest równa 4,25 zł, a jedna akcja spółki B kosztuje 6,75 zł. Ile maksymalnie akcji kazdego rodzaju makler może kupić, jeśli tańszych ma być o 10 więcej niż droższych? 10) Do akwarium wlano 120 litrów wody, napełniając 75% jego pojemności. Oblicz, ile metrów kwadratowych szkła zużyto na wykonanie tego akwarium, wiedząc, że jego wysokość ma 50cm, a długość jest dwa razy większa od szerokości. 11) Motorówka, płynąc z prądem rzeki, przebyła drogę 12 km w czasie 20 minut. Prędkość motorówki wynosi 30km/h. Oblicz prędkość prądu rzeki. 12) Książka kosztowała 12zł, potem zdrożała o 20%, a nastepnie staniała o 25%. Oblicz cenę książki po tych zmianach. 13) Rozpuszczono 30g soli w 210g wody. Oblicz procentowe stężenie soli w tym roztworze.

2 14) Liczby mieszkańców (w przybliżeniu) Polski, Czech i Słowacji są w stosunku 390 : 103 :54. Różnica liczb mieszkańców w Czechach i Słowacji jest równa 4,9 mln osób. Ilu mieszkańców jest w każdym z tych krajów? 15) Rowerzysta jedzie ze stałą prędkością 20km/h. a) Napisz wzór wyrażający drogę s rowerzysty w ciągu t godzin. b)sporządź tabelkę wartości s dla t= 0, 1, 2, 3, 4. Wykonaj wykres drogi przebytej przez rowerzystę w zależności od czasu jazdy dla t= 0; 1,5; 3; 5,5. 16) W dwóch skrzynkach są 54 pomarańcze. Z jednej skrzynki przełożyliśmy do drugiej 9 pomarańczy i w każdej skrzynce jest ich tyle samo. Ile pomarańczy było w każdej skrzynce początkowo? 17) Zmieszano dwa gatunki cukierków w różnych cenach w stosunku 2:3 i uzyskano mieszankę w cenie 13,80zł. Gdyby te cukierki zmieszano w stosunku 1:3, wówczas cena mieszanki wynosiłaby 14,25zł. Obliczcenę każdego gatunku cukierków. 18) Motorówka płynęła z prądem rzeki od przystani A do przystani B przez 40 minut, a wracała 56 minut. Oblicz prędkość motorówki i prędkość prądu rzeki, jeżeli przystanie A i B są odległe o 14km. 19) Rafał wpłacił 300 zł do banku. Oprocentowanie w stosunku rocznym wynosi 12%. Ile pieniędzy wraz z odsetkami będzie miał po 9 miesiącach, zakładając, że oprocentowanie nie ulegnie zmianie? 20) Chłopiec ma monety po 50gr i po 20gr, razem 27 sztuk. Monety mają łaczną wartość 8,70zł. Ile monet po 50gr, a ile po 20gr ma chłopiec? 21) W pobliżu domu Doroty w odległości 8m rosła brzoza o wysokości 15m. Wokół domu Dorota posadziła róże. Podzczas burzy brzoza złamała się na 1/3 wysokości. Czy odłamany koniec uszkodzi róże? 22) Z okrągłego obrusa o średnicy 2m mama Jadzi chce zrobić kwadratowy obrus o boku 140cm. Czy to będzie możliwe, jeśli kwadratowy obrus ma być z jednego kawałka materiału? 23) Czy okrągła serweta o średnicy 1,4m przykryje kwadratowy stół o boku 1m? 24) Ile metrów kwadratowych wykładziny trzeba kupić na wyłożenie podłogi w prostokątnym holu, w którym jest troje drzwi o szerokości 0,8m każde, długość holu jest 3 razy większa od szerokości, a łączna długość listwy podłogowej jest równa 21,6m? 25) Jaką część dwuhektarowego terenu rekreacyjnego zajmuje boisko do piłki nożnej o wymiarach 100m i 50m? 26) Kwietnik Magdy ma kształt kwadratu o boku 4,5m. Gdzie należy ustawić obrotowy zraszacz, aby podlać największą powierzchnię działki, a jednocześnie oszczędzać wodę? Jaki powinien być zasięg tego zraszacza? 27) Agata przywiązała do końców sznurka dwa patyki. Jeden wbiła w ziemię, a drugim, po

3 naciągnięciu sznurka, wytyczyła okrągły klomb. Wokół klombu zrobiła scieżkę. Jaka długość ma ta ścieżka, jeśli sznurek ma 2m długości? 28) Wieża rzuca cień o długości 31,5m. W tym samym czasie wbity pionowo w ziemię pręt o wysokości 1,6m rzuca cień o długości 1,2m. Oblicz wysokość wieży. 29) Rower dziecięcy ma koło o polu 9 razy mniejszym niż rower kolarski. Ile razy więcej musi obrócić się koło roweru dziecięcego od koła roweru kolarskiego na tej samej drodze? 30) Wodę wypartą przez kamień wlano do prostopadłościennego naczynia o wymiarach 7cm, 5cm i 15cm. Woda wypełniła 1/5 pojemności tego naczynia. Jaką objętość ma kamień? 31) Ziarenko maku ma objętość około 1mm 3. Mam Jadzi upiekła makowy placek, który ma kształt prostokąta o wymiarach 25cm i 30cm. Warstwa maku ma grubość 4cm. Ile ziarenek maku jest w tym placku? 32) W fabryce szkła produkuje się kulki szklane o promieniu 5cm. Do wysyłki będą one pakowane po 4 sztuki w sztywne pudełka w kształcie walca, którego wysokość wynosi 10cm, a średnica 24cm. Czy dobrze została dobrana średnica tych pudełek? 33) Pokój ma wymiary 6m na 6,75m. Na 2/3 powierzchni podłogi położono parkiet, na reszcie 150 kwadratowych płytek terakoty. Jakie wymiary ma płytka terakoty i ile zapłacono za parkiet, jeśli 1m 2 parkietu kosztuje 90zł? 34) Pan Stanisław kupił w okolicach Warszawy działkę budowlaną o powierzchni 0,08ha, płacąc 30 dolarów amerykańskich (USD) za 1m 2. Przyjmij, że 1USD=4zł i oblicz ile pan Stanisław zapłacił za tę działkę? 35) Drużyna żeglarska, płynąc po największym polskim jeziorze Śniardwy, odległość między dwiema przystaniami, która na mapie w skali 1 : wynosi 5cm, pokonała w czasie 2godz. i 30min.Ile wynosiła średnia prędkość żaglówki? 36) Deska dębowa ma 3m długości, 25cm szerokości i 3cm grubości. 1m 3 drewna debowego waży 660kg. Ile kilogramów waży ta deska? 37) Piaskownica ma kształt prostopałdłościanu o wymiarach 3m na 3m na 0,5m. 1m 3 piasku waży około 1,6 tony. Ile ważypiasek wypełniajacy piaskownicę do 4/5 jej wysokości? 38) Samochód pana Jana spala w jeździe miejskiej 10,3l benzyny na 100km, a poza miastem 7,2l na 100km. Pan Jan wybrał się w podróż do miejscowości oddalonej od jego domu o 600km. Aby wyjechać z miasta, musi pokonać 32km. Czy wystarczy mu benzyny, jeżeli zatankuje 47 litrowy bak do pełna? Ile benzyny mu zostanie lub zabraknie? Wynik podaj z dokładnością do 0,1 litra. 39) Do sklepu warzywno owocowego zakupiono w hurtowni 250kg pomidorów za 800zł. Pierwszego dnia sprzedano 1/4 ilości kupionego towaru, drugiego dnia o 5,5kg więcej niż pierwszego, a trzeciego dnia 2/3 tej ilości, którą sprzedano pierwszego i drugiego dnia razem. Ile kilogramów pomidorów zostało w sklepie? Jaki był zysk z trzydniowej sprzedaży warzyw, jeżeli cena detaliczna 1 kilograma pomidorów stanowi 1,25 ceny hurtowej?

4 40) Najmniejszym ssakiem na Ziemi jest ryjówka etruska. Najmniejszy zbadany osobnik ważył 2g. Jego ogon miał 2,5 cm długości i stanowił 5/12 długości całego ciała. Jaką długość miało ciało ryjówki? 41) Maksymalna głębokość Rowu Mariańskiego Oceanu Spokojnego wynosi m p.p.m. Najwyższa góra Swiata Mount Everest ma 8848 m n.p.m. Oblicz różnicę wysokości między najwyższym i najniższym punktem na Ziemi. Wynik zaokrąglij do 0,1 km. 42) Planetą krążącą najbliżej Słońca jest Merkury. Temperatura po stronie dziennej planety sięga 430 o C, a po stronie nocnej spada do 170 o C. Oblicz różnicę temperatur występujących na Merkurym. 43) Najwyższą średnią temperaturę roczną 34,5 o C zanotowaną w Afryce Wschodniej, a najniższą na Antarktydzie 57,8 o C. Znajdź różnicę temperatur. 44) Pani Grażyna miała na koncie 1390zł. Pobrała z niego kolejno 1000zł, 1400zł, 1280zł. Jakiej wysokości debet (dług) ma na koncie? Ile złotych musi wpłacić, aby mieć na koncie 1230zł? 45) Średnie zasolenie wody morskiej jest równe około 35 promili. Zawartość soli w Morzu Martwym przeciętnie wynosi 280 promili. Ile litrów czystej wody należałoby dolać do 100 litrów wody z Morza Martwego, aby jej zasolenie było równe średniemu zasoleniu wody morskiej? 46) Na jaki procent należy wpłacić do banku złotych, aby po roku mieć na koncie zł? 47) Jaką kwotę należy wpłacić na książeczkę oszczędnościową z oprocentowaniem 16% w stosunku rocznym, aby po 9 miesiącach móc otrzymać 2800 złotych? 48) Stosunek twardości kwarcu do diamentu w skali Brinella (HB) jest równy 1:10. Oblicz twardość kwarcu i diamentu, jeżeli różnica ich twardości wynosi 6300 HB. 49) Ile gramów czystego złota i ile gramów miedzi jest w bransoletce, która waży 15 g, jeśli stosunek masy czystego złota do masy miedzi jest równy 3 : 2? 50) Odległość między miastami A i B wynosi 150 km. Jaka jest odległość między tymi miastami na mapie sporządzonej w skali 1 : ? 51) Jaką powierzchnię (wyrażoną w arach) ma działka, która na mapie w skali 1: 500 ma powierzchnię 25 cm 2? 52) Ania przygotowuje przetwory na zimę. Kupiła 12 kilogramów truskawek po 4,20 zł za 1 kg. Za dwa dni truskawki staniały o 1,80 zł. O ile więcej kilogramów truskawek mogłaby kupić Ania za tę samą kwotę, którą wydała? 53) Na wycieczkę szkolną miała pojechać pewna liczba osób. Przygotowano zapas żywności, który wystarczyłby na 5 dni. Z wycieczki zrezygnowało 12 osób i dzięki temu pozostałe osoby mogły wyjechać na tydzień. Ile osób pojechało na wycieczkę?

5 54) Na środku kwadratowej działki stoi dom, który w planie ma kształt prostokąta o wymiarach 15 m na 12 m. Ściany domu ustawione są równoległe do płotu, w odległości 7,5 m i 6 m. Narysuj plan tej działki w skali 1 : 600. Ile metrów bieżących płotu potrzeba na jej ogrodzenie? 55) Z kuponu materiału o szerokości 60 cm i długości 5,4 m krawcowa wycięła dwie chusty w kształcie przystających trójkątów prostokątnych równoramiennych o ramionach równych 0,6 m oraz osiem lambrekinów do okien stołówki szkolnej, w kształcie przystających trapezów równoramiennych. Różnica długości podstaw każdego trapezu jest równa szerokości kuponu materiału. Narysuj w skali 1 : 30, w jaki sposób krawcowa pocięła materiał, wiedząc, że wykorzystała go w całości. Jakie wymiary miał jeden lambrekin? 56) Ogrodnik obsadził kwiatami część ogrodu. Na powierzchni 0,5 m 2 posadził przeciętnie 7 sadzonek bratków. Ile sadzonek trzeba kupić, aby wystarczyły na obsadzenie rabat kwiatowych o łącznej powierzchni 0,3 ara? 57) Boisko szkolne zajmuje powierzchnię 25 arów. 2/5 tego obszaru postanowiono pokryć nawierzchnią odpowiednią do gry w tenisa ziemnego. Ile metrów kwadratowych zajmie ten sektor boiska? 58) Pan Stanisław ma ogród o powierzchni 0,96 ha. Sad zajmuje 1/3 ogrodu, na pozostałej części rosną warzywa. Ile arów zajmują warzywa? 59) Pani Marysia obsadziła kwiatami 40% pięcioarowej działki, a na 2/3 pozostałej części zasiała trawę. Na 50 m 2 posadziła krzewy owocowy. Resztę zajmuje domek. Ile razy obszar, na którym rosną kwiaty, jest większy od powierzchni, którą zajmuje domek? 60) Na prostokątnym trawniku o wymiarach 4m na 6m, na środku w jednakowej odległości 50 cm od każdego z boków, wykonano prostokątną rabatę kwiatową. Jaką powierzchnię obsadzono kwiatami? 61) Minutowa wskazówka zegara ma długość 14 cm. Jaką drogę pokona koniec wskazówki w ciągu: 10 minut, kwadransa, 40 minut? 62) Czy wstążką o długości 37 cm można obwiązać: a) rulon o średnicy 1,1 dm, b) dwa rulony o promieniach 0,03 m każdy? 63) Na prostokątnej działce o wymiarach 15m i 26m ogrodnik wykonał rabatę z kwiatami w kształcie koła o promieniu 20 dm. Ile procent powierzchni działki zajęła rabata? 64) Działkę w kształcie trapezu prostokątnego podzielono wzdłuż krótszej przekątnej na dwa trójkąty. O ile więcej metrów bieżących siatki potrzeba na ogrodzenie jednej z działek, jeżeli trzy kolejne prostopadłe zewnętrzne części płotu mają długości: 18m, 24m, 28m? 65) Z centrum pewnej miejscowości wyruszyli jednocześnie czterej turyści. Pierwszy turysta udał się rowerem na północ, jadąc z prędkością 25km/h. Drugi turysta wyjechał samochodem w kirunku południowym, jadąc z prędkością 80km/h. Trzeci wyruszył na skuterze, na wschód z prędkością 16 i 2/3 m/s. Czwarty na motorze na zachód z prędkością 60 km/h. Oblicz, jakie będą odległości między turystami po upływie 24 minut. Miedzy którymi turystami odległość będzie największa?

6 66) Czy z drutu o długości 2,1 m można wykonać szkielet: a) graniastosłupa prawidłowego trójkątnego o wysokości 30 cm i krawędzi podstawy 2 dm, b) graniastosłupa prawidłowego czworokątnego o wysokości 22,5 cm i krawędzi podstawy 15 cm? 67) Czy z drutu o długości 2,4 m można wykonać szkielet: a) ostrosłupa prawidłowego trójkątnego o krawędzi podstawy 2 dm i krawędzi bocznej 30 cm, b) ostrosłupa prawidłowego sześciokątnego o krawędzi podstawy15 cm i krawędzi bocznej 0,25 m? 68) Czy na kartce o wymiarach 14,5 cm i 22 cm można narysować siatkę ostrosłupa o podstawie trójkąta równobocznego o boku 6 cm, jeżeli jedna z jego krawędzi bocznych jest prostopadła do podstawy i ma długość 10 cm? Jeśli nie, narysuj siatkę tego ostrosłupa w odpowiedniej skali. 69) Przedpokój ma kształt prostopadłościanu o szerokości 1,8m, długości 5m i wysokości 2,6m. W trzech ścianach wmontowano troje drzwi o wymiarach 0,9m i 2m. Ile puszek farby o pojemności 1 litra należy zakupić do pomalowania ścian (odliczając drzwi) i sufitu, jeśli wydajność farby wynosi 1 litr na 10 m 2. Jaki jest koszt dwukrotnego malowania ścian i sufitu, jeśli puszka farby o pojemności 1 litra kosztuje 12 zł? 70) Czy tafla szkła ornamentowego o powierzchni 0,15 m 2 wystarczy na wykonanie dwunastu ozdobnych szybek prostokątnych o wymiarach 16 cm i 8 cm? 71) Każda kolumna podpierająca strop podziemnego parkingu samochodowego ma kształt graniastosłupa prawidłowego czworokątnego o wysokości 2,5 m i krawędzi podstawy 75 cm. Kolumny postanowiono pomalować farbą o pojemności 1 litra każda. Jaka ilość farby wystarczy na pomalowanie 24 takich kolumn, jeśli wydajność wynosi 10 l/m 2? 72) W łazience o wysokości 2,6 m, szerokości 1,6 m, długości 2,5 m położono na ścianach płytki ceramiczne (z odliczeniem otworu na drzwi o wymiarach 90 cm na 2 m), a na podłodze terakotę. Dodatkowo zakupiono po 0,5 m 2 więcej terakoty i płytek. Ile zapłacono za terakotę i płytki, jeśli 1 m 2 terakoty kosztował 40 zł, a 1 m 2 płytek 30 zł? 73) Czy 100 litrów przyprawy do zup zmieści się w 200 butelkach o pojemności 250 ml i 112 butelkach o pojemności 450 ml każda? 74) Do ilu pucharów, o pojemności 200 ml każdy, można włożyć lody z trzech pojemników: 0,9 l, 0,5 l i 1 l łącznie? 75) Czy do kartonu w kształcie prostopadłościanu o wymiarach 10 cm, 7 cm i 17 cm zmieści się 1,1 litra soku? 76) W czasie ulewy spadło 125 litrów wody na 1 m 2. Jak gruba była warstwa wody? 77) Basen wypełniony hl wody ma kształt prostopadłościanu o szerokości 20 m i długości 50 m. Jaka jest głębokość basenu?

7 78) Do akwarium w kształcie prostopadłościanu wlano 200 l wody, wypełniając je do 4/5 wysokości. Jedna z krawędzi podstawy ma 1 m, druga jest o 50% krótsza. Jaka jest objętość tego akwarium? Ile decymetrów ma wysokość akwarium? 79) Na plaży wykopano dół w kształcie prostopadłościanu o wymiarach 3m na 4m na 2m. 1 m 3 piasku waży 1,6 tony. Ile wywrotek o ładowności 3 ton potrzeba do wywiezienia tego piasku?

pudełka w kształcie walca, którego wysokość wynosi 10 cm, a średnica 24 cm. Czy dobrze została dobrana średnica tych pudełek?

pudełka w kształcie walca, którego wysokość wynosi 10 cm, a średnica 24 cm. Czy dobrze została dobrana średnica tych pudełek? ZADANIA 1 ZADANIE 1 Obwód czworokata wypukłego ABCD jest równy 50 cm. Obwód trójkata ABD jest równy 46 cm, a obwód trójkata BCD jest równy 36 cm. Oblicz długość przekatnej BD. ZADANIE 2 Huta szkła produkuje

Bardziej szczegółowo

Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 )

Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 ) Zestaw nr 7 bryły Zad. 1. Ogrodnik zbudował 5 tuneli foliowych o długości 10 m każdy. Przekrój poprzeczny tunelu jest trapezem równoramiennym o podstawach 3 m i 1,6 m oraz wysokości 2,4 m. Ile metrów sześciennych

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

1. Dom zajmuje powierzchni działki. Ile to m 2? A. 80 m 2 B. 100 m 2 C. 120 m 2 D. 160 m 2

1. Dom zajmuje powierzchni działki. Ile to m 2? A. 80 m 2 B. 100 m 2 C. 120 m 2 D. 160 m 2 1 Fabryka Nowy dom zabawek... Imię i nazwisko ucznia...... Klasa Suma punktów Nowy dom...... Data Ocena Informacja do zadań od 1. do 6. Państwo Leśniewscy sprzedali mieszkanie w bloku i kupili działkę

Bardziej szczegółowo

Kąty przyległe, wierzchołkowe i zewnętrzne

Kąty przyległe, wierzchołkowe i zewnętrzne Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa

Bardziej szczegółowo

Zadania egzaminacyjne - matematyka

Zadania egzaminacyjne - matematyka Zad.1 Zad.2 Zad.3 Zad.4 Zad.5 1 Zad.6 Zad.7 2 Zad.8 Zad.9 Zad.10 3 Zad.11 Zad.12 Zad.13 Zad.14 Zad.15 4 Zad.16 Zad.17 Zad.18 Zad.19 Zade.20 5 Zad.21 Zad.22 Zad.23 Zad.24 Zad.25 Zad.26 6 Zad.27 Zad.28 Zad.29

Bardziej szczegółowo

Maraton Matematyczny Klasa I październik

Maraton Matematyczny Klasa I październik Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=

Bardziej szczegółowo

MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł?

MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Oblicz wartość wyrażenia MARATON GRUDNIOWY KLASA I Zadanie 1 Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Zadanie 3 Trzy boki trapezu równoramiennego

Bardziej szczegółowo

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI Kod ucznia Liczba uzyskanych punktów Nr zadania 1 14 15 16 17 18 Liczba punktów Drogi Uczniu! Witamy Cię w trzecim etapie konkursu. Przed Tobą test składający się z 14 zadań zamkniętych i 4 zadań otwartych.

Bardziej szczegółowo

5. Oblicz pole powierzchni bocznej tego graniastosłupa.

5. Oblicz pole powierzchni bocznej tego graniastosłupa. 11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

ZESTAW EGZAMINACYJNY NR 1.

ZESTAW EGZAMINACYJNY NR 1. ZESTAW EGZAMINACYJNY NR 1. 1. (0-1p.) Ze zbiornika I, w którym znajdowało się 100 litrów wody, przelewano wodę do zbiornika II. Na wykresie przedstawiono, jak zmieniała się objętość wody w zbiorniku II

Bardziej szczegółowo

1 Odległość od punktu, odległość od prostej

1 Odległość od punktu, odległość od prostej 24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!!

ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!! ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!! LIGA ZADANIOWA KLASA IV Ania przeczytała 6 książek. W tym samym czasie Hania

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm

Bardziej szczegółowo

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 %

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zad. 2 ( 15 pkt ) Zamień ułamki na procenty: a) 0,36; 0,03; 3,6; 0,4; 0,375;

Bardziej szczegółowo

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 2. Odp.: 52; 3,472; 1 377/450 Zadanie 2. Oblicz: 40 % z 28 % liczby 38, 24,6 % z 15 % liczby 27,4. Odp.: 4,256; 1,01106 Zadanie 3.

Bardziej szczegółowo

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są. GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:

Bardziej szczegółowo

Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D.

Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D. Elżbieta Friedrich mailto:elaf@interia.pl nauczyciel matematyki i informatyki Gimnazjum nr 5 w Tychach Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki Zadania zamknię te Zadanie. a) b)

Bardziej szczegółowo

Czas trwania: 60minut

Czas trwania: 60minut Konkurs MATEMATYKA NA BUDOWIE dla gimnazjalistów Numer ewidencyjny 22 października 2014r. 1. Sprawdź, czy zestaw konkursowy zawiera 13 stron. Ewentualne braki zgłoś komisji konkursowej. 2. Na pierwszej

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 11 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Koszt ubezpieczenia samochodu w pewnej firmie

Bardziej szczegółowo

Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA

Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA GIMNAZJUM Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA Zadanie 1. Trzy lata temu posadzono przed domem krzew. Co roku

Bardziej szczegółowo

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa:

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: LICZBY WYMIERNE I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: A. 66 B. 64 C. 46 D. 44 Zadanie 2 Wskaż jedną poprawną odpowiedź. Liczba

Bardziej szczegółowo

1. Liczby wymierne dodatnie

1. Liczby wymierne dodatnie 1 1. Liczby wymierne dodatnie 1.7. Uczeń stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (także jednostek prędkości, gęstości,

Bardziej szczegółowo

Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł.

Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł. Zadanie 1 Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł. Rower kosztuje: A. 1701 zł. B. 2100 zł. C. 1890 zł. D. 2091 zł. Zadanie 2 Cena towaru bez podatku VAT jest równa 90 zł. Towar ten

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap międzyszkolny (60 minut) [suma punktów]..... Imię i nazwisko Nazwa (numer) szkoły, miejscowość W sklepie sportowym

Bardziej szczegółowo

Zadania zamknięte. Hurtownia Malwina cena za 1 kg rodzaj owoców gatunek I gatunek II

Zadania zamknięte. Hurtownia Malwina cena za 1 kg rodzaj owoców gatunek I gatunek II Zadania zamknięte Zadanie. Aby dojść z domu do szkoły trzeba wykonać 200 kroków o średniej długości 60 cm każdy. Jaką drogę pokona uczeń idąc do szkoły i z powrotem? Zadanie 2 Właściciel sklepu Zdrowa

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na III etapie konkursu z matematyki. Przeczytaj

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM WYPEŁNIA UCZEŃ Data urodzenia ucznia dzień miesiąc rok Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 10 stron. Ewentualny

Bardziej szczegółowo

Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył

Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,

Bardziej szczegółowo

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona

Bardziej szczegółowo

Małe olimpiady przedmiotowe

Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, przeczytaj uwaŝnie

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i wyrażenia algebraiczne... 7 Funkcje... 12 Wielokąty, koła i okręgi... 18 Przekształcenia geometryczne... 23 Figury podobne... 28

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby

Bardziej szczegółowo

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile

Bardziej szczegółowo

1. Od ilu lat istnieje fabryka zabawek założona przez pana Dzieciniaka? A. od 23 B. od 37 C. od 42 D. od 60

1. Od ilu lat istnieje fabryka zabawek założona przez pana Dzieciniaka? A. od 23 B. od 37 C. od 42 D. od 60 1 Fabryka zabawek.... Imię i nazwisko ucznia...... Klasa Suma punktów Fabryka zabawek...... Data Ocena Tekst do zadań od 1. do 4. W Kukiełkowie przy ulicy Lalczanej 18 znajduje się fabryka zabawek Udane

Bardziej szczegółowo

Badanie wyników nauczania z matematyki klasa II

Badanie wyników nauczania z matematyki klasa II Badanie wyników nauczania z matematyki klasa II Potęgi i pierwiastki - zadania zamknięte Zadanie 1. (0-1) Po podniesieniu liczby -2 2 1 do kwadratu otrzymamy liczbę: 1 25 1 A) B) C) 6 D) 1 Zadanie 2. (0-1)

Bardziej szczegółowo

Procent (od łac. per centum - na sto) to sposób wyrażenia liczby jako ułamka o mianowniku 100. Procent oznaczamy symbolem %.

Procent (od łac. per centum - na sto) to sposób wyrażenia liczby jako ułamka o mianowniku 100. Procent oznaczamy symbolem %. 1. Co to jest procent?... 1 2. Jak obliczyć procent podanej liczby?... 2 3. Jak znaleźć liczbę, której pewien procent znamy?... 7 4. Jak obliczyć, jakim procentem jednej liczby jest druga liczba?... 12

Bardziej szczegółowo

Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas

Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2013 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame

Bardziej szczegółowo

MATEMATYKA. karty pracy klasa 2 gimnazjum

MATEMATYKA. karty pracy klasa 2 gimnazjum MATEMATYKA karty pracy klasa 2 gimnazjum Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Numer zadania Test Karty pracy Zadania wyrównujące Zadania utrwalające Zadania rozwijające

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka

Trenuj przed sprawdzianem! Matematyka mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Rodzina Kowalskich: pan Jan, pani Maria i syn Karol postanowili

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z

Bardziej szczegółowo

Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.

Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach. Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt

Bardziej szczegółowo

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja

Bardziej szczegółowo

KLASA DRUGA MATEMATYKA. 6 10 (odpowiednio) atomów, cząsteczek lub jonów. 2,28 10 km. Zapisz tę odległość bez użycia potęgi

KLASA DRUGA MATEMATYKA. 6 10 (odpowiednio) atomów, cząsteczek lub jonów. 2,28 10 km. Zapisz tę odległość bez użycia potęgi KLASA DRUGA MATEMATYKA Zadanie 1. Jakie wyrażenie otrzymamy po podniesieniu do potęgi: (2xy) 4 Zadanie 2. 3 3 Jaka liczba jest wynikiem ilorazu 2 : 16 Zadanie3. 1 mol to taka ilość materii, która zawiera

Bardziej szczegółowo

Zestaw powtórzeniowy nr 17

Zestaw powtórzeniowy nr 17 klasa.. nr w dzienniku. data Imię i nazwisko ucznia Zestaw powtórzeniowy nr 17 Własności figur płaskich, pola figur płaskich część 2 (na 28. lutego 2011) Informacja do zadań 1. i 2. Podczas remontu łazienki

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i działania... 7 Systemy zapisywania liczb... 12 Działania pisemne... 17 Własności liczb naturalnych... 22 Proste, odcinki, kąty...

Bardziej szczegółowo

Suma ( ) 0,3 jest równa:

Suma ( ) 0,3 jest równa: Liczby i działania Zadania zamknięte: Zadanie. (0-p.) Dane są liczby: 9 ; - 8,5 ; - 4, ; 6,5. Która z nich ma wartość bezwzględną mniejszą od 5? A) -9. B) 6,5 C) -8,5 D) 4, Zadanie. (0-p.) Ile liczb całkowitych

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia WYPEŁNIA UCZEŃ Kod ucznia Informacje dla ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE 1. Sprawdź, czy sprawdzian ma 9 stron. Ewentualny brak stron lub inne usterki

Bardziej szczegółowo

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych.

KONSPEKT DO LEKCJI MATEMATYKI W KL.V. TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. KONSPEKT DO LEKCJI MATEMATYKI W KL.V TEMAT: Pole i obwód prostokąta w zadaniach praktycznych. CELE LEKCJI: kształcenie umiejętności stosowania zdobytych wiadomości w różnych sytuacjach rzeczywistych utrwalenie

Bardziej szczegółowo

Pola powierzchni i objętości

Pola powierzchni i objętości Pola powierzchni i objętości Zadanie 1.... Trapez ABCD o wierzchołkach A = 3, 2, B = 1, 2, C = 1, 6 i D = 3, 8 obrócono wokół dłuższej podstawy. (c) Opisz powstałą bryłę i podaj jej wymiary Oblicz objętość

Bardziej szczegółowo

LIGA ZADANIOWA ETAP V ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 23 MARCA 2012R.

LIGA ZADANIOWA ETAP V ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 23 MARCA 2012R. ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 23 MARCA 2012R. KLASA IV Zad. 1 Jeżeli liczbę lat pana Wiekowego pomnożymy przez 6 i do wyniku dodamy 38, to otrzymamy 500. Oblicz,

Bardziej szczegółowo

KARTA PRACY GRUPOWEJ

KARTA PRACY GRUPOWEJ Temat: Remont mieszkania KARTA PRACY GRUPOWEJ Uczniowie podchodzą do nauczyciela i losują kartki z jednym z napisów: POKÓJ, HOL, KUCHNIA, ŁAZIENKA. Karteczka określa przynależność do grupy. Dzieci rozwiązują

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010 Etap wojewódzki 13 marca 2010 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

Skrypt 33. Przygotowanie do egzaminu Bryły. 2. Obliczanie pól powierzchni graniastosłupów prostych

Skrypt 33. Przygotowanie do egzaminu Bryły. 2. Obliczanie pól powierzchni graniastosłupów prostych Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Przygotowanie do egzaminu Bryły 1. Graniastosłupy

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z

Bardziej szczegółowo

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi: Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów

Bardziej szczegółowo

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowyc województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 27 lutego 2015 r. 90 minut Informacje

Bardziej szczegółowo

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?

Bardziej szczegółowo

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2 Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B Zadanie. ( pkt.) W baku samochodu Fiat Uno mieści się 40 l benzyny. Samochód ten spala przeciętnie 5, l benzyny na 00 km. Czy trzeba będzie

Bardziej szczegółowo

XXII MINIKONKURS MATEMATYCZNY

XXII MINIKONKURS MATEMATYCZNY KOD UCZNIA XXII MINIKONKURS MATEMATYCZNY DLA UCZNIÓW KLAS 4 etap szkolny 1. Liczba o dwa większa od liczby dwa razy większej od 6724 to: A. 6 728 B. 2 688 C. 13 42 D. 13 40 2. Do stołówki przyszła grupa

Bardziej szczegółowo

ZADANIA NA KARTACH. Właścicielem ogródka jest pan Nowakowski. Na działce rosną 3 jabłonie, 2 grusze, winogron i wiele odmian kwiatów.

ZADANIA NA KARTACH. Właścicielem ogródka jest pan Nowakowski. Na działce rosną 3 jabłonie, 2 grusze, winogron i wiele odmian kwiatów. Anna Szynkowska ZADANIA NA KARTACH Na lekcjach matematyki dużo czasu poświęca się na rozwiązywanie zadań tekstowych, które przysparzają uczniom wiele problemów. Uczniowie często nie potrafią czytać tekstu

Bardziej szczegółowo

Klasa 2. Ostrosłupy str. 1/4

Klasa 2. Ostrosłupy str. 1/4 Klasa 2. Ostrosłupy str. 1/4 1. Liczba wierzchołków ostrosłupa ośmiokątnego wynosi: A. 9 B. 16 C. 8 D. 7 2. Łączna długość prętów potrzebnych do wykonania szkieletu namiotu w kształcie ostrosłupa prawidłowego

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min I Ty możesz zostać Pitagorasem Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz II Luty 2014 Liczba punktów 30, czas pracy 90min mgr Iwona Tlałka Zadanie 1. (0 1) I Ty możesz zostać Pitagorasem

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS II ETAP III

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS II ETAP III LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS II ETAP III Zadanie 1. Zapytano rybaka, ile waży złowiona przez niego ryba. Rybak odpowiedział: 5 2 kg i jeszcze 2 razy po 5 1 swojej masy. Ile ważyła ryba? Zadanie

Bardziej szczegółowo

II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA

II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA Załącznik nr 8 Część pisemna GIMNAZJUM Kod ucznia Czas w min. Drogi uczniu, przed Tobą zestaw 20 problemów, masz na ich rozwiązanie

Bardziej szczegółowo

Test z matematyki. Małe olimpiady przedmiotowe

Test z matematyki. Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, test składa się z

Bardziej szczegółowo

ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE

ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE 1. Plac zabaw Jaś i Małgosia ma kształt prostokąta o bokach długości 80 m i 40 m. Oblicz pole tego placu zabaw. 2. Zamek w Łęczycy, który Król Kazimierz

Bardziej szczegółowo

ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ

ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 11 LUTEGO 2012R. KLASA IV Do sklepu sprowadzono zeszyty w kratkę po 10 sztuk w paczce i zeszyty w linie po 15 sztuk w paczce.

Bardziej szczegółowo

EGZAMIN PRÓBNY Z ZAKRESU MATEMATYKI DLA III KLASY GIMNAZJUM GRUPA A I B

EGZAMIN PRÓBNY Z ZAKRESU MATEMATYKI DLA III KLASY GIMNAZJUM GRUPA A I B Maria Żylska ul. Krasickiego 19/78 30-515 Kraków zyluska@interia.pl EGZAMIN PRÓBNY Z ZAKRESU MATEMATYKI DLA III KLASY GIMNAZJUM GRUPA A I B Autor: Maria Żylska Gimnazjum 27 Kraków Zad 1. Która równość

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania

Bardziej szczegółowo

POTĘGI I PIERWIASTKI

POTĘGI I PIERWIASTKI POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 20010/2011

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 20010/2011 Etap wojewódzki 5 marca 2011 r. Godzina 11.00 Kod ucznia M Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

1. Biorąc pod uwagę długość ciała, uporządkuj malejąco mieszkańców mórz i oceanów. Uzupełnij tabelę i narysuj diagram słupkowy.

1. Biorąc pod uwagę długość ciała, uporządkuj malejąco mieszkańców mórz i oceanów. Uzupełnij tabelę i narysuj diagram słupkowy. Tekst do zadań 1. Płetwal błękitny to największe znane ziemskie zwierzę. (...) W morzach i oceanach Żyje wiele dużych zwierząt, np: płetwal błękitny (30 m), marlin (5 m), kaszalot (20 m), rekin (16 m),

Bardziej szczegółowo

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 13 stycznia 2015 r. 90 minut Informacje

Bardziej szczegółowo

SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.

SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D. SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Który wielokąt jest podstawą ostrosłupa o 6 wierzchołkach? A. Trójkąt. B. Czworokąt. C. Pięciokąt. D. Sześciokąt.

Bardziej szczegółowo

Określ zbiór wartości i przedziały monotoniczności funkcji.

Określ zbiór wartości i przedziały monotoniczności funkcji. Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE

Bardziej szczegółowo

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a. ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.

Bardziej szczegółowo

Powtórzenie - ułamki zwykłe i dziesiętne klasa 6

Powtórzenie - ułamki zwykłe i dziesiętne klasa 6 Powtórzenie - ułamki zwykłe i dziesiętne klasa 6 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oblicz. Wpisz w każdą lukę odpowiednią liczbę. = 0,2 3 = 2. Jola w swojej skarbonce ma 243,20 zł, a Marek

Bardziej szczegółowo

Zadanie 2. Mewa leci z prędkością 0,2 km/min. na południe. Wiejący wschodni wiatr ma prędkość 1 i 7/18 m/s. Oblicz prędkość mewy względem Ziemi.

Zadanie 2. Mewa leci z prędkością 0,2 km/min. na południe. Wiejący wschodni wiatr ma prędkość 1 i 7/18 m/s. Oblicz prędkość mewy względem Ziemi. Zespół Szkół Ogólnokształcących w Kcyni Zestaw zadań na etap szkolny 6 kwietnia 01 r. godz. 10 00 Zadanie 1. W skali 1: 400000 odległość między miastami A i B jest o 1,7 cm większa od odległości między

Bardziej szczegółowo

ZAPRASZAMY DO III ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 4 STYCZNIA 2013 R. ŻYCZYMY POWODZENIA!!!

ZAPRASZAMY DO III ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 4 STYCZNIA 2013 R. ŻYCZYMY POWODZENIA!!! ZAPRASZAMY DO III ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 4 STYCZNIA 2013 R. ŻYCZYMY POWODZENIA!!! LIGA ZADANIOWA KLASA IV Kółko leżące wyżej zawiera sumę liczb z

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016 12 STYCZNIA 2016 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

Zadania powtórzeniowe - zestaw 9

Zadania powtórzeniowe - zestaw 9 Zadania powtórzeniowe - zestaw 9 Zadanie 1 Uzasadnij, że oba kąty przy podstawie AB trójkąta ABC są równe. Zadanie 2 Trzy proste przecinające się w sposób przedstawiony na rysunku tworzą trójkąt ABC. Uzasadnij,

Bardziej szczegółowo

KLASA IV ZESTAW 1. Zadanie 1 Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr?

KLASA IV ZESTAW 1. Zadanie 1 Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr? KLASA IV Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr? Anna, Beata i Cecylia rozmawiają między sobą. Anna: Jestem o 5 lat starsza od Beaty. Beata: Jestem młodsza od Cecylii

Bardziej szczegółowo

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis Strona 1 /Gimnazjum/Egzamin gimnazjalny/egzamin 2012 Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 31 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Kierowca

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA KLASY IV

KONKURS MATEMATYCZNY DLA KLASY IV DLA KLASY IV Zadanie 1. Wartość wyrażenia ( 2 ) : + (100 : 4 +2 6)= wynosi: a)1 b) c) 2 d) 41 Zadanie 2. Klientka płaci banknotem 100- złotowym za 2 kostki masła po zł, 6 jajek po 40 gr., bułek po 1zł,

Bardziej szczegółowo

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE

Bardziej szczegółowo

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

Smaczne ziemniaki. A. 20 arów. B. 60 arów. C. 100 arów. D. 140 arów. 3. W czasie przechowywania ziemniaków przez zimę tracą one około 10

Smaczne ziemniaki. A. 20 arów. B. 60 arów. C. 100 arów. D. 140 arów. 3. W czasie przechowywania ziemniaków przez zimę tracą one około 10 Smaczne ziemniaki 1. W piątek 18 kwietnia Ania sadziła z rodzicami ziemniaki. Mama powiedziała jej, że ziemniaki wzejdą najwcześniej za 20 dni. Ania obliczyła, że będzie to : A. w ostatnim tygodniu kwietnia.

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE

PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE Zadanie 1 Biuro Turystyczne Raj w przypadku rezygnacji z wycieczki nie zwraca pełnej kwoty. a) Jeśli rezygnacja z wyjazdu następuje miesiąc przed terminem wyjazdu,

Bardziej szczegółowo