6 Homomorfizmy przestrzeni liniowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "6 Homomorfizmy przestrzeni liniowych"

Transkrypt

1 konspekt wykladu / Homomorfizmy przestrzeni liniowych Definicja 6.1. Niech V, U be przestrzeniami liniowymi nad cialem K. Przeksztalcenie F : V W nazywamy przeksztalceniem liniowym (homomorfizmem przestrzeni liniowych), gdy dla dowolnych v, u V, a K spelnione sa naste puja ce warunki F (u + v) = F (u) + F (v), F (au) = af (u). Latwo udowodnić nastepuja cy fakt: Uwaga 6.2. Przeksztalcenie F : V W jest liniowe wtedy i tylko wtedy gdy dla dowolnych wektorów v 1, v 2,... v n V oraz dowolnych a 1, a 2,... a n K, F (a 1 v a n v n ) = a 1 F (v 1 ) a n F (v n ) Przyklady 1. F : K[x] K[x], w dw dx. 2. Niech B = (v 1,..., v n ) be dzie baza przestrzeni liniowej V nad cialem K. Definiujemy przeksztalcenie M B : V Mn(K), 1 M B (v) = x 1. x n v = x 1 v x n v n. Przeksztalcenie M B jest przeksztalceniem liniowym. Nazywamy je przeksztalceniem wspólrze dnych. 3. Niech X bedzie niepustym zbiorem, K cialem i x 0 X. Przeksztalcenie F : Map(X, K) K, f f(x 0 ) jest liniowe. 4. Niech V = V 1 V 2. Dla dowolnego wektora v V istnieja wtedy wyznaczone jednoznacznie wektory v 1 V 1, v 2 V 2, takie że v = v 1 + v 2. Przeksztalcenie P V1 : V V, v v 1 nazywamy rzutem na V 1 wdluz V 2. Symetria wzgledem V 1 wzdluż V 2 nazywamy takie przeksztalcenie S : V V, v v 1 v 2. Latwo pokazać, że oba te przeksztalcenia sa liniowe.

2 konspekt wykladu /10 2 Twierdzenie 6.3. Niech V, W be przestrzeniami liniowymi nad cialem K i niech B = (v 1,..., v n ) bedzie baza przestrzeni V oraz niech w 1,..., w n be dzie dowolnym ukladem wektorów w przestrzeni W. Istnieje dokladnie jedno przeksztalcenie liniowe F : V W, takie że F (v i ) = w i, dla i = 1,..., n. Niech V, W be przestrzeniami liniowymi nad cialem K. Oznaczmy symbolem Hom(V, W ) zbiór wszystkich przeksztalceń liniowych z V w W. Przeksztalcenia liniowe z Hom(V, W ) mozemy dodawać i mnożyc przez elementy z ciala K. Dla F, G Hom(V, W ), a K (F + G)(v) := F (v) + G(v), (af )(v) := af (v). Zbiór Hom(V, W ) z tymi dzialaniami jest przestrzenia wektorowa nad cialem K. Wektorem zerowym w tej przestrzeni jest przeksztalcenie zerowe przyporzadkowuja ce dowolnemu wektorowi v z przestrzeni V wektor zerowy z przestrzeni W. Twierdzenie 6.4. Niech F : V W, G : W U be da przeksztalceniami liniowymi. 1. Przeksztalcenie G F : V U jest przeksztalceniem liniowym. 2. Jesli przeksztalcenie liniowe F jest odwracalne to F 1 : W V jet również przeksztalceniem liniowym. Definicja 6.5. Niech F : V W bedzie przeksztalceniem liniowym. Wówczas 1. Ja drem przeksztalcenia F nazywamy zbiór kerf := {v V : F (v) = 0}. 2. Obrazem przeksztalcenia F nazywamy zbiór ImF := {F (v) : v V }. Przyklad 6.6. Niech V = V 1 V 2 oraz P V1 be dzie rzutem na V 1 wzdluz V 2. Wtedy KerP V1 = V 2 oraz ImP V1 = V 1. Ponadto P V1 V 1 = Id V1 oraz P V1 + P V2 = Id V. Uwaga 6.7. Niech F : V W bedzie przeksztalceniem liniowym. Wówczas

3 konspekt wykladu / kerf jest podprzestrzenia liniowa V, 2. ImF jest podprzestrzenia liniowa W. Twierdzenie 6.8. Niech B = (v 1,..., v n ) be dzie baza przestrzeni V oraz niech F : V W bedzie przeksztalceniem liniowym. Wówczas ImF = L(F (B)). Twierdzenie 6.9. Niech F : V W bedzie przeksztalceniem liniowym. Wówczas dimv = dimkerf + dimimf. Definicja Przeksztalcenie liniowe F : V W nazywamy monomorfizmem, jeśli F jest róznowartosciowe, epimorfizmem, jeśli F jest na, izomorfizmem, jesli F jest róznowartościowe i na. Twierdzenie Niech F : V W bedzie przeksztalceniem liniowym. Naste puja ce warunki sa równoważne: 1. F jest monomorfizmem, 2. kerf = {0}, 3. F przeprowadza dowolny liniowo niezależny uklad wektorów na uklad liniowo niezależny, 4. F przeprowadza dowolna baze na uklad liniowo niezależny, 5. F przeprowadza pewna baze na uklad liniowo niezależny. Wniosek Niech F : V W be dzie przeksztalceniem liniowym. Naste puja ce warunki sa równoważne: 1. F jest izomorfizmem, 2. F przeprowadza każ baze przestrzeni V na baze przestrzeni W, 3. F przeprowadza pewna baze przestrzeni V na baze przestrzeni W.

4 konspekt wykladu /10 4 Niech F : V W bedzie izomorfizmem przestrzeni liniowych. Z powyższych wniosków wynika, że wtedy dimv = dimw. Ponadto, jeśli dimv = dimw = n to przestrzenie V oraz W sa izomorficzne. Oznacza to, że dwie przestrzenie wektorowe V, W sa izomorficzne wtedy i tylko wtedy gdy dimv = dimw W szczególnosci wynika sta d, ze każda n wymiarowa przestrzeń wektorowa jest izomorficzna z przestrzenia K n. 7 Macierze przeksztalceń liniowych Definicja 7.1. Niech V, W be przestrzeniami liniowymi nad cialem K i niech F : V W be dzie przeksztalceniem liniowym. Ponadto niech uklad wektorów B = (v 1,..., v n ) bedzie baza przestrzeni V, a uklad C = (w 1,..., w m ) baza przestrzeni W. Macierza przeksztalcenia F w bazach B i C nazywamy macierz A = [a ij ] M n m(k) taka, że dla j = 1,..., n. c j (A) = M C (F (v j )), Macierz przeksztalcenia liniowego w bazach B oraz C oznaczamy MC B (F ). Bezpośrednio z definicji wynika, że dla dowolnego j = 1,..., n F (v j ) = m a ij w i. i=1 Uwaga 7.2. Niech F : V W be dzie przeksztalceniem liniowym. DimImF = rz(m B C (F )). Twierdzenie 7.3. Niech V, W be przestrzeniami liniowymi nad cialem K i niech F : V W bedzie przeksztalceniem liniowym. Ponadto niech B bedzie baza przestrzeni V a uklad C = baza przestrzeni W. Przeksztalcenie M B C : Hom(V, W ) M n m(k), F M B C (F ), jest izomorfizmem przestrzeni wektorowych.

5 konspekt wykladu /10 5 Mnożenie macierzy Definicja 7.4. Iloczynem macierzy A = [a ij ] M k m(k) i macierzy B = [b ij ] M n k (K) nazywamy macierz C = [c ij] M n m(k), taka,że c ij = k a it b tj. t=1 Iloczyn macierzy A oraz B oznaczamy AB lub A B. Uwaga 7.5. Niech A Mm(K) k oraz B Mk n (K). Wtedy dla j = 1,..., n oraz dla i = 1,..., m c j (AB) = Ac j (B), r i (AB) = Ar i (B). Wniosek 7.6. Niech A Mm(K) k oraz B Mk n (K). Wtedy dla j = 1,..., n oraz dla i = 1,..., m: k c j (AB) = b tj c t (A) r i (AB) = t=1 k a it r t (B). Symbolem I n oznaczamy macierz kwadratowa n n taka że I n (i, j) = t=1 { 0 gdy i = j 1 gdy i = j. Macierz taka nazywamy macierza jednostkowa. Dla dowolnej macierzy A M n m(k) otrzymujemy I n A = A = AI m. Twierdzenie 7.7. Wlasności mnożenia macierzy Niech A, A, B, B, C be macierzami takimi, ze wszystkie mnożenia sa wykonalne oraz a K. Wtedy 1. (AB)C = A(BC), 2. (A + A )B = AB + A B oraz A(B + B ) = AB + AB,

6 konspekt wykladu / (aa)b = A(aB) = a(ab). Twierdzenie 7.8. Niech V, W be przestrzeniami liniowymi nad cialem K i niech F : V W bedzie przeksztalceniem liniowym. Ponadto niech B bedzie baza przestrzeni V a uklad C baza przestrzeni W. Macierz A = M B C (F ) wtedy i tylko wtedy gdy dla dowolnego wektora v V, M C (F (v)) = A M B (v). Niech B, B be bazami przestrzeni wektorowej V, a przeksztalcenie Id = Id V bedzie przeksztalceniem identycznosciowym przestrzeni V (tzn Id V (v) = v). Macierz M B B (Id) nazywamy macierza zmiany bazy z B do B. Macierz ta pozwala obliczyć wspólrze dne dowolnego wektora z V w bazie B, gdy znamy te wspólrzedne w bazie B. Prawdziwy jest naste puja cy wzór M B (v) = M B B (Id)M B(v). Twierdzenie 7.9. Jeśli V, U, W sa przestrzeniami liniowymi nad cialem K z bazami B, C, D odpowiednio a F : V W, G : W U sa przeksztalceniami liniowymi, to M B D(G F ) = M C D(G) M B C (F ). Twierdzenie Jeśli F : V W jest przeksztalceniem liniowym a B i B sa bazami przestrzeni V oraz C i C sa bazami przestrzeni W, to M B C (F ) = M C C (Id)M B C (F )M B B (Id). 8 Macierze odwracalne Definicja 8.1. Macierz otrzymana w wyniku jednej operacji elementarnej na wierszach (lub kolumnach) macierzy I n nazywamy macierza elementarna. Operacje elemantarne na wierszach lub kolumnach dowolnej macierzy A moga być uzyskane przez mnożenie macierzy A przez macierze elementarne. Wynika to z nastepuja cego twierdzenia. Twierdzenie 8.2. Niech f bedzie operacja wierszowa, a g operacja kolumnowa. Ponadto niech A Mm(K) k i macierzy B Mk n (K). Wtedy f(ab) = f(a)b, g(ab) = Ag(B).

7 konspekt wykladu /10 7 Wniosek 8.3. Jeśli f jest operacja elementarna na wierszach macierzy A, a g operacja elementarna na kolumnach macierzy A, to f(a) = E 1 A, g(a) = AE 2, gdzie E 1 jest macierza elementarna równa f(i) oraz E 2 jest macierza elementarna równa g(i). Twierdzenie 8.4. Macierze A oraz A sa wierszowo równowazne wtedy i tylko wtedy gdy istnieja macierze elementarne E 1,..., E m, takie że A = E 1 E 2 E m A. Definicja 8.5. Macierz A M n n (K) nazywamy odwracalna, jeśli istnieje macierz B M n n (K), taka że AB = I n. Macierz B nazywamy wówczas macierza odwrotna do macierzy A i oznaczamy A 1. Pokazaliśmy, ze macierze (jeśli wybierzemy bazy) wyznaczaja jednoznacznie przeksztalcenia liniowe. Okazuje sie że macierze odwracalne odpowiadaja przy taki utozsamieniu izomorfizmom. Uwaga 8.6. Macierz A Mn n (K) jest macierza odwracalna wtedy i tylko wtedy gdy przeksztalcenie liniowe F : K n K n takie, że MB B (F ) = A, gdzie B jest dowolna baza K n, jest izomorfizmem. Wniosek 8.7. Niech A Mn n (K). Jeśli istnieje B Mn n (K), takie że AB = I to zachodzi też BA = I. Ponadto taka macierz B jest wyznaczona jednoznacznie. Przyklady macierzy odwracalnych 1. Macierz jednostkowa I i macierze elementarne sa odwracalne.ponadto I 1 = I oraz jeśli E jest macierza elementarna to macierz E 1 odwrotna do niej jest tez macierza elementarna. 2. Macierze zamiany wpólrzednych sa odwracalne. Ponadto (M B B (Id)) 1 = M B B (Id). 3. Jeśli A, B sa macierzami odwracalnymi to AB jest macierza odwracalna i (AB) 1 = B 1 A 1.

8 konspekt wykladu /10 8 Lemat 8.8. Wierszowo zredukowana macierz A jest odwracalna wtedy i tylko wtedy gdy A = I. Twierdzenie 8.9. Niech A M n n (K). Nastepuja ce warunki sa równoważne: Macierz A jest odwracalna, Macierz A jest wierszowo równowazna z macierza jednostkowa, Macierz A jest iloczynem macierzy elementarnych, Rza d macierzy A jest równy n Poniższe twierdzenie opisuje algorytm znajdowania macierzy odwrotnej. Twierdzenie Niech A M n n (K). Macierz A jest odwracalna wtedy i tylko wtedy gdy macierz A I jest wierszowo równoważna z macierza I B. Ponadto jeśli ten warunek jest spelniony to A 1 = B. 9 Wyznaczniki macierzy Niech A M n n (K). Symbolem A ij bedziemy oznaczali macierz powstala z macierzy A przez usunie cie i-tego wiersza oraz j-tej kolumny. Dla kazdej macierzy A M n n (K) przyporzadkujemy element ciala K zwany wyznacznikiem macierzy. Definicja 9.1. Wyznacznikiem nazywamy funkcje, która przyporza dkowuje każdej macierzy kwadratowej o wyrazach z ciala K pewien element tego ciala, oznaczany deta, tak że 1. Jeśli A = [a] M 1 1 (K), to deta = a, 2. Jeśli A = [a ij ] M n n (K), gdzie n > 1, to deta = n j=1 ( 1)1+j a 1j deta 1j. Twierdzenie 9.2. (Wlasności wyznaczników) Niech A, B, C M n n (K). 1. Jesli c j (C) = c j (A) + c j (B) dla 0 j n oraz c i (A) = c i (B) = c i (C) dla i = j, to detc = deta + detb. 2. Jeśli macierz B powstala z A przez zamiane miejscami dwóch kolumn to detb = deta.

9 konspekt wykladu / Jeśli macierz B powstala z macierzy A przez pomnożenie jednej (dowolnej) kolumny przez element c K to detb = cdeta. W powyższym twierdzeniu możemy kolumny zasta pić wierszami. Wynika to natychmiast z jeszcze jednej wlasności wyznaczników. Aby ja sformulować wprowadźmy nowe oznaczenie. Dla dowolnej macierzy A Mm(K) n symbolem A T oznaczamy macierz należaca do Mn m (K) taka, ze r i (A T ) = c i (A) dla i = 1,..., n. Inaczej mówiac wiersze macierzy A T to kolumny macierzy A i odwrotnie. Oczywiste jest, że (A T ) T = A. Twierdzenie 9.3. Niech A M n n (K). Wówczas deta T = deta. Twierdzenie 9.4. Niech A Mn n (K). Wówczas dla każdego 1 i n, 1 j n n n deta = ( 1) i+j a ij deta ij = ( 1) i+j a ij deta ij. i=1 Wzory z powyższego twierdzenia nazywamy rozwinie ciem Laplace a, pierwszy wzgle dem j-tej kolumny, drugi wzgledem i-tego wiersza. Wniosek 9.5. Niech A M n n (K) 1. Jeśli w macierzy A wiersz (lub kolumna) jest zerowy to deta = Jeśli w macierzy A dwa wiersze (dwie kolumny) sa równe to deta = 0. Zbadamy teraz jak zmienia sie wyznacznik macierzy A gdy wykonujemy operacje elementarne na wierszach lub kolumnach macierzy. Przypomnijmy, ze mamy elementarne operacje trzech typów: typu 1: dodanie do dowolnego wiersza (kolumny) innego (innej) pomnożonego przez stala. j=1 typu2: zamiana kolejności wierszy (kolumn) typu 3 : pomnożenie wiersza (kolumny) przez niezerowy element ciala K. Wniosek 9.6. Niech A M n n (K) 1. Operacje elementarne typu 1 nie zmieniaja wyznacznika macierzy A.

10 konspekt wykladu / Operacje elementarne typu 2 zmieniaja znak wyznacznika A. item Operacje elementarne typu 3 mnoża wyznacznik macierzy A przez element ciala K. Twierdzenie 9.7. (Twierdzenie Cauchy ego) Niech A, B M n n (K). Wówczas detab = detadetb. Twierdzenie 9.8. Niech A = [a ij ] M n n (K). 1. Macierz A jest odwracalna wtedy i tylko wtedy gdy deta = Niech A be dzie macierza odwracalna i ponadto niech B = [b ij ] M n n (K) oraz b ij = ( 1) j+i deta ji deta. Wówczas B = A 1. Twierdzenie 9.9. (Twierdzenie Cramera) Niech U be dzie ukladem n- równań z n-niewiadomymi o macierzy wspólczynników A i kolumnie wyrazów wolnych B. Zalóżmy, że deta = 0. Wówczas uklad ma dokladnie jedno rozwia zanie (x 1,..., x n ) takie że dla dowolnego i, x i = deta i deta, gdzie macierz A i powstala z macierzy A przez zasta pienie i-tej kolumny kolumna B.

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Wyk lad 3 Wyznaczniki

Wyk lad 3 Wyznaczniki 1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Wykład 7 Macierze i wyznaczniki

Wykład 7 Macierze i wyznaczniki Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

4 Przekształcenia liniowe

4 Przekształcenia liniowe MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

DB Algebra liniowa 1 semestr letni 2018

DB Algebra liniowa 1 semestr letni 2018 DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Wydział Fizyki PW Algebra z geometria

Wydział Fizyki PW Algebra z geometria Wydział Fizyki PW Algebra z geometria - konspekt wykładu Agata Pilitowska Rok akademicki 2016/2017 Spis treści 1 Liczby zespolone 3 2 Geometria analityczna w przestrzeni R 3 9 21 Punkty i wektory 9 22

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9

2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9 Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25

5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25 MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Wyk lad 10 Przestrzeń przekszta lceń liniowych

Wyk lad 10 Przestrzeń przekszta lceń liniowych Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

A. Strojnowski - Twierdzenie Jordana 1

A. Strojnowski - Twierdzenie Jordana 1 A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad

Bardziej szczegółowo

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25 Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3

Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3 3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Zadania z Algebry liniowej 4 Semestr letni 2009

Zadania z Algebry liniowej 4 Semestr letni 2009 Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień

Bardziej szczegółowo

Algebra i jej zastosowania - konspekt wykładu

Algebra i jej zastosowania - konspekt wykładu Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2018/2019 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Pierścienie Euklidesa

Bardziej szczegółowo

Wydział Fizyki PW Algebra z geometria

Wydział Fizyki PW Algebra z geometria Wydział Fizyki PW Algebra z geometria - konspekt wykładu Agata Pilitowska Rok akademicki 07/08 Spis treści Grupy, pierścienie, ciała Liczby zespolone 3 3 Geometria analityczna w przestrzeni R 3 9 3 Punkty

Bardziej szczegółowo

Rozwiazywanie układów równań liniowych. Ax = b

Rozwiazywanie układów równań liniowych. Ax = b Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu

Bardziej szczegółowo

Rozdzia l 1. Przestrzenie wektorowe

Rozdzia l 1. Przestrzenie wektorowe Rozdzia l 1 Przestrzenie wektorowe Materiał tego rozdziału jest, z jednej strony, trudny, bo operuje pojęciami abstrakcyjnymi, a zdrugiej strony łatwy, nie zawiera w sobie istotnych problemów technicznych,

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +

Bardziej szczegółowo

Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ).

Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ). Zad (0p) Zaznacz na płaszczyźnie zespolonej wszystkie z C, które spełniają równanie ( iz 3 z z ) Re [(z + 3) ( z 3) = 0 Szukane z C spełniają: iz 3 = z z Re [(z + 3) ( z 3) = 0 Zajmijmy się najpierw pierwszym

Bardziej szczegółowo

Wyznaczniki. Algebra. Aleksander Denisiuk

Wyznaczniki. Algebra. Aleksander Denisiuk Algebra Wyznaczniki Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wyznaczniki

Bardziej szczegółowo