Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego"

Transkrypt

1 Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

2 Dane INFORMACYJNE Nazwa szkoły: I Liceum Ogólnokształcące im. Powstańców Wlkp. w Koźminie Wlkp. ID grupy: 97/32_G2 Opiekun: Jarosław Kucharski Kompetencja: Matematyczno - fizyczna Temat projektowy: Laser, atomowe światło. Pół wieku od odkrycia. Semestr/rok szkolny: V/2011/2012

3 Zakres i podział zadań Na początku pracy nad projektem każdemu uczestnikowi grupy przydzielono zagadnienia do opracowania w formie prezentacji, które następnie zostały zaprezentowane przed całą grupą. Podsumowaniem tych opracowań jest prezentacja końcowa. Grupa matematyczna zajęła się przygotowaniem zadań i problemów związanych z wykonaniem mniej lub bardziej skomplikowanych obliczeń matematycznych (wyznaczanie odległości między rowkami na płycie CD, zadania związane z fizyką kwantową). Grupa fizyczna opracowała wiadomości z zakresu kwantowej natury światła, budowy atomu wodoru, widm emisyjnych i absorpcyjnych promieniwania oraz zasady działania i budowy lasera, aby wyczerpująco omówić temat projektu: Laser, atomowe światło. Pół wieku od odkrycia. Przygotowała i przeprowadziła proste eksperymenty fizyczne. Głównymi odpowiedzialnymi za całokształt pracy byli Mateusz i Przemek.

4 Laser, atomowe światło. Pół wieku od odkrycia. Źródło: mag.media.pl

5 KWANTOWA NATURA ŚWIATŁA Mechanika kwantowa (teoria kwantów) teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

6 Wszystko co naprawdę wiemy o świecie, wiemy z doświadczenia. Tymczasem jednak doświadczenia mówią nam coś dość niesamowitego. Z jednej strony światło ulega dyfrakcji i interferencji czyli jest falą (ma zatem naturę ciągłą). Z drugiej strony, aby wyjaśnić promieniowanie ciała doskonale czarnego i efekt fotoelektryczny trzeba przyjąć, że światło jest strumieniem cząstek (fotonów) czyli ma naturę nieciągłą.

7 KWANTOWA NATURA ŚWIATŁA

8 KWANTOWA NATURA ŚWIATŁA

9 KWANTOWA NATURA ŚWIATŁA

10 KWANTOWA NATURA ŚWIATŁA

11 KWANTOWA NATURA ŚWIATŁA

12 KWANTOWA NATURA ŚWIATŁA

13 KWANTOWA NATURA ŚWIATŁA

14 KWANTOWA NATURA ŚWIATŁA

15 KWANTOWA NATURA ŚWIATŁA

16 KWANTOWA NATURA ŚWIATŁA

17 KWANTOWA NATURA ŚWIATŁA

18

19 FALOWA NATURA CZĄSTEK

20 FALOWA NATURA CZĄSTEK

21 FALOWA NATURA CZĄSTEK

22 FALOWA NATURA CZĄSTEK

23 FALOWA NATURA CZĄSTEK

24 Budowa atomu Atomy składają się z jądra i otaczających to jądro elektronów. W jądrze znajdują się z kolei nukleony: protony i neutrony. Neutrony są cząsteczkami obojętnymi elektrycznie, protony noszą ładunek elektryczny dodatni, zaś elektrony ujemny. oportal/prawo_dokumenty_strategiczne/ochrona_ srodowiska_w_polsce_zagadnienia/promieniowa nie/promieniowaniejonizujace/

25 Analiza spektralna Analiza widmowa, inaczej analiza spektralna - rodzaj teleanalizy metoda jakościowego i ilościowego określania substancji na podstawie widma, w tym także metody wytwarzania widm. Z pomiarów fal linii widmowych dla danej substancji można wyznaczyć jej skład identyfikując pierwiastki w niej zawarte, energie połączeń, a także układ cząsteczek i atomów w cząsteczkach. Do analizy widmowej wystarczą śladowe ilości substancji.

26 Etapy analizy spektralnej Analizę spektralną wykorzystuje się w: poprzez porównanie widma substancji z widmami wzorcowymi określa się, jakie substancje (pierwiastki) wchodzą w jej skład, poprzez porównanie natężenia światła w uniach różnych pierwiastków wchodzących w skład substancji określa się jej skład procentowy, poprzez analizę poszerzenia określa się ciśnienie gazu i oddziaływania między cząsteczkami, rozszczepienie linii umożliwia badanie pola magnetycznego, a przesunięcie oddalania się lub energii grawitacyjnej. Astronomii - do kwalifikacji gwiazd, oraz badania ich składu chemicznego i warunków panujących w gwieździe Chemii - badania składu substancji chemicznych. a

27 Analiza spektralna Zjawisko pochłaniania światła w ośrodku materialnym. W miarę rozchodzenia się fali świetlnej w ośrodku, jej natężenie stopniowo maleje.

28 Zjawisko absorpcji jest związane z przekształcaniem energii pola elektromagnetycznego fali świetlnej w inne formy energii. Zmiana natężenia światła di po przejściu przez warstwę ośrodka o nieskończenie małej grubości dx wyraża się równaniem : di = -αi0dx

29 Laser- Co to jest i jak działa? Źródło: technologie.gazeta.pl

30 Laser- Co to jest i jak działa? Bibliografia do tej części prezentacji.

31 Laser Laser to generator promieniowania, wykorzystujący zjawisko emisji wymuszonej. Nazwa jest akronimem od Light Amplification by Stimulated Emission of Radiation wzmocnienie światła poprzez wymuszoną emisję promieniowania. Promieniowanie lasera ma charakterystyczne właściwości, trudne lub wręcz niemożliwe do osiągnięcia w innych typach źródeł promieniowania. Jest spójne w czasie i przestrzeni, zazwyczaj spolaryzowane i ma postać wiązki o bardzo małej rozbieżności. W laserze łatwo jest otrzymać promieniowanie o bardzo małej szerokości linii emisyjnej, co jest równoważne bardzo dużej mocy w wybranym, wąskim obszarze widma. W laserach impulsowych można uzyskać bardzo dużą moc w impulsie i bardzo krótki czas trwania impulsu (zob. laser femtosekundowy).

32

33 Laser- podstawowe informacje

34 ZASADA DZIAŁANIA LASERA Zasadniczymi częściami lasera są: ośrodek czynny, rezonator optyczny, układ pompujący. Układ pompujący dostarcza energię do ośrodka czynnego, w ośrodku czynnym w odpowiednich warunkach zachodzi akcja laserowa, czyli kwantowe wzmacnianie (powielanie) fotonów, a układ optyczny umożliwia wybranie odpowiednich fotonów. Ośrodek czynny Układ pompujący Rezonator optyczny Warunek progowy akcji laserowej Właściwości światła laserowego

35 Ośrodek Czynny Oddziaływanie promieniowania z materią można wyjaśnić za pomocą trzech zjawisk: pochłaniania fotonów (absorpcji), emisji spontanicznej oraz emisji wymuszonej fotonu. Foton wyemitowany w wyniku emisji wymuszonej ma taką samą częstotliwość i polaryzację jak foton wywołujący emisję. Przykładowy foton wzbudzający musi mieć energię równą energii wzbudzenia atomu ośrodka. Atomy w stanie podstawowym pochłaniają takie fotony. Gdy w ośrodku jest więcej atomów w stanie wzbudzonym niż w stanie podstawowym zachodzi inwersja obsadzeń poziomów energetycznych. Stan wzbudzony jest stanem metastabilnym co zapewnia magazynowanie energii do czasu wyemitowania jako wiązki laserowej i jest warunkiem funkcjonowania urządzenia.

36 Układ Pompujący Zadaniem układu jest przeniesienie jak największej liczby elektronów w substancji czynnej do stanu wzbudzonego. Układ musi być wydajny by zapewnić inwersję obsadzeń. Pompowanie lasera odbywa się poprzez błysk lampy błyskowej (flesza), błysk innego lasera, przepływ prądu (wyładowanie) w gazie, reakcję chemiczną, zderzenia atomów, wstrzelenie wiązki elektronów do substancji.

37 Rezonator Optyczny Wzbudzony ośrodek czynny stanowi wprawdzie potencjalne źródło światła laserowego, jednak do powstania uporządkowanej akcji laserowej potrzebny jest jeszcze odpowiedni układ optyczny, zwany rezonatorem. Układ ten pełni rolę dodatniego sprzężenia zwrotnego dla światła o wybranym kierunku i określonej długości fali. Spośród wszystkich możliwych kierunków świecenia i wszystkich dostępnych dla ośrodka długości fal, jedynie światło o parametrach ustalonych przez rezonator będzie wzmacniane na tyle mocno, by doprowadzić do akcji laserowej.

38 Warunek progowy akcji laserowej Aby mogła zajść akcja laserowa, wzmocnienie promieniowania w obszarze czynnym musi co najmniej równoważyć straty promieniowania wewnątrz rezonatora (rozpraszanie, straty dyfrakcyjne) oraz emisję części promieniowania na zewnątrz rezonatora (np. przez częściowo przepuszczalne lustro wyjściowe).

39 Schemat budowy i działania lasera. Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

40 Zasada działania lasera. W dużym uproszczeniu, zobrazowanie budowy i działania lasera przedstawia rysunek przedstawiony na poprzednim slajdzie. Do ośrodka o właściwościach wzmacniających światło, dostarczana jest energia świetlna lub elektryczna ( proces ten nazywamy pompowaniem lasera ), co w efekcie powoduje emisję wymuszoną. Ośrodek wzmacniający umieszczony jest wewnątrz rezonatora składającego się z dwóch zwierciadeł, z których jedno jest całkowicie odbijające, drugie natomiast jest częściowo przepuszczalne. W wyniku emisji wymuszonej, wewnątrz rezonatora (zapewniającego sprzężenie zwrotne ), układ staje się generatorem światła. Poprzez zwierciadło półprzepuszczalne (emisyjne), na zewnątrz układu wydostaje się część światła, stanowiąca użyteczną wiązkę laserową. Wiązka ta może zostać poddana dalszej obróbce na drodze optycznej, w celu przygotowania jej do określonych zadań. W opisany wyżej sposób działa większość laserów stosowanych w aplikacjach medycznych, należy jednak dodać, że istnieją też inne, bardziej skomplikowane rozwiązania. Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

41 Ogólna charakterystyka światła laserowego. Światło emitowane przez laser jest falą elektromagnetyczną o ściśle określonych właściwościach, które odróżniają je od naturalnych źródeł takich jak żarówka, płomień czy słońce. 1. Jest monochromatyczne, tzn. że posiada tylko jedną długość fali (kolor), naturalne źródła światła promieniują w szerokim spektrum od podczerwieni do ultrafioletu. 2. Jest koherentne, tzn. że fale świetlne emitowane przez laser posiadają tą samą fazę, natomiast naturalne źródła światła emitują fale o różnych fazach. 3. Jest skolimowane, tzn. że wiązka światła laserowego ma niewielką rozbieżność i łatwo można utrzymać niewielką średnicę wiązki na dużych dystansach. W naturalnych źródłach światła nie jest możliwe osiągnięcie takiego stopnia kolimacji nawet przez zastosowanie skomplikowanych układów optycznych. Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

42 Naukowcy związani z Laserem Teoretyczne podstawy mechanizmów wzmocnienia światła dał w 1917 roku Albert Einstein. Urzeczywistnieniem teorii promieniowania laserowego stał się ponad 40 lat później pierwszy - zbudowany w 1960 roku przez Amerykanina Teodora Maimana - laser rubinowy. TEODOR MAIMAN ALBERT EINSTEIN Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

43 Wykorzystanie Laserów Źródło:3dcad.pl

44 Efekty wizualne Lasery są wykorzystywane do tworzenia efektów wizualnych np. w spektaklach teatralnych, reklamach, koncertach i dyskotekach. Tanie lasery diodowe są wykorzystywane jako wskaźniki podczas prezentacji dydaktycznych, konferencyjnych, reklamowych itp. Źródło: oraz

45 Geodezja i budownictwo Prostoliniowy bieg wiązki lasera wykorzystywany jest w pomiarach geodezyjnych (dalmierze), a także w budownictwie (poziomnice laserowe, generatory linii). Poziomica Laserowa Źródło:

46 Poligrafia Lasery znalazły zastosowanie w nowoczesnej poligrafii: w naświetlarkach filmów poligraficznych, naświetlarkach offsetowych form drukowych, w naświetlarkach zintegrowanych z maszyną drukarską, w cyfrowych kserokopiarkach. Po prawej stronie schemat budowy drukarki laserowej. Źródło: oraz

47 Technologia Wojskowa Dalmierze laserowe, stosowane do oceny odległości od celu, wchodzą w skład systemów kierowania ogniem lub systemów rozpoznawczych czołgów i niektórych innych pojazdów bojowych, samolotów i śmigłowców, mogą być także przenośne. Na fotografiach wojskowy helikopter, który używa dalmierza laserowego oraz wiązka laseru używanego przez siły zbrojne USA. Źródło:

48 Technologia Wojskowa W systemach naprowadzających cel jest oświetlany wiązką laserową, promieniowanie odbite jest emitowane praktycznie we wszystkich kierunkach (z uwagi na rozpraszanie wiązki na powierzchni). Pocisk rakietowy, artyleryjski lub bomba kierowana, wyposażony w czujnik laserowy, określa źródło odbitej wiązki, i za pomocą układów elektronicznych naprowadza się na podświetlony cel. Podobne zastosowanie ma laserowy wskaźnik celu, lecz w tym przypadku laser wskazuje cel, a operator broni (strzelec) samodzielnie naprowadza promień lasera na cel. Źródło:

49 Technologia Wojskowa Systemy laserowe są zdolne do uwalniania skoncentrowanej energii w postaci wiązki świetlnej w bardzo krótkim przedziale czasu. Powoduje to, iż cała energia jest wyzwalana w bardzo krótkim czasie, co przy prędkości światła powoduje, iż praktycznie jest niemożliwe uniknięcie trafienia z takiej broni. Laser jako broń energetyczna jest najmniej rozpowszechniony - dopiero wprowadzany jedynie w USA na platformach powietrznych (Airborne Laser), aczkolwiek jest jednym z ulubionych tematów twórczości sciencefiction. Lasery mniejszej mocy stosowane są też do niszczenia układów optycznych pojazdów. Źródło: Na fotografii Airborne Laser

50 Technologia Wojskowa Mierniki głównie w lotnictwie wojskowym takie jak: wysokości (altimetry); -składowych szybkości gazu (aneometry), -przyspieszenia, -szybkości lotu. Na fotografii radar US. Army wykorzystujący Technologię laserową Źródło: oraz

51 Medycyna Lasery są wykorzystywane w medycynie do takich celów jak: -diagnostyka (lasery diagnostyczne), -terapia schorzeń (lasery stymulacyjne i chirurgiczne), -oświetlanie pola operacji. Na fotografii laser diagnostyczny w stomatologii Źródło: oraz

52 Medycyna Lasera używa się w medycynie przede wszystkim dla "twardej" obróbki tkanek: -cięcia, -koagulacji, -odparowania (fotoablacji oraz ablacji stymulowanej plazmą), -obróbki mechanicznej (rozrywania, fragmentacji czy kawitacji). Źródło: oraz

53 Medycyna W dermatologii laserów używa się do usuwania niektórych nowotworów i naczyniaków powstałych np. po odmrożeniach. W leczeniu nowotworów wykorzystuje się lasery o dużej gęstości mocy i małych rozmiarach wiązki laserowej. Wiązką można zniszczyć chore komórki nie naruszając zdrowych. Skalpel laserowy pomocny jest przy leczeniu oparzeń. Przy jego pomocy można zdejmować naskórek lub warstwę spalonej skóry i odsłonić zdrową aby mogła się zagoić. Laser pomocny jest też przy usuwaniu tatuaży i włosów, rozjaśnianiu skóry, przywracaniu jej gładkości i sprężystości. Lasery stosowane w medycynie estetycznej Źródło:

54 Holografia Światło laserowe pozwala zapisać, a następnie odtworzyć trójwymiarowy obraz; w pierwszym procesie wykorzystuje się zjawisko interferencji światła laserowego; w drugim dyfrakcji. Hologram jest rodzajem siatki dyfrakcyjnej; oprócz holografii optycznej istnieje także holografia akustyczna Źródło: oraz Na fotografii holograf laserowy we współczesnym wyobrażeniu.

55 Łączność Odpowiednio modulowane światło laserowe może przenosić informacje (na analogicznej zasadzie jak fale radiowe), ale większa częstotliwość fal świetlnych pozwala znacznie zwiększyć szybkość jej przekazywania. Ze względu na prostoliniowy bieg fal świetlnych i znaczną nieprzezroczystość atmosfery do przesyłania impulsów stosuje się różnego rodzaju światłowody Źródło: oraz Na fotografii satelita wykorzystujący nowoczesną łączność laserową.

56 Kosmetologia i Dermatologia Kosmetologia: Wyróżniamy pełną gamę zabiegów kosmetycznych. Należą do nich również laserowe zabiegi chirurgiczne tj. z zakresu dermatochirurgii. Do zabiegów dermatochirurgicznych zaliczamy zabiegi punktowe (na małym obszarze) oraz zabiegi na dużych powierzchniach ciała. Zabiegi punktowe to usuwanie pojedynczych zmian skórnych, włókniaków, brodawek. Dermatologia: Dermatologia jest dziedziną medycyny, gdzie najprościej jest stosowane promieniowanie laserowe i stosunkowo łatwo można ocenić wyniki terapii. Najczęściej leczonymi tutaj schorzeniami są: trądzik, opryszczka, egzemy, liszaj czerwony, bliznowce, świąd skóry, półpasiec, owrzodzenia troficzne podudzi, świerzbiączka, łysienie plackowate, brodawki i łuszczyca. Źródło:

57 Znakowanie Produktów Lasery znalazły również zastosowanie przy znakowaniu produktów. Używa się ich przy liniach produkcyjnych posiadających bardzo wysokiej wydajności (np prod./h) oraz gdy chcemy uzyskać trwały i estetyczny nadruk. Podstawowym założeniem stosowania lasera do znakowania jest jego trwałość oraz nieusuwalność znaku. Aby 'zniszczyć' np. datę przydatności do produkcji na towarze spożywczym wykonaną laserem, należałoby zniszczyć także opakowanie lub usunąć etykietę. Wyróżnia się dwa sposoby znakowania materiałów: -usuwanie cienkiej warstwy farby z powierzchni przedmiotu; -zmiana barwy - zachodzi ona dzięki stosowaniu różnych domieszek lub poprzez pokrywanie powierzchni przedmiotu specjalnymi rodzajami farb lub tlenków. Źródło: Na fotografii przykład napisu wygrawerowanego na śrubce, za pomocą lasera

58 Laserowe cięcie metali Cięcie laserowe stanowi nowoczesną metodę obróbki o podobnych parametrach wymiarowych jak klasyczna obróbka mechaniczna. Podstawowa różnica tkwi w stosowanym czynniku tnącym, który w przypadku cięcia laserowego stanowi promień lasera oraz gaz techniczny o dużej czystości. W zależności od stosowanego urządzenia (przede wszystkim jego mocy) cięcie przeprowadza się na następujące sposoby: -przez odparowanie; -przez topnienie i wydmuchiwanie; -przez wypalenie; -poprzez generowanie pęknięć termicznych; -poprzez zarysowanie; -przez tzw. zimne cięcie. Źródło: Na fotografii przykład wycinarki laserowej, tnącej metal.

59 Laserowe spawanie metali Spawanie laserowe polega na łączeniu detali przez stopienie obszarów ich styku przy pomocy skoncentrowanej wiązki lasera. Duża gęstość mocy wiązki laserowej gwarantuje, że energia spawania jest na poziomie minimalnym potrzebnym do stopienia złącza. Strefy wpływu ciepła i stopienia są bardzo wąskie. Odkształcenie materiału jest bardzo małe, a po procesie spawania nie trzeba wykonywać dodatkowej obróbki mechanicznej. Podczas spawania spoina musi być zabezpieczona przed utlenianiem i zanieczyszczeniami przy pomocy gazów ochronnych takich jak np.: Ar, N2, CO2, He. Efektywność spawania zależy od absorpcji energii wiązki przez powierzchnię metali, która wynosi: 1 5% dla laserów CO2 i 2 30% dla laserów stałych. Z tego powodu powierzchnie niektórych metali powinny być poczernione lub zmatowione. Źródło: Na fotografii przykład spawarki laserowej, spawającej metale.

60 Laserowe drążenie Za pomocą lasera można drążyć bardzo małe otwory w bardzo twardych materiałach np. w diamencie, a także w bardzo kruchych np. w ceramice. Otwory są wykonywane z dużą prędkością i mają powtarzalny kształt. Wiązka laserowa topi metal, tworzy się jeziorko płynnego metalu, a strumień gazu częściowo spala i usuwa stopiony metal z obszaru oddziaływania wiązki laserowej. Materiał musi być usuwany na tę samą stronę, z której działa gaz. Na fotografii przykład drążarki laserowej. Źródło: oraz

61 Laser Rubinowy Źródło:3dcad.pl

62 Laser Rubinowy Bibliografia do tej części prezentacji kipedia.org/wiki/laser_rubinowy

63 Laser Rubinowy Laser rubinowy - laser na ciele stałym, którego obszarem czynnym jest rubin (Al2O3:Cr+3). Ten skład chemiczny zapewnia występowanie trójpoziomowego układu stanów energetycznych w rubinie. Emitowana długość fali jest równa 694,3 nm. Laser ten pracuje w trybie impulsowym.

64 Początki Teoretyczne podstawy mechanizmów wzmocnienia światła dał w 1917 roku Albert Einstein. Urzeczywistnieniem teorii promieniowania laserowego stał się ponad 40 lat później pierwszy - zbudowany w 1960 roku przez Amerykanina Teodora Maimana - laser rubinowy.

65 Rozwój lasera rubinowego. Ze względu na gwałtownie rosnący krąg zastosowań laserów, nastąpił bardzo szybki rozwój techniki laserowej na świecie. Jeszcze do niedawna dla większości ludzi, laser kojarzył się z techniką militarną i filmami sciencefiction. Obecnie lasery wdarły się prawie we wszystkie dziedziny naszego życia. Lasery cieszą się dużym powodzeniem począwszy od zastosowań wojskowych, poprzez przemysł, górnictwo, telekomunikację, medycynę, po tak rozpowszechnione urządzenia jak odtwarzacze CD, DVD, czytniki kodów paskowych czy wskaźniki laserowe.

66 Budowa lasera rubinowego. Laser rubinowy ma prostą konstrukcję, typową dla laserów w których ośrodkiem czynnym jest ciało stałe. Substancją czynną jest kryształ rubinu ukształtowany w walec. Powierzchnie czołowe walca są dokładnie oszlifowane i przepuszczają światło do luster lub też są pokryte warstwą odbijającą i same stanowią lustra. Laser ten jest pompowany optycznie lampą ksenonową przez boczne powierzchnie.

67 Schemat budowy lasera rubinowego. (1)Promień światła (2) Flesz (3) Pręt rubinowy (4) Zwierciadło (5) Rezonator optyczny (6) Zwierciadło półprzepuszczalne

68 Zasada Działania Fotony emitowane w wyniku emisji spontanicznej, które nie poruszają się wzdłuż osi, uciekają przez ścianki boczne zanim są w stanie wywołać emisję wymuszoną. Ale te fotony, które poruszają się dokładnie w kierunku osi, mogą być parokrotnie odbijane od krańcowych zwierciadeł i są w stanie wielokrotnie wywołać emisję wymuszoną. W ten sposób liczba fotonów gwałtownie rośnie, a te które uciekają przez częściowo odbijającą powierzchnie czołową tworzą jednokierunkową wiązkę o dużym natężeniu i ściśle określonej długości fali.

69 Wpływ Laserów na organizm ludzki Źródło:3dcad.pl

70 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Promieniowanie laserowe jest specyficznym rodzajem promieniowania optycznego o takich właściwościach jak: monochromatyczność, kierunkowość rozchodzenia się wiązki, duże gęstości mocy promieniowania, spójność czasowa i przestrzenna promieniowania. Źródło:

71 Promieniowanie laserowe jest szkodliwe dla człowieka z powodu wchłaniania tego promieniowania przez tkankę ludzką. Oddziaływania termiczne, termoakustyczne, fotochemiczne mogą wywoływać zmiany patologiczne. Przekazywana energia może być bardzo duża, gdyż promieniowanie laserowe charakteryzuje się wysoką zbieżnością wiązki i energią początkową tzw. kolimacja. Źródło:

72 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Najbardziej narażone na uszkodzenia są oczy i skóra człowieka, które zależy od długości fali promieniowania. Może tu wystąpić: zapalne uszkodzenie rogówki, katarakta fotochemiczna, fotochemiczne i termiczne uszkodzenie siatkówki, przymglenie i oparzenie rogówki, rumień skóry (oparzenie słoneczne), przyśpieszone starzenie się skóry, zwiększona pigmentacja skóry. Źródło:

73 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Maksymalny poziom promieniowania laserowego określany jest jako maksymalna dopuszczalna ekspozycja (MDE) i zależy ona od: długości fali promieniowania, czasu trwania impulsu lub ekspozycji, rodzaju tkanki narażonej na ekspozycję. Źródło:

74 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Jak łatwo zauważyć przy pracy z laserem najbardziej zagrożone są oczy. Występuje tutaj bardzo wiele zagrożeń dla narządu wzroku. Dlatego też podstawowe działania profilaktyczne powinny dotyczyć wyboru odpowiednich środków ochrony osobistej dla ochrony oczu przed promieniowaniem laserowym. Źródło:

75 Prace doświadczalne

76 Wyznaczanie odległości między rowkami na płycie CD Spis przyrządów i materiałów: Nagrana płyta CD w oryginalnym pudełku, które posłuży jako statyw ; tekturowe, sztywne pudełko o wymiarach około 25x35 cm, na które naklejamy arkusz białego papieru, stanowiący ekran; wskaźnik laserowy (+ spinacz do bielizny do blokowania wyłącznika lasera); uchwyt na laser, pozwalający na umieszczenie go poziomo na wysokość środka płyty CD (np. odpowiednio pudełeczko tekturowe z dwoma otworami); kawałek plasteliny; przymiar metrowy; szpilka; ołówek Źródło: podręcznik Fizyka dla szkół ponadgimnazjalnych, M. Fiałkowska, K. Fiałkowski, B. Sagnowska, wyd. Zamkor, Kraków 2002

77 2.Kolejne fazy doświadczenia W połowie długości pudełka robimy szpilką otworek dokładnie na wysokości środka poziomej średnicy płyty Wyznaczanie odległości między CD umieszczonej w statywie ; średnicę otworu rowkami na płyciedocd powiększamy zaostrzonym ołówkiem ok.2 min, dbający, by jego brzegi nie były postrzępione Zestawiamy na jednej linii układ optyczny złożony z lasera, otworu i płyty CD (ekran ustawiony w stronę płyty) tak, aby promień lasera padał prostopadle do powierzchni płyty, na jej poziomą średnicę w miejscu, gdzie znajdują się rowki. Odległość płyta-ekran należy dobrać tak, aby na ekranie pojawiło się pięć plamek świetlnych. Prawidłowy obraz poznajemy po tym, że zerowy prążek interferencyjny (środkowa plamka) pokrywa się z otworem, a prążki boczne tworzą poziomą linię na ekranie. Aby uzyskać prawidłowe ustawienie, korygujemy ustawienie płyty CD i lasera za pomocą odpowiednich podkładek z plasteliny.

78 Wyznaczanie odległości między rowkami na płycie CD 2.Kolejne fazy doświadczenia c.d. Mierzymy odległość d1, d2 obrazów dyfrakcyjnych pierwszego i drugiego rzędu od prążka zerowego (po obu stronach), określamy niepewność tych pomiarów Δd=. Zapisujemy wyniki w tabeli: Nr pomiaru 1 d1 (m) d2 (m) l(m) 2 3 Wart.średni a d1,śr= d2,śr= lśr=

79 Wyznaczanie odległości między rowkami na płycie CD Na wskaźniku laserowym odczytujemy długość fali λ= (zwykle podany jest przedział długości fali- wtedy należy przyjąć jako λ wartość średnią, zaś jako niepewność Δλ połowę przedziału długości fali λ). Korzystając ze wzoru na kąt ugięcia Ѳk obrazu k- tego rzędu dawanego przez siatkę dyfrakcyjną: kλ = a sin Ѳk (gdzie a to odległość między rowkami płyty CD ) oraz związków trygonometrycznych pomiędzy zmierzonymi wielkościami, obliczamy odległość a pomiędzy rowkami płyty CD, np. dla k=1; Obliczamy niepewność wyniku metodą NKP :

80 WYNIKI Ryc. Zrzut ekranu z wynikami

81 ANALIZA WYNIKÓW Wyznaczona przez nas odległość między rowkami wyniosła 1582 nm, a błąd pomiarowy wyniósł 102 nm. Możemy przyjąć zatem, że wynik wynosi około 1,6 μm. Wyniki są zgodne z danymi podawanymi przez producentów płyt CD 1,6 μm podaje encyklopedia Wikipedia ( %C5%82yta_kompaktowa).

82 DYFRAKCJA ŚWIATŁA LASEROWEGO Materiały: 2 białe kartki papieru, żyletka, laser Czynności: W jednej z kartek papieru za pomocą nożyka robimy cienką szczelinę. Zaginamy jeden z boków kartki tak aby utrzymywała się w pozycji pionowej. Druga kartka będzie służyła nam za ekran. Również zaginamy ją tak, aby była w pozycji pionowej. Ustawiamy najpierw kartkę ze szczeliną a następnie w odległości ok. 30cm nasz ekran. Za pomocą lasera świecimy na szczelinę i obserwujemy obraz na ekranie. Wynik: Na kartce obserwujemy prążki interferencyjne. Źródło:

83 DYFRAKCJA ŚWIATŁA LASEROWEGO Wynik: Na kartce obserwujemy prążki interferencyjne.

84 DYFRAKCJA ŚWIATŁA LASEROWEGO na pojedynczej szczelinie Na drodze monochromatycznej wiązki światła spójnego (np. z lasera) ustawiona jest przesłona z wąską szczeliną. Zgodnie z zasadą Huygensa, każdy punkt szczeliny staje się źródłem fal kulistych. Za szczeliną rozchodzą się więc fale, których nakładanie się interferencja powoduje, że na ekranie pojawiają się jasne i ciemne prążki, a nie jeden jasny prążek geometryczny obraz szczeliny. Światło uległo ugięciu dyfrakcji. Ryc. Zrzut ekranu prezentujący symulację komputerową doświadczenia Żródło:

85 Symulacja komputerowa lasera Ryc. Zrzuty ekranu prezentujące symulację komputerową doświadczenia Program ilustruje zasadę działania lasera impulsowego. Fotony promieniowania pompującego (przedstawione jako żółte wężyki - paczki falowe) przechodzą przez ośrodek, w którym zachodzi akcja laserowa. Żródło:

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii. Barbara Kierlik Gr. 39Z

Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii. Barbara Kierlik Gr. 39Z Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii Barbara Kierlik Gr. 39Z Light Amplification by Stimulated Emission of Radiation Wzmocnienie światła poprzez wymuszoną emisję Laser to

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018 Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

Wprowadzenie do optyki (zjawisko załamania światła, dyfrakcji, interferencji, polaryzacji, laser) (ćw. 9, 10)

Wprowadzenie do optyki (zjawisko załamania światła, dyfrakcji, interferencji, polaryzacji, laser) (ćw. 9, 10) Wprowadzenie do optyki (zjawisko załamania światła, dyfrakcji, interferencji, polaryzacji, laser) (ćw. 9, 10) 1. Dyfrakcja Dyfrakcja, czyli ugięcie, to zjawisko polegające na zaburzeniu prostoliniowego

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

LASER RUBINOWY mgr.inż Antoni Boglewski

LASER RUBINOWY mgr.inż Antoni Boglewski LASER RUBINOWY mgr.inż Antoni Boglewski Tytuł mojego referatu nawiązuje do realizacji przez Nikolę Teslę pomysłu lasera za jaki uważa się laser rubinowy. Mając na uwadze, że większość pomysłów, jak i realizacji

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik metodyczny dla nauczycieli Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera. MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Trzy rodzaje przejść elektronowych między poziomami energetycznymi

Trzy rodzaje przejść elektronowych między poziomami energetycznymi Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów

Bardziej szczegółowo

Zagrożenia powodowane przez promieniowanie laserowe

Zagrożenia powodowane przez promieniowanie laserowe Zagrożenia powodowane przez promieniowanie laserowe Zagrożenia powodowane przez promieniowanie laserowe Laser, Light Amplification by Stimulated Emission of Radiation, wzmacniacz kwantowy dla światła,

Bardziej szczegółowo

Lekcja 81. Temat: Widma fal.

Lekcja 81. Temat: Widma fal. Temat: Widma fal. Lekcja 81 WIDMO FAL ELEKTROMAGNETCZNYCH Fale elektromagnetyczne można podzielić ze względu na częstotliwość lub długość, taki podział nazywa się widmem fal elektromagnetycznych. Obejmuje

Bardziej szczegółowo

Źródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18

Źródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Źródła światła: Lampy (termiczne) na ogół wymagają filtrów Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy: a) szerokopasmowe, rozkład Plancka 2hc I( λ) = 5 λ 2 e 1 hc λk T B

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

r. akad. 2012/2013 Atom wodoru wykład 5-6 Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1

r. akad. 2012/2013 Atom wodoru wykład 5-6 Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1 r. akad. 01/013 wykład 5-6 Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1 Model atomu Thompsona Model atomu typu ciastka z rodzynkami w 1903 J.J. Thompson zaproponował model

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Źródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II

Źródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II Źródła promieniowania optycznego problemy bezpieczeństwa pracy Lab. Fiz. II Reakcje w tkankach wywołane przez promioniowanie optyczne (podczerwień, widzialne, ultrafiolet): Reakcje termiczne ze wzrostem

Bardziej szczegółowo

Niższy wiersz tabeli służy do wpisywania odpowiedzi poprawionych; odpowiedź błędną należy skreślić. a b c d a b c d a b c d a b c d

Niższy wiersz tabeli służy do wpisywania odpowiedzi poprawionych; odpowiedź błędną należy skreślić. a b c d a b c d a b c d a b c d Jak rozwiązać test? Każde pytanie ma podane cztery możliwe odpowiedzi oznaczone jako a, b, c, d. Należy wskazać czy dana odpowiedź, w świetle zadanego pytania, jest prawdziwa czy fałszywa, lub zrezygnować

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 14 15 stycznia 2018 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P. Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

Podstawy fizyki wykład 3

Podstawy fizyki wykład 3 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Technologia Laserów: nowe trendy w biologii i medycynie. Gabriela Mianowska Karolina Pasieka FM rok IV, DIE

Technologia Laserów: nowe trendy w biologii i medycynie. Gabriela Mianowska Karolina Pasieka FM rok IV, DIE Technologia Laserów: nowe trendy w biologii i medycynie Gabriela Mianowska Karolina Pasieka FM rok IV, DIE 08.03.2016 LASER (ang. Light Amplification by Stimulated Emission of Radiation) Krótka historia:

Bardziej szczegółowo

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1 Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Wyznaczanie wartości współczynnika załamania

Wyznaczanie wartości współczynnika załamania Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Absorpcja promieniowania w ośrodku Promieniowanie elektromagnetyczne przy przejściu przez ośrodek

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Nagrzewanie laserowe. Dr inż. Piotr Urbanek

Nagrzewanie laserowe. Dr inż. Piotr Urbanek Nagrzewanie laserowe Dr inż. Piotr Urbanek Miara stopnia monochromatyczności Aby uzyskać uporządkowane oddziaływanie fotonów należy wytworzyć nietypowy stan materii charakteryzujący się tym, że np. na

Bardziej szczegółowo

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu.

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu. SRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUA A 1. Uzupełnij tekst. Wpisz w lukę odpowiedni wyraz. Energia, jaką w wyniku zajścia zjawiska fotoelektrycznego uzyskuje elektron wybity z powierzchni metalu,

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Informacje wstępne. Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu.

Informacje wstępne. Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu. Informacje wstępne Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu. Szanowny uczestniku, poniżej znajduje się zestaw pytań zamkniętych i otwartych. Pytania zamknięte są pytaniami

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity

Bardziej szczegółowo

Fale elektromagnetyczne w medycynie i technice

Fale elektromagnetyczne w medycynie i technice V Edycja Od Einsteina Do... Temat XI Podaj własne opracowanie dowolnego tematu technicznego. Fale elektromagnetyczne w medycynie i technice Prace wykonały : -Marcelina Grąbkowska -Marcelina Misiak -Edyta

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014. Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego

Bardziej szczegółowo

Technologie laserowe w przemyśle:

Technologie laserowe w przemyśle: Technologie laserowe w przemyśle: od laserów rubinowych do laserów włóknowych Bernard Rzany 1 Treść wykładu Pierwsze lasery i ich zastosowania Podstawy fizyki laserowej Kamienie milowe w rozwoju technologii

Bardziej szczegółowo

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo