Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego"

Transkrypt

1 Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

2 Dane INFORMACYJNE Nazwa szkoły: I Liceum Ogólnokształcące im. Powstańców Wlkp. w Koźminie Wlkp. ID grupy: 97/32_G2 Opiekun: Jarosław Kucharski Kompetencja: Matematyczno - fizyczna Temat projektowy: Laser, atomowe światło. Pół wieku od odkrycia. Semestr/rok szkolny: V/2011/2012

3 Zakres i podział zadań Na początku pracy nad projektem każdemu uczestnikowi grupy przydzielono zagadnienia do opracowania w formie prezentacji, które następnie zostały zaprezentowane przed całą grupą. Podsumowaniem tych opracowań jest prezentacja końcowa. Grupa matematyczna zajęła się przygotowaniem zadań i problemów związanych z wykonaniem mniej lub bardziej skomplikowanych obliczeń matematycznych (wyznaczanie odległości między rowkami na płycie CD, zadania związane z fizyką kwantową). Grupa fizyczna opracowała wiadomości z zakresu kwantowej natury światła, budowy atomu wodoru, widm emisyjnych i absorpcyjnych promieniwania oraz zasady działania i budowy lasera, aby wyczerpująco omówić temat projektu: Laser, atomowe światło. Pół wieku od odkrycia. Przygotowała i przeprowadziła proste eksperymenty fizyczne. Głównymi odpowiedzialnymi za całokształt pracy byli Mateusz i Przemek.

4 Laser, atomowe światło. Pół wieku od odkrycia. Źródło: mag.media.pl

5 KWANTOWA NATURA ŚWIATŁA Mechanika kwantowa (teoria kwantów) teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

6 Wszystko co naprawdę wiemy o świecie, wiemy z doświadczenia. Tymczasem jednak doświadczenia mówią nam coś dość niesamowitego. Z jednej strony światło ulega dyfrakcji i interferencji czyli jest falą (ma zatem naturę ciągłą). Z drugiej strony, aby wyjaśnić promieniowanie ciała doskonale czarnego i efekt fotoelektryczny trzeba przyjąć, że światło jest strumieniem cząstek (fotonów) czyli ma naturę nieciągłą.

7 KWANTOWA NATURA ŚWIATŁA

8 KWANTOWA NATURA ŚWIATŁA

9 KWANTOWA NATURA ŚWIATŁA

10 KWANTOWA NATURA ŚWIATŁA

11 KWANTOWA NATURA ŚWIATŁA

12 KWANTOWA NATURA ŚWIATŁA

13 KWANTOWA NATURA ŚWIATŁA

14 KWANTOWA NATURA ŚWIATŁA

15 KWANTOWA NATURA ŚWIATŁA

16 KWANTOWA NATURA ŚWIATŁA

17 KWANTOWA NATURA ŚWIATŁA

18

19 FALOWA NATURA CZĄSTEK

20 FALOWA NATURA CZĄSTEK

21 FALOWA NATURA CZĄSTEK

22 FALOWA NATURA CZĄSTEK

23 FALOWA NATURA CZĄSTEK

24 Budowa atomu Atomy składają się z jądra i otaczających to jądro elektronów. W jądrze znajdują się z kolei nukleony: protony i neutrony. Neutrony są cząsteczkami obojętnymi elektrycznie, protony noszą ładunek elektryczny dodatni, zaś elektrony ujemny. oportal/prawo_dokumenty_strategiczne/ochrona_ srodowiska_w_polsce_zagadnienia/promieniowa nie/promieniowaniejonizujace/

25 Analiza spektralna Analiza widmowa, inaczej analiza spektralna - rodzaj teleanalizy metoda jakościowego i ilościowego określania substancji na podstawie widma, w tym także metody wytwarzania widm. Z pomiarów fal linii widmowych dla danej substancji można wyznaczyć jej skład identyfikując pierwiastki w niej zawarte, energie połączeń, a także układ cząsteczek i atomów w cząsteczkach. Do analizy widmowej wystarczą śladowe ilości substancji.

26 Etapy analizy spektralnej Analizę spektralną wykorzystuje się w: poprzez porównanie widma substancji z widmami wzorcowymi określa się, jakie substancje (pierwiastki) wchodzą w jej skład, poprzez porównanie natężenia światła w uniach różnych pierwiastków wchodzących w skład substancji określa się jej skład procentowy, poprzez analizę poszerzenia określa się ciśnienie gazu i oddziaływania między cząsteczkami, rozszczepienie linii umożliwia badanie pola magnetycznego, a przesunięcie oddalania się lub energii grawitacyjnej. Astronomii - do kwalifikacji gwiazd, oraz badania ich składu chemicznego i warunków panujących w gwieździe Chemii - badania składu substancji chemicznych. a

27 Analiza spektralna Zjawisko pochłaniania światła w ośrodku materialnym. W miarę rozchodzenia się fali świetlnej w ośrodku, jej natężenie stopniowo maleje.

28 Zjawisko absorpcji jest związane z przekształcaniem energii pola elektromagnetycznego fali świetlnej w inne formy energii. Zmiana natężenia światła di po przejściu przez warstwę ośrodka o nieskończenie małej grubości dx wyraża się równaniem : di = -αi0dx

29 Laser- Co to jest i jak działa? Źródło: technologie.gazeta.pl

30 Laser- Co to jest i jak działa? Bibliografia do tej części prezentacji.

31 Laser Laser to generator promieniowania, wykorzystujący zjawisko emisji wymuszonej. Nazwa jest akronimem od Light Amplification by Stimulated Emission of Radiation wzmocnienie światła poprzez wymuszoną emisję promieniowania. Promieniowanie lasera ma charakterystyczne właściwości, trudne lub wręcz niemożliwe do osiągnięcia w innych typach źródeł promieniowania. Jest spójne w czasie i przestrzeni, zazwyczaj spolaryzowane i ma postać wiązki o bardzo małej rozbieżności. W laserze łatwo jest otrzymać promieniowanie o bardzo małej szerokości linii emisyjnej, co jest równoważne bardzo dużej mocy w wybranym, wąskim obszarze widma. W laserach impulsowych można uzyskać bardzo dużą moc w impulsie i bardzo krótki czas trwania impulsu (zob. laser femtosekundowy).

32

33 Laser- podstawowe informacje

34 ZASADA DZIAŁANIA LASERA Zasadniczymi częściami lasera są: ośrodek czynny, rezonator optyczny, układ pompujący. Układ pompujący dostarcza energię do ośrodka czynnego, w ośrodku czynnym w odpowiednich warunkach zachodzi akcja laserowa, czyli kwantowe wzmacnianie (powielanie) fotonów, a układ optyczny umożliwia wybranie odpowiednich fotonów. Ośrodek czynny Układ pompujący Rezonator optyczny Warunek progowy akcji laserowej Właściwości światła laserowego

35 Ośrodek Czynny Oddziaływanie promieniowania z materią można wyjaśnić za pomocą trzech zjawisk: pochłaniania fotonów (absorpcji), emisji spontanicznej oraz emisji wymuszonej fotonu. Foton wyemitowany w wyniku emisji wymuszonej ma taką samą częstotliwość i polaryzację jak foton wywołujący emisję. Przykładowy foton wzbudzający musi mieć energię równą energii wzbudzenia atomu ośrodka. Atomy w stanie podstawowym pochłaniają takie fotony. Gdy w ośrodku jest więcej atomów w stanie wzbudzonym niż w stanie podstawowym zachodzi inwersja obsadzeń poziomów energetycznych. Stan wzbudzony jest stanem metastabilnym co zapewnia magazynowanie energii do czasu wyemitowania jako wiązki laserowej i jest warunkiem funkcjonowania urządzenia.

36 Układ Pompujący Zadaniem układu jest przeniesienie jak największej liczby elektronów w substancji czynnej do stanu wzbudzonego. Układ musi być wydajny by zapewnić inwersję obsadzeń. Pompowanie lasera odbywa się poprzez błysk lampy błyskowej (flesza), błysk innego lasera, przepływ prądu (wyładowanie) w gazie, reakcję chemiczną, zderzenia atomów, wstrzelenie wiązki elektronów do substancji.

37 Rezonator Optyczny Wzbudzony ośrodek czynny stanowi wprawdzie potencjalne źródło światła laserowego, jednak do powstania uporządkowanej akcji laserowej potrzebny jest jeszcze odpowiedni układ optyczny, zwany rezonatorem. Układ ten pełni rolę dodatniego sprzężenia zwrotnego dla światła o wybranym kierunku i określonej długości fali. Spośród wszystkich możliwych kierunków świecenia i wszystkich dostępnych dla ośrodka długości fal, jedynie światło o parametrach ustalonych przez rezonator będzie wzmacniane na tyle mocno, by doprowadzić do akcji laserowej.

38 Warunek progowy akcji laserowej Aby mogła zajść akcja laserowa, wzmocnienie promieniowania w obszarze czynnym musi co najmniej równoważyć straty promieniowania wewnątrz rezonatora (rozpraszanie, straty dyfrakcyjne) oraz emisję części promieniowania na zewnątrz rezonatora (np. przez częściowo przepuszczalne lustro wyjściowe).

39 Schemat budowy i działania lasera. Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

40 Zasada działania lasera. W dużym uproszczeniu, zobrazowanie budowy i działania lasera przedstawia rysunek przedstawiony na poprzednim slajdzie. Do ośrodka o właściwościach wzmacniających światło, dostarczana jest energia świetlna lub elektryczna ( proces ten nazywamy pompowaniem lasera ), co w efekcie powoduje emisję wymuszoną. Ośrodek wzmacniający umieszczony jest wewnątrz rezonatora składającego się z dwóch zwierciadeł, z których jedno jest całkowicie odbijające, drugie natomiast jest częściowo przepuszczalne. W wyniku emisji wymuszonej, wewnątrz rezonatora (zapewniającego sprzężenie zwrotne ), układ staje się generatorem światła. Poprzez zwierciadło półprzepuszczalne (emisyjne), na zewnątrz układu wydostaje się część światła, stanowiąca użyteczną wiązkę laserową. Wiązka ta może zostać poddana dalszej obróbce na drodze optycznej, w celu przygotowania jej do określonych zadań. W opisany wyżej sposób działa większość laserów stosowanych w aplikacjach medycznych, należy jednak dodać, że istnieją też inne, bardziej skomplikowane rozwiązania. Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

41 Ogólna charakterystyka światła laserowego. Światło emitowane przez laser jest falą elektromagnetyczną o ściśle określonych właściwościach, które odróżniają je od naturalnych źródeł takich jak żarówka, płomień czy słońce. 1. Jest monochromatyczne, tzn. że posiada tylko jedną długość fali (kolor), naturalne źródła światła promieniują w szerokim spektrum od podczerwieni do ultrafioletu. 2. Jest koherentne, tzn. że fale świetlne emitowane przez laser posiadają tą samą fazę, natomiast naturalne źródła światła emitują fale o różnych fazach. 3. Jest skolimowane, tzn. że wiązka światła laserowego ma niewielką rozbieżność i łatwo można utrzymać niewielką średnicę wiązki na dużych dystansach. W naturalnych źródłach światła nie jest możliwe osiągnięcie takiego stopnia kolimacji nawet przez zastosowanie skomplikowanych układów optycznych. Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

42 Naukowcy związani z Laserem Teoretyczne podstawy mechanizmów wzmocnienia światła dał w 1917 roku Albert Einstein. Urzeczywistnieniem teorii promieniowania laserowego stał się ponad 40 lat później pierwszy - zbudowany w 1960 roku przez Amerykanina Teodora Maimana - laser rubinowy. TEODOR MAIMAN ALBERT EINSTEIN Źródła: oraz gim36.pl/prezentacje/jak_to_dziala/laser.pps

43 Wykorzystanie Laserów Źródło:3dcad.pl

44 Efekty wizualne Lasery są wykorzystywane do tworzenia efektów wizualnych np. w spektaklach teatralnych, reklamach, koncertach i dyskotekach. Tanie lasery diodowe są wykorzystywane jako wskaźniki podczas prezentacji dydaktycznych, konferencyjnych, reklamowych itp. Źródło: oraz

45 Geodezja i budownictwo Prostoliniowy bieg wiązki lasera wykorzystywany jest w pomiarach geodezyjnych (dalmierze), a także w budownictwie (poziomnice laserowe, generatory linii). Poziomica Laserowa Źródło:

46 Poligrafia Lasery znalazły zastosowanie w nowoczesnej poligrafii: w naświetlarkach filmów poligraficznych, naświetlarkach offsetowych form drukowych, w naświetlarkach zintegrowanych z maszyną drukarską, w cyfrowych kserokopiarkach. Po prawej stronie schemat budowy drukarki laserowej. Źródło: oraz

47 Technologia Wojskowa Dalmierze laserowe, stosowane do oceny odległości od celu, wchodzą w skład systemów kierowania ogniem lub systemów rozpoznawczych czołgów i niektórych innych pojazdów bojowych, samolotów i śmigłowców, mogą być także przenośne. Na fotografiach wojskowy helikopter, który używa dalmierza laserowego oraz wiązka laseru używanego przez siły zbrojne USA. Źródło:

48 Technologia Wojskowa W systemach naprowadzających cel jest oświetlany wiązką laserową, promieniowanie odbite jest emitowane praktycznie we wszystkich kierunkach (z uwagi na rozpraszanie wiązki na powierzchni). Pocisk rakietowy, artyleryjski lub bomba kierowana, wyposażony w czujnik laserowy, określa źródło odbitej wiązki, i za pomocą układów elektronicznych naprowadza się na podświetlony cel. Podobne zastosowanie ma laserowy wskaźnik celu, lecz w tym przypadku laser wskazuje cel, a operator broni (strzelec) samodzielnie naprowadza promień lasera na cel. Źródło:

49 Technologia Wojskowa Systemy laserowe są zdolne do uwalniania skoncentrowanej energii w postaci wiązki świetlnej w bardzo krótkim przedziale czasu. Powoduje to, iż cała energia jest wyzwalana w bardzo krótkim czasie, co przy prędkości światła powoduje, iż praktycznie jest niemożliwe uniknięcie trafienia z takiej broni. Laser jako broń energetyczna jest najmniej rozpowszechniony - dopiero wprowadzany jedynie w USA na platformach powietrznych (Airborne Laser), aczkolwiek jest jednym z ulubionych tematów twórczości sciencefiction. Lasery mniejszej mocy stosowane są też do niszczenia układów optycznych pojazdów. Źródło: Na fotografii Airborne Laser

50 Technologia Wojskowa Mierniki głównie w lotnictwie wojskowym takie jak: wysokości (altimetry); -składowych szybkości gazu (aneometry), -przyspieszenia, -szybkości lotu. Na fotografii radar US. Army wykorzystujący Technologię laserową Źródło: oraz

51 Medycyna Lasery są wykorzystywane w medycynie do takich celów jak: -diagnostyka (lasery diagnostyczne), -terapia schorzeń (lasery stymulacyjne i chirurgiczne), -oświetlanie pola operacji. Na fotografii laser diagnostyczny w stomatologii Źródło: oraz

52 Medycyna Lasera używa się w medycynie przede wszystkim dla "twardej" obróbki tkanek: -cięcia, -koagulacji, -odparowania (fotoablacji oraz ablacji stymulowanej plazmą), -obróbki mechanicznej (rozrywania, fragmentacji czy kawitacji). Źródło: oraz

53 Medycyna W dermatologii laserów używa się do usuwania niektórych nowotworów i naczyniaków powstałych np. po odmrożeniach. W leczeniu nowotworów wykorzystuje się lasery o dużej gęstości mocy i małych rozmiarach wiązki laserowej. Wiązką można zniszczyć chore komórki nie naruszając zdrowych. Skalpel laserowy pomocny jest przy leczeniu oparzeń. Przy jego pomocy można zdejmować naskórek lub warstwę spalonej skóry i odsłonić zdrową aby mogła się zagoić. Laser pomocny jest też przy usuwaniu tatuaży i włosów, rozjaśnianiu skóry, przywracaniu jej gładkości i sprężystości. Lasery stosowane w medycynie estetycznej Źródło:

54 Holografia Światło laserowe pozwala zapisać, a następnie odtworzyć trójwymiarowy obraz; w pierwszym procesie wykorzystuje się zjawisko interferencji światła laserowego; w drugim dyfrakcji. Hologram jest rodzajem siatki dyfrakcyjnej; oprócz holografii optycznej istnieje także holografia akustyczna Źródło: oraz Na fotografii holograf laserowy we współczesnym wyobrażeniu.

55 Łączność Odpowiednio modulowane światło laserowe może przenosić informacje (na analogicznej zasadzie jak fale radiowe), ale większa częstotliwość fal świetlnych pozwala znacznie zwiększyć szybkość jej przekazywania. Ze względu na prostoliniowy bieg fal świetlnych i znaczną nieprzezroczystość atmosfery do przesyłania impulsów stosuje się różnego rodzaju światłowody Źródło: oraz Na fotografii satelita wykorzystujący nowoczesną łączność laserową.

56 Kosmetologia i Dermatologia Kosmetologia: Wyróżniamy pełną gamę zabiegów kosmetycznych. Należą do nich również laserowe zabiegi chirurgiczne tj. z zakresu dermatochirurgii. Do zabiegów dermatochirurgicznych zaliczamy zabiegi punktowe (na małym obszarze) oraz zabiegi na dużych powierzchniach ciała. Zabiegi punktowe to usuwanie pojedynczych zmian skórnych, włókniaków, brodawek. Dermatologia: Dermatologia jest dziedziną medycyny, gdzie najprościej jest stosowane promieniowanie laserowe i stosunkowo łatwo można ocenić wyniki terapii. Najczęściej leczonymi tutaj schorzeniami są: trądzik, opryszczka, egzemy, liszaj czerwony, bliznowce, świąd skóry, półpasiec, owrzodzenia troficzne podudzi, świerzbiączka, łysienie plackowate, brodawki i łuszczyca. Źródło:

57 Znakowanie Produktów Lasery znalazły również zastosowanie przy znakowaniu produktów. Używa się ich przy liniach produkcyjnych posiadających bardzo wysokiej wydajności (np prod./h) oraz gdy chcemy uzyskać trwały i estetyczny nadruk. Podstawowym założeniem stosowania lasera do znakowania jest jego trwałość oraz nieusuwalność znaku. Aby 'zniszczyć' np. datę przydatności do produkcji na towarze spożywczym wykonaną laserem, należałoby zniszczyć także opakowanie lub usunąć etykietę. Wyróżnia się dwa sposoby znakowania materiałów: -usuwanie cienkiej warstwy farby z powierzchni przedmiotu; -zmiana barwy - zachodzi ona dzięki stosowaniu różnych domieszek lub poprzez pokrywanie powierzchni przedmiotu specjalnymi rodzajami farb lub tlenków. Źródło: Na fotografii przykład napisu wygrawerowanego na śrubce, za pomocą lasera

58 Laserowe cięcie metali Cięcie laserowe stanowi nowoczesną metodę obróbki o podobnych parametrach wymiarowych jak klasyczna obróbka mechaniczna. Podstawowa różnica tkwi w stosowanym czynniku tnącym, który w przypadku cięcia laserowego stanowi promień lasera oraz gaz techniczny o dużej czystości. W zależności od stosowanego urządzenia (przede wszystkim jego mocy) cięcie przeprowadza się na następujące sposoby: -przez odparowanie; -przez topnienie i wydmuchiwanie; -przez wypalenie; -poprzez generowanie pęknięć termicznych; -poprzez zarysowanie; -przez tzw. zimne cięcie. Źródło: Na fotografii przykład wycinarki laserowej, tnącej metal.

59 Laserowe spawanie metali Spawanie laserowe polega na łączeniu detali przez stopienie obszarów ich styku przy pomocy skoncentrowanej wiązki lasera. Duża gęstość mocy wiązki laserowej gwarantuje, że energia spawania jest na poziomie minimalnym potrzebnym do stopienia złącza. Strefy wpływu ciepła i stopienia są bardzo wąskie. Odkształcenie materiału jest bardzo małe, a po procesie spawania nie trzeba wykonywać dodatkowej obróbki mechanicznej. Podczas spawania spoina musi być zabezpieczona przed utlenianiem i zanieczyszczeniami przy pomocy gazów ochronnych takich jak np.: Ar, N2, CO2, He. Efektywność spawania zależy od absorpcji energii wiązki przez powierzchnię metali, która wynosi: 1 5% dla laserów CO2 i 2 30% dla laserów stałych. Z tego powodu powierzchnie niektórych metali powinny być poczernione lub zmatowione. Źródło: Na fotografii przykład spawarki laserowej, spawającej metale.

60 Laserowe drążenie Za pomocą lasera można drążyć bardzo małe otwory w bardzo twardych materiałach np. w diamencie, a także w bardzo kruchych np. w ceramice. Otwory są wykonywane z dużą prędkością i mają powtarzalny kształt. Wiązka laserowa topi metal, tworzy się jeziorko płynnego metalu, a strumień gazu częściowo spala i usuwa stopiony metal z obszaru oddziaływania wiązki laserowej. Materiał musi być usuwany na tę samą stronę, z której działa gaz. Na fotografii przykład drążarki laserowej. Źródło: oraz

61 Laser Rubinowy Źródło:3dcad.pl

62 Laser Rubinowy Bibliografia do tej części prezentacji. kipedia.org/wiki/laser_rubinowy

63 Laser Rubinowy Laser rubinowy - laser na ciele stałym, którego obszarem czynnym jest rubin (Al2O3:Cr+3). Ten skład chemiczny zapewnia występowanie trójpoziomowego układu stanów energetycznych w rubinie. Emitowana długość fali jest równa 694,3 nm. Laser ten pracuje w trybie impulsowym.

64 Początki Teoretyczne podstawy mechanizmów wzmocnienia światła dał w 1917 roku Albert Einstein. Urzeczywistnieniem teorii promieniowania laserowego stał się ponad 40 lat później pierwszy - zbudowany w 1960 roku przez Amerykanina Teodora Maimana - laser rubinowy.

65 Rozwój lasera rubinowego. Ze względu na gwałtownie rosnący krąg zastosowań laserów, nastąpił bardzo szybki rozwój techniki laserowej na świecie. Jeszcze do niedawna dla większości ludzi, laser kojarzył się z techniką militarną i filmami sciencefiction. Obecnie lasery wdarły się prawie we wszystkie dziedziny naszego życia. Lasery cieszą się dużym powodzeniem począwszy od zastosowań wojskowych, poprzez przemysł, górnictwo, telekomunikację, medycynę, po tak rozpowszechnione urządzenia jak odtwarzacze CD, DVD, czytniki kodów paskowych czy wskaźniki laserowe.

66 Budowa lasera rubinowego. Laser rubinowy ma prostą konstrukcję, typową dla laserów w których ośrodkiem czynnym jest ciało stałe. Substancją czynną jest kryształ rubinu ukształtowany w walec. Powierzchnie czołowe walca są dokładnie oszlifowane i przepuszczają światło do luster lub też są pokryte warstwą odbijającą i same stanowią lustra. Laser ten jest pompowany optycznie lampą ksenonową przez boczne powierzchnie.

67 Schemat budowy lasera rubinowego. (1)Promień światła (2) Flesz (3) Pręt rubinowy (4) Zwierciadło (5) Rezonator optyczny (6) Zwierciadło półprzepuszczalne

68 Zasada Działania Fotony emitowane w wyniku emisji spontanicznej, które nie poruszają się wzdłuż osi, uciekają przez ścianki boczne zanim są w stanie wywołać emisję wymuszoną. Ale te fotony, które poruszają się dokładnie w kierunku osi, mogą być parokrotnie odbijane od krańcowych zwierciadeł i są w stanie wielokrotnie wywołać emisję wymuszoną. W ten sposób liczba fotonów gwałtownie rośnie, a te które uciekają przez częściowo odbijającą powierzchnie czołową tworzą jednokierunkową wiązkę o dużym natężeniu i ściśle określonej długości fali.

69 Wpływ Laserów na organizm ludzki Źródło:3dcad.pl

70 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Promieniowanie laserowe jest specyficznym rodzajem promieniowania optycznego o takich właściwościach jak: monochromatyczność, kierunkowość rozchodzenia się wiązki, duże gęstości mocy promieniowania, spójność czasowa i przestrzenna promieniowania. Źródło:

71 Promieniowanie laserowe jest szkodliwe dla człowieka z powodu wchłaniania tego promieniowania przez tkankę ludzką. Oddziaływania termiczne, termoakustyczne, fotochemiczne mogą wywoływać zmiany patologiczne. Przekazywana energia może być bardzo duża, gdyż promieniowanie laserowe charakteryzuje się wysoką zbieżnością wiązki i energią początkową tzw. kolimacja. Źródło:

72 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Najbardziej narażone na uszkodzenia są oczy i skóra człowieka, które zależy od długości fali promieniowania. Może tu wystąpić: zapalne uszkodzenie rogówki, katarakta fotochemiczna, fotochemiczne i termiczne uszkodzenie siatkówki, przymglenie i oparzenie rogówki, rumień skóry (oparzenie słoneczne), przyśpieszone starzenie się skóry, zwiększona pigmentacja skóry. Źródło:

73 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Maksymalny poziom promieniowania laserowego określany jest jako maksymalna dopuszczalna ekspozycja (MDE) i zależy ona od: długości fali promieniowania, czasu trwania impulsu lub ekspozycji, rodzaju tkanki narażonej na ekspozycję. Źródło:

74 LASERY- WPŁYW PROMIENIOWANIA NA ORGANIZM CZŁOWIEKA Jak łatwo zauważyć przy pracy z laserem najbardziej zagrożone są oczy. Występuje tutaj bardzo wiele zagrożeń dla narządu wzroku. Dlatego też podstawowe działania profilaktyczne powinny dotyczyć wyboru odpowiednich środków ochrony osobistej dla ochrony oczu przed promieniowaniem laserowym. Źródło:

75 Prace doświadczalne

76 Wyznaczanie odległości między rowkami na płycie CD Spis przyrządów i materiałów: Nagrana płyta CD w oryginalnym pudełku, które posłuży jako statyw ; tekturowe, sztywne pudełko o wymiarach około 25x35 cm, na które naklejamy arkusz białego papieru, stanowiący ekran; wskaźnik laserowy (+ spinacz do bielizny do blokowania wyłącznika lasera); uchwyt na laser, pozwalający na umieszczenie go poziomo na wysokość środka płyty CD (np. odpowiednio pudełeczko tekturowe z dwoma otworami); kawałek plasteliny; przymiar metrowy; szpilka; ołówek Źródło: podręcznik Fizyka dla szkół ponadgimnazjalnych, M. Fiałkowska, K. Fiałkowski, B. Sagnowska, wyd. Zamkor, Kraków 2002

77 2.Kolejne fazy doświadczenia W połowie długości pudełka robimy szpilką otworek dokładnie na wysokości środka poziomej średnicy płyty Wyznaczanie odległości między CD umieszczonej w statywie ; średnicę otworu rowkami na płyciedocd powiększamy zaostrzonym ołówkiem ok.2 min, dbający, by jego brzegi nie były postrzępione Zestawiamy na jednej linii układ optyczny złożony z lasera, otworu i płyty CD (ekran ustawiony w stronę płyty) tak, aby promień lasera padał prostopadle do powierzchni płyty, na jej poziomą średnicę w miejscu, gdzie znajdują się rowki. Odległość płyta-ekran należy dobrać tak, aby na ekranie pojawiło się pięć plamek świetlnych. Prawidłowy obraz poznajemy po tym, że zerowy prążek interferencyjny (środkowa plamka) pokrywa się z otworem, a prążki boczne tworzą poziomą linię na ekranie. Aby uzyskać prawidłowe ustawienie, korygujemy ustawienie płyty CD i lasera za pomocą odpowiednich podkładek z plasteliny.

78 Wyznaczanie odległości między rowkami na płycie CD 2.Kolejne fazy doświadczenia c.d. Mierzymy odległość d1, d2 obrazów dyfrakcyjnych pierwszego i drugiego rzędu od prążka zerowego (po obu stronach), określamy niepewność tych pomiarów Δd=. Zapisujemy wyniki w tabeli: Nr pomiaru 1 d1 (m) d2 (m) l(m) 2 3 Wart.średni a d1,śr= d2,śr= lśr=

79 Wyznaczanie odległości między rowkami na płycie CD Na wskaźniku laserowym odczytujemy długość fali λ= (zwykle podany jest przedział długości fali- wtedy należy przyjąć jako λ wartość średnią, zaś jako niepewność Δλ połowę przedziału długości fali λ). Korzystając ze wzoru na kąt ugięcia Ѳk obrazu k- tego rzędu dawanego przez siatkę dyfrakcyjną: kλ = a sin Ѳk (gdzie a to odległość między rowkami płyty CD ) oraz związków trygonometrycznych pomiędzy zmierzonymi wielkościami, obliczamy odległość a pomiędzy rowkami płyty CD, np. dla k=1; Obliczamy niepewność wyniku metodą NKP :

80 WYNIKI Ryc. Zrzut ekranu z wynikami

81 ANALIZA WYNIKÓW Wyznaczona przez nas odległość między rowkami wyniosła 1582 nm, a błąd pomiarowy wyniósł 102 nm. Możemy przyjąć zatem, że wynik wynosi około 1,6 μm. Wyniki są zgodne z danymi podawanymi przez producentów płyt CD 1,6 μm podaje encyklopedia Wikipedia (http://pl.wikipedia.org/wiki/p %C5%82yta_kompaktowa).

82 DYFRAKCJA ŚWIATŁA LASEROWEGO Materiały: 2 białe kartki papieru, żyletka, laser Czynności: W jednej z kartek papieru za pomocą nożyka robimy cienką szczelinę. Zaginamy jeden z boków kartki tak aby utrzymywała się w pozycji pionowej. Druga kartka będzie służyła nam za ekran. Również zaginamy ją tak, aby była w pozycji pionowej. Ustawiamy najpierw kartkę ze szczeliną a następnie w odległości ok. 30cm nasz ekran. Za pomocą lasera świecimy na szczelinę i obserwujemy obraz na ekranie. Wynik: Na kartce obserwujemy prążki interferencyjne. Źródło:

83 DYFRAKCJA ŚWIATŁA LASEROWEGO Wynik: Na kartce obserwujemy prążki interferencyjne.

84 DYFRAKCJA ŚWIATŁA LASEROWEGO na pojedynczej szczelinie Na drodze monochromatycznej wiązki światła spójnego (np. z lasera) ustawiona jest przesłona z wąską szczeliną. Zgodnie z zasadą Huygensa, każdy punkt szczeliny staje się źródłem fal kulistych. Za szczeliną rozchodzą się więc fale, których nakładanie się interferencja powoduje, że na ekranie pojawiają się jasne i ciemne prążki, a nie jeden jasny prążek geometryczny obraz szczeliny. Światło uległo ugięciu dyfrakcji. Ryc. Zrzut ekranu prezentujący symulację komputerową doświadczenia Żródło:

85 Symulacja komputerowa lasera Ryc. Zrzuty ekranu prezentujące symulację komputerową doświadczenia Program ilustruje zasadę działania lasera impulsowego. Fotony promieniowania pompującego (przedstawione jako żółte wężyki - paczki falowe) przechodzą przez ośrodek, w którym zachodzi akcja laserowa. Żródło:

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

LASER RUBINOWY mgr.inż Antoni Boglewski

LASER RUBINOWY mgr.inż Antoni Boglewski LASER RUBINOWY mgr.inż Antoni Boglewski Tytuł mojego referatu nawiązuje do realizacji przez Nikolę Teslę pomysłu lasera za jaki uważa się laser rubinowy. Mając na uwadze, że większość pomysłów, jak i realizacji

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

Zagrożenia powodowane przez promieniowanie laserowe

Zagrożenia powodowane przez promieniowanie laserowe Zagrożenia powodowane przez promieniowanie laserowe Zagrożenia powodowane przez promieniowanie laserowe Laser, Light Amplification by Stimulated Emission of Radiation, wzmacniacz kwantowy dla światła,

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

Źródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II

Źródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II Źródła promieniowania optycznego problemy bezpieczeństwa pracy Lab. Fiz. II Reakcje w tkankach wywołane przez promioniowanie optyczne (podczerwień, widzialne, ultrafiolet): Reakcje termiczne ze wzrostem

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Absorpcja promieniowania w ośrodku Promieniowanie elektromagnetyczne przy przejściu przez ośrodek

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

Nagrzewanie laserowe. Dr inż. Piotr Urbanek

Nagrzewanie laserowe. Dr inż. Piotr Urbanek Nagrzewanie laserowe Dr inż. Piotr Urbanek Miara stopnia monochromatyczności Aby uzyskać uporządkowane oddziaływanie fotonów należy wytworzyć nietypowy stan materii charakteryzujący się tym, że np. na

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Fale elektromagnetyczne w medycynie i technice

Fale elektromagnetyczne w medycynie i technice V Edycja Od Einsteina Do... Temat XI Podaj własne opracowanie dowolnego tematu technicznego. Fale elektromagnetyczne w medycynie i technice Prace wykonały : -Marcelina Grąbkowska -Marcelina Misiak -Edyta

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego

Bardziej szczegółowo

Ogólne cechy ośrodków laserowych

Ogólne cechy ośrodków laserowych Ogólne cechy ośrodków laserowych Gazowe Cieczowe Na ciele stałym Naturalna jednorodność Duże długości rezonatora Małe wzmocnienia na jednostkę długości ośrodka czynnego Pompowanie prądem (wzdłużne i poprzeczne)

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

mgr Roman Rusin nauczyciel fizyki w Zespole Szkół Ponadgimnazjalnych Nr 1 w Kwidzynie

mgr Roman Rusin nauczyciel fizyki w Zespole Szkół Ponadgimnazjalnych Nr 1 w Kwidzynie Indywidualny plan nauczania z przedmiotu Fizyka, opracowany na podstawie programu,,ciekawi świata autorstwa Adama Ogazy, nr w Szkolnym Zestawie Programów Nauczania 12/NPP/ZSP1/2012 dla kl. I TL a na rok

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK

Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK ODKRYWCA FAL RADIOWYCH Fale radiowe zostały doświadczalnie odkryte przez HEINRICHA HERTZA. Zalicza się do nich: fale radiowe krótkie, średnie i długie,

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wykład 15 Rozpraszanie światła Ramana i luminescencja

Wykład 15 Rozpraszanie światła Ramana i luminescencja Wykład 5 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia

Bardziej szczegółowo

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW LASEROWA OBRÓBKA MATERIAŁÓW Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych na różnych materiałach: o trudno obrabialnych takich jak diamenty, metale twarde, o miękkie

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

Jak się przekonać, że światło jest falą domowe laboratorium optyki laserowej

Jak się przekonać, że światło jest falą domowe laboratorium optyki laserowej Logo designed by Armella Leung, www.armella.fr.to Jak się przekonać, że światło jest falą domowe laboratorium optyki laserowej Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 4 Bydgoszcz Eureka!

Bardziej szczegółowo

Plan realizacji materiału z fizyki.

Plan realizacji materiału z fizyki. Plan realizacji materiału z fizyki. Ze względu na małą ilość godzin jaką mamy do dyspozycji w całym cyklu nauczania fizyki pojawił się problem odpowiedniego doboru podręczników oraz podziału programu na

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW LASEROWA OBRÓBKA MATERIAŁÓW Cechy laserowych operacji technologicznych Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych Na różnych materiałach: o Trudno obrabialnych

Bardziej szczegółowo

Lasery Inne oblicze optyki

Lasery Inne oblicze optyki Lasery Inne oblicze optyki dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Zasada działania lasera 2 1.1. Wstęp...................................................

Bardziej szczegółowo

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne

Bardziej szczegółowo

LEKCJA. TEMAT: Napędy optyczne.

LEKCJA. TEMAT: Napędy optyczne. TEMAT: Napędy optyczne. LEKCJA 1. Wymagania dla ucznia: Uczeń po ukończeniu lekcji powinien: umieć omówić budowę i działanie napędu CD/DVD; umieć omówić budowę płyty CD/DVD; umieć omówić specyfikację napędu

Bardziej szczegółowo

Ć W I C Z E N I E N R O-6

Ć W I C Z E N I E N R O-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO

Bardziej szczegółowo

LASERY W BUDOWNICTWIE DROGOWYM. Wykonał: Tomasz Kurc

LASERY W BUDOWNICTWIE DROGOWYM. Wykonał: Tomasz Kurc LASERY W BUDOWNICTWIE DROGOWYM Wykonał: Tomasz Kurc 1 CO TO JEST LASER LASER - (Light Amplification by Stimulated Emission of Radiation) Działanie - generuje silnie skoncentrowaną wiązkę światła: Spójną

Bardziej szczegółowo

LASER BARWNIKOWY. Indywidualna Pracownia dla Zaawansowanych. Michał Dąbrowski

LASER BARWNIKOWY. Indywidualna Pracownia dla Zaawansowanych. Michał Dąbrowski LASER BARWNIKOWY Indywidualna Pracownia dla Zaawansowanych Michał Dąbrowski Streszczenie Zbadano charakterystyki lasera azotowego: zmierzono czas trwania impulsu, zależność amplitudy impulsu w funkcji

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

III.3 Emisja wymuszona. Lasery

III.3 Emisja wymuszona. Lasery III.3 Emisja wymuszona. Lasery 1. Wyprowadzenie wzoru Plancka metodą Einsteina. Emisja wymuszona 2. Koherencja ciągów falowych. Laser jako źródło koherentnego promieniowania e-m 3. Zasada działania lasera.

Bardziej szczegółowo

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7 Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

7. Wyznaczanie poziomu ekspozycji

7. Wyznaczanie poziomu ekspozycji 7. Wyznaczanie poziomu ekspozycji Wyznaczanie poziomu ekspozycji w przypadku promieniowania nielaserowego jest bardziej złożone niż w przypadku promieniowania laserowego. Wynika to z faktu, że pracownik

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w klasie 3

Przedmiotowy system oceniania z fizyki w klasie 3 Przedmiotowy system oceniania z fizyki w klasie 3 Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry

Bardziej szczegółowo

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Spektrometr ICP-AES 2000

Spektrometr ICP-AES 2000 Spektrometr ICP-AES 2000 ICP-2000 to spektrometr optyczny (ICP-OES) ze wzbudzeniem w indukcyjnie sprzężonej plazmie (ICP). Wykorztystuje zjawisko emisji atomowej (ICP-AES). Umożliwia wykrywanie ok. 70

Bardziej szczegółowo

Bezpieczeństwo pracy z laserami

Bezpieczeństwo pracy z laserami Bezpieczeństwo pracy z laserami Oddziaływania: cieplne, fotochemiczne, nieliniowe. Grupy: UV-C (0 280 nm), UV-B (280 315 nm), UV-A (315 00 nm), IR-A (780 00 nm), IR-B (100 3000 nm), IR-C (3000 nm 1 mm).

Bardziej szczegółowo

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi

Bardziej szczegółowo

BEZPIECZE STWO PRACY Z LASERAMI

BEZPIECZE STWO PRACY Z LASERAMI BEZPIECZE STWO PRACY Z LASERAMI Szkodliwe dzia anie promieniowania laserowego dotyczy oczu oraz skóry cz owieka, przy czym najbardziej zagro one s oczy. Ze wzgl du na kierunkowo wi zki zagro enie promieniowaniem

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Tytuł projektu: Światło w życiu. Przedmi ot Treści nauczania z podstawy programowej Treści wykraczające poza

Bardziej szczegółowo

Specjalne funkcje programu SigmaNEST do obsługi przecinarek laserowych

Specjalne funkcje programu SigmaNEST do obsługi przecinarek laserowych Specjalne funkcje programu SigmaNEST do obsługi przecinarek laserowych Wstęp Cięcie laserem jest stosunkowo nową technologią, która pozwala na uzyskanie bardzo dobrej jakości krawędzi blachy, w połączeniu

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 44 WYZNACZANIE DŁUGOŚCI FAL ŚWIETLNYCH ŹRÓDEŁ BARWNYCH ( DIODY LED ) 1 Autor dr inż. Waldemar Larkowski

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon Klasa III Elektryzowanie przez tarcie. Ładunek elementarny i jego wielokrotności opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Każda z tych technologii ma swoją specyfikę

Każda z tych technologii ma swoją specyfikę Temat numeru Technologie cięcia termicznego i hydroabrazywnego Cięcie blach o różnej, często bardzo dużej grubości, jest znaczącym wyzwaniem dla większości firm produkcyjnych. Cięcie mechaniczne, ew. wytłaczanie

Bardziej szczegółowo

Kompresor płuca plazmy. Wszystko co powinieneś wiedzieć o źródle sprzężonego powietrza dla Twojej przecinarki. Słowem wstępu

Kompresor płuca plazmy. Wszystko co powinieneś wiedzieć o źródle sprzężonego powietrza dla Twojej przecinarki. Słowem wstępu Kompresor płuca plazmy. Wszystko co powinieneś wiedzieć o źródle sprzężonego powietrza dla Twojej przecinarki. Słowem wstępu Plazma często jest nazywana czwartym stanem materii. Zwykle myślimy o trzech

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Interferometr Michelsona zasada i zastosowanie

Interferometr Michelsona zasada i zastosowanie Interferometr Michelsona zasada i zastosowanie Opracował: mgr Przemysław Miszta, Zakład Dydaktyki Instytut Fizyki UMK, przy wydatnej pomocy ze strony Zakładu Biofizyki i Fizyki Medycznej IF UMK Interferencja

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

Sonochemia. Dźwięk. Fale dźwiękowe należą do fal mechanicznych, sprężystych. Fale poprzeczne i podłużne. Ciało stałe (sprężystość postaci)

Sonochemia. Dźwięk. Fale dźwiękowe należą do fal mechanicznych, sprężystych. Fale poprzeczne i podłużne. Ciało stałe (sprężystość postaci) Dźwięk 1 Fale dźwiękowe należą do fal mechanicznych, sprężystych Fale poprzeczne i podłużne Ciało stałe (sprężystość postaci) fale poprzeczne i podłużne Dźwięk 2 Właściwości fal podłużnych Prędkość dźwięku

Bardziej szczegółowo