IZOLACJA CHROMOSOMALNEGO DNA Z KOMÓREK BAKTERYJNYCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "IZOLACJA CHROMOSOMALNEGO DNA Z KOMÓREK BAKTERYJNYCH"

Transkrypt

1 Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii Kultury tkankowe i komórkowe roślin i zwierząt IZOLACJA CHROMOSOMALNEGO DNA Z KOMÓREK BAKTERYJNYCH Organizacja DNA u Procaryota Procaryota są organizmami haploidalnymi, choć w pewnych sytuacjach mogą stać się przejściowo diploidalne (krótki okres w cyklu podziałowym komórki). W większości przypadków rozmnażają się przez podział komórki, zsynchronizowany z podwojeniem materiału genetycznego zawartego w genoforze. W wyniku podziału każda komórka potomna otrzymuje jedną kopię chromosomu (szybkie, bezpłciowe rozmnażanie). Częstotliwość podziałów zależy od warunków środowiskowych i wielkości materiału genetycznego. Na przykład Escherichia coli replikuje i dzieli się w ciągu od 20 do 60 minut. Większość informacji genetycznej zawiera się w pojedynczej, nieoddzielonej od reszty protoplastu błoną cytoplazmatyczną, cząsteczce DNA. Genofor nie tworzy klasycznego chromosomu. Jednakże nie jest to struktura zupełnie naga. Nić DNA nawinięta jest na rdzeń zbudowany z RNA i białek histonopodobnych (np. białko HU i H-NS). Chromosom złożony jest z domen (pętli) o długości kpz, których końce przyłączone są do białkowo-błonowego rusztowania. Wielkość chromosomu prokariotycznego mieści się w zakresie od 0,6 0, pz (u Mycoplasma) do 9, pz (u Myxococcus xanthus); u E. coli wynosi 4, pz. Dotychczas przyjmowano, że chromosom bateryjny jest koliście zamkniętą cząsteczką dwuniciowego DNA (jak u E. coli), co zazwyczaj różni go od liniowego chromosomu eukariotycznego. Jednakże wykryto u bakterii również chromosomy w formie liniowej, występujące obok form kolistych (np. u Agrobacterium tumefaciens, Borrelia burgdorferi). Zawartość guaniny i cytozyny jest gatunkowo swoista i waha się od 30 % (niektóre gronkowce oraz bakterie z grupy Cytophaga) do 70 % (Micrococcus i bakterie śluzowe). Genomy prokariotyczne są znacznie mniejsze i mają mniej genów niż u Eucaryota (np. E. coli ma tylko 4397). Natomiast prawie cały DNA genoforu to geny kodujące (rys. 1). Geny prokariotyczne są genami ciągłymi, brak w nich intronów (wyjątek stanowią geny niektórych przedstawicieli Archea). Zapis w nich jest odczytywany kolejno, od miejsca startu do zakończenia. Większość genów zgrupowana jest w operony, mające wspólny region regulatorowy, wspólnie podlegające ekspresji. W tym samym fragmencie DNA może znajdować się informacja dla więcej niż jednego białka. W genomie prokariotycznym niezmiernie rzadko występują sekwencje powtarzające się. Mogą natomiast pojawiać się sekwencje insercyjne IS, będące transpozonami, czyli sekwencjami zdolnymi do przemieszczania się w genomie i przenoszenia z jednego organizmu do drugiego, czasem nawet dwóch odrębnych gatunków.

2 Rys. 1 Porównanie genomów człowieka, drożdży, kukurydzy i E. coli [1] Komórki prokariotyczne mogą posiadać dodatkowe pozachromosomalne elementy genetyczne plazmidy, których wielkość mieści się w granicach od 2 do kilkuset tysięcy par zasad. Prawie wszystkie plazmidy występują w komórkach w postaci superzwiniętej kolistej dwuniciowej cząsteczki DNA (choć mogą przyjmować formę zrelaksowaną kolistą czy też liniową). Są replikonami, mogą się replikować autonomicznie, niezależnie od chromosomu gospodarza. Są zdolne do przekazywania swoich genów innym komórkom. Plazmidy są nośnikami genów warunkujących m.in. inaktywację antybiotyków, metabolizm niektórych naturalnych produktów, wytwarzanie toksyn, specyficznych bakteriocyn oraz zdolność komórki do koniugacji (plazmid koniugacyjny E. coli, zawierający czynnik płciowy F). Ogólne zasady izolacji DNA Znanych jest wiele procedur izolacji DNA, w wyniku których otrzymuje się DNA biologicznie aktywny, chemicznie stabilny oraz wolny od RNA i białek. Jednakże ze względu na wielkość i wrażliwość chromosomalnego DNA praktycznie niemożliwa jest jego izolacja w formie niezmienionej. Część DNA ulega mechanicznym uszkodzeniom. Opracowanie procedury izolacji DNA wymaga szerokiej wiedzy na temat jego chemicznej stabilności i warunków w jakich znajduje się w swoim naturalnym środowisku (komórka). Czynniki eksperymentalne, które muszą być wzięte pod uwagę i ich wpływ na różne aspekty strukturalne natywnego DNA są zestawione w tabeli 1.

3 Tabela. 1 Parametry warunkujące zachowanie natywnej struktury DNA podczas izolacji Lp. Czynniki Wpływ na strukturę DNA 1. ph wiązania wodorowe pomiędzy komplementarnymi niciami są stabilne w środowisku o ph = 4 10, wiązania fosfodiestrowe w szkielecie DNA są trwałe w zakresie ph = 3 12, wiązania N-glikozydowe z zasadami purynowymi (adeniną i guaniną) ulegają hydrolizie przy ph < 3; 2. temperatura istnieją znaczne różnice w stabilności termicznej wiązań wodorowych w podwójnej spirali, ale większość DNA ulega rozpleceniu w temperaturze C, wiązania N-glikozydowe i fosfodiestrowe są trwałe do 100 C; 3. siła jonowa DNA jest bardziej trwały i rozpuszczalny w roztworach soli; w stężeniu soli mniejszym niż 0,1 M osłabiają się wiązania wodorowe pomiędzy komplementarnymi niciami; 4. warunki komórkowe 5. odporność mechaniczna DNA Etapy izolacji DNA z komórek bakteryjnych przed uwolnieniem DNA konieczne jest rozbicie bakteryjnej ściany komórkowej; łatwość rozbicia ściany zależy od rodzaju drobnoustroju, w niektórych przypadkach konieczne jest intensywne ucieranie lub działanie ultradźwiękami, podczas gdy w innych (E. coli) możliwa jest enzymatyczna hydroliza ściany komórkowej, w komórce występuje kilka enzymów, które hydrolizują DNA; najistotniejszymi z nich są deoksyrybonukleazy, które hydrolizują wiązania fosfodiestrowe, natywny DNA występuje w komórkach w kompleksie z białkami; białka te muszą być oddzielone podczas ekstrakcji; łagodne manipulowanie nie zawsze jest możliwe podczas izolacji DNA; ucieranie, wytrząsanie, mieszanie i inne czynności mechaniczne mogą spowodować rozszczepienie DNA, zwykle nie powoduje to zniszczenia drugorzędowej struktury DNA, ale zmniejsza długość cząsteczki (fragmentacja). Etap 1. Rozbicie ściany i błony komórkowej oraz uwolnienie DNA do roztworu, w którym jest on rozpuszczalny i zabezpieczony przed degradacją Procedura opisana w ćwiczeniu wymaga użycia lizozymu, enzymu rozbijającego ścianę komórkową. Lizozym katalizuje hydrolizę wiązań glikozydowych w polisacharydach ściany komórkowej. Powoduje to destrukcję błony zewnętrznej i uwolnienie DNA oraz innych komponentów wewnątrzkomórkowych. Do rozpuszczenia DNA służy roztwór NaCl zawierający EDTA. DNA będąc związkiem jonowym jest bardziej stabilny i rozpuszczalny w roztworze soli niż w wodzie destylowanej. EDTA wiąże jony metali (Cd 2+, Mg 2+, Mn 2+ ), które mogłyby tworzyć sole z anionowymi grupami fosforanowymi DNA oraz hamuje deoksyrybonukleazy, które wymagają dla swojej aktywności obecności jonów Mg 2+ lub Mn 2+. Sporadycznie jako czynnika kompleksującego przy izolacji DNA używa się cytrynianu, jednakże nie jest on dobrym czynnikiem chelatującym w stosunku do jonów Mn 2+. Łagodnie alkaliczne środowisko (ph = 8) zmniejsza oddziaływania elektrostatyczne pomiędzy DNA a zasadowymi histonami i polikationowymi aminami, sperminą i spermidyną. Stosunkowo

4 wysokie ph przyczynia się także do zmniejszenia aktywności nukleaz i denaturacji innych białek. Etap 2. Dysocjacja kompleksów DNA-białko Celem zniesienia oddziaływań jonowych pomiędzy naładowanymi dodatnio histonami i ujemnie naładowanym szkieletem DNA stosuje się detergentów. Sól sodowa siarczanu dodecylu (SDS) wiąże się z białkami i nadaje im silnie anionowy charakter, a także działa jako czynnik denaturujący deoksyrybonukleazy i inne białka. Dysocjacja kompleksów DNAbiałko jest dodatkowo wspomagana przez alkaliczne środowisko, które zmniejsza dodatni ładunek histonów. Dla zapewnienia całkowitej dysocjacji kompleksów DNA-białko i dla usunięcia związanych kationowych poliamin dodaje się sól w wysokich stężeniach (NaCl, NaClO 4 lub inną sól). Sole niwelują oddziaływania jonowe pomiędzy DNA a kationem. Etap 3. Oddzielenie DNA od innych rozpuszczalnych komponentów komórkowych Przed wytrąceniem DNA roztwór musi być odbiałczony. Przeprowadza się to poprzez działanie mieszaniną chloroformu i alkoholu izoamylowego, a następnie odwirowanie. W rezultacie powstają trzy warstwy: górna faza wodna, dolna faza organiczna i wąskie pasmo zdenaturowanego białka na granicy faz. Chloroform powoduje powierzchniową denaturację białek. Alkohol izoamylowy redukuje pienienie i stabilizuje granicę fazową, gdzie koncentruje się białko. Górna, wodna faza, zawierająca kwasy nukleinowe jest następnie oddzielana i DNA jest wytrącany poprzez dodanie etanolu. Dodając rozpuszczalnik organiczny zmniejsza się polarność środowiska, co powoduje zmniejszenie rozpuszczalności DNA, posiadającego strukturę jonową. DNA tworzy włoskowate, nitkowate osady, które można zebrać "nawijając" na bagietkę szklaną. Wyizolowany DNA może być nadal zanieczyszczony białkami i RNA. Białka można usunąć rozpuszczając DNA w roztworze soli i powtarzając traktowanie mieszaniną chloroform : alkohol izoamylowy aż do zaniku pasma białek na granicy faz. RNA zwykle nie strąca się tak jak DNA, ale może występować jako drobne zanieczyszczenie. RNA można zhydrolizować działaniem rybonukleazy po pierwszym lub drugim odbiałczaniu. Alternatywnie, DNA można wytrącać izopropanolem, który pozostawia RNA w roztworze. Jeżeli wymagany jest wysoki stopień oczyszczenia DNA można przeprowadzić kilka kolejnych odbiałczeń i wytrąceń. Szacuje się, że dzięki omawianej procedurze można wyizolować do 50 % komórkowego DNA. Średnio otrzymuje się 1 2 mg z grama wilgotnej masy komórek. Wyizolowany w ten sposób DNA posiada masę cząsteczkową rzędu Charakterystyka spektroskopowa DNA DNA wykazuje znaczną absorpcję w zakresie UV z uwagi na obecność aromatycznych zasad. Stwarza to możliwość badania struktury DNA. Zmiany strukturalne, takie jak rozplecenie nici zmieniają absorpcję. Oprócz tego pomiary absorpcji wykorzystuje się dla określenia czystości DNA. Główne pasmo absorpcji dla oczyszczonego DNA znajduje się przy 260 nm. Białka, stanowiące główne zanieczyszczenia preparatów DNA absorbują przy 280 nm. Stosunek A 260 /A 280 jest często stosowany jako relatywna miara wzajemnej zawartości DNA i białek w preparacie. Typową wartością dla izolowanego DNA jest 1,9. Mniejszy stosunek wskazuje na większe zanieczyszczenie białkami.

5 Wykonanie ćwiczenia UWAGA! Praca z bakteriami oraz odczynnikami chemicznymi może stwarzać zagrożenie dla zdrowia. Wszystkie roztwory należy pipetować z użyciem pipet automatycznych. Materiały i sprzęt 1. Komórki bakteryjne w postaci mokrej; E. coli, B. subtilis lub inne [0,5 1,5 g] 2. Bufor NaCl-EDTA; 0,15 M NaCl, 0,1 M EDTA, ph 8 [25 ml] 3. Roztwór lizozymu w wodzie; 10 mg/ml [l ml] 4. Roztwór SDS (siarczanu dodecylu sodu) w wodzie; 25 % [1,5 ml] 5. Roztwór NaClO 4 (nadchloranu sodu) w wodzie; 5 M [5,5 ml] 6. Mieszanina chloroform : alkohol izoamylowy; 24 : l [22 ml] 7. Roztwór alkoholu etylowego; 96 % [50 ml] 8. Bufor NaCl-cytrynian; 0,15 M NaCl, 0,015 M cytrynian sodu, ph 7 [8 ml] Wszystkie roztwory przygotowuje prowadzący 1. Probówka wirówkowa 50 ml z korkiem [l] 2. Kolba Erlenmeyer'a 125 ml [l] 3. Probówka wirówkowa 50 ml [l] 4. Zlewka 125 ml [l] 5. Kolba Erlenmeyer'a 25 ml [l] 6. Bagietka szklana [l] 7. Probówki szklane 12 x 75 mm [2] 8. Pipety automatyczne; 5 ml, 1 ml, 0,1 ml, 0,02 ml [4] 9. Spektrofotometr UV-Vis 10. Kiuwety kwarcowe [4] Izolacja chromosomalnego DNA z komórek bakterii Wilgotne komórki bakteryjne (około 1 g) zawiesić dokładnie w 14 ml buforu NaCl- EDTA w 50 ml probówce. Dodać 0,7 ml roztworu lizozymu i inkubować mieszaninę przez 45 minut w temperaturze 37 C. Po inkubacji dodać do probówki 1,4 ml roztworu SDS i ogrzewać przez 10 minut w temperaturze 60 C (w celu uniknięcia pienienia mieszaninę należy mieszać bardzo łagodnie). W miarę uwalniania kwasu nukleinowego z komórek roztwór powinien wykazywać wzrastającą lepkość i malejące zmętnienie. Po zakończeniu ogrzewania ochłodzić probówkę zimną wodą do temperatury pokojowej. Dodać 5,4 ml roztworu NaClO 4 (końcowe stężenie soli będzie wynosić około l M). Wymieszać dokładnie, a następnie dodać równą objętość mieszaniny chloroform : alkohol izoamylowy (21,5 ml). Wytrząsać energicznie przez 30 minut w szczelnie zamkniętej kolbie. Przelać zawartość kolby do probówki wirówkowej i odwirować przez 20 minut przy 3000 rpm. W wyniku wirowania powinny powstać trzy warstwy: dolna organiczna,

6 środkowa zawierająca zdenaturowane białko i górna warstwa wodna zawierająca kwasy nukleinowe. Warstwę wodną delikatnie przenieść do zlewki 125 ml. Następnie wytrącić kwasy nukleinowe ostrożnie nawarstwiając dwie objętości etanolu (około 50 ml). Etanol powinno się wlewać po ściankach naczynia używając bagietki szklanej. Zebrać nitki wytrąconego DNA, ostrożnie obracając szklaną bagietkę w palcach; co pewien czas dociskać pałeczkę z DNA do ścianek naczynia w celu usunięcia etanolu. Charakterystyka wyizolowanego DNA Zebrany DNA rozpuścić w 10 ml buforu NaCl-EDTA w kolbie Erlenmeyer'a 25 ml. Rozcieńczyć 1:10 roztwór DNA przy pomocy buforu NaCl-cytrynian (0,5 ml roztworu DNA + 4,5 ml buforu NaCl-cytrynian); w razie potrzeby przygotować rozcieńczenie 1:100. Zmierzyć z użyciem kiuwet kwarcowych absorpcje roztworu DNA przy długości fali 260 i 280 nm, stosując bufor NaCl-cytrynian jako odnośnik. Opracowanie wyników 1) Zapisać wszystkie obserwacje dotyczące procedury oczyszczania. Wyjaśnić w skrócie cel każdego etapu i rolę każdego czynnika. 2) Obliczyć stosunek absorpcji roztworu DNA przy 260 i 280 nm (A 260 /A 280 ). Skomentować różnicę pomiędzy otrzymaną wartością a wielkością 1,9 charakterystyczną dla wysoce oczyszczonego DNA. 3) Obliczyć stężenie DNA (mg/ml) w roztworze sól-cytrynian i na tej podstawie całkowitą ilość otrzymanego DNA i wydajność oczyszczania. Założyć, że A 260 dla natywnego DNA o stężeniu l mg/ml wynosi około * ) Zaproponować modyfikacje metody w przypadku izolacji DNA z komórek eukariotycznych. Literatura uzupełniająca [1] Brown T. A.: Genomy, Warszawa: PWN 2001; [2] Bryszewska M., Leyko W.: Biofizyka kwasów nukleinowych dla biologów, Warszawa: PWN 2000; [3] Stryer L.: Biochemia, Warszawa: PWN 2000.

Izolacja DNA z komórki zwierzęcej

Izolacja DNA z komórki zwierzęcej Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii Kultury tkankowe i komórkowe roślin i zwierząt Izolacja DNA z komórki zwierzęcej Izolacja i oczyszczanie DNA jest kluczowym

Bardziej szczegółowo

ĆWICZENIE L12 KWASY NUKLEINOWE - IZOLACJA DNA, HYDROLIZA ATP ORAZ ANALIZA SKŁADU DNA I RNA

ĆWICZENIE L12 KWASY NUKLEINOWE - IZOLACJA DNA, HYDROLIZA ATP ORAZ ANALIZA SKŁADU DNA I RNA ĆWICZENIE L12 KWASY NUKLEINOWE - IZOLACJA DNA, HYDROLIZA ATP ORAZ ANALIZA SKŁADU DNA I RNA Wymagania: Właściwości fizykochemiczne kwasów nukleinowych Metody wykrywania składników strukturalnych kwasów

Bardziej szczegółowo

ĆWICZENIE 1. Aminokwasy

ĆWICZENIE 1. Aminokwasy ĆWICZENIE 1 Aminokwasy Przygotować 5 (lub więcej) 1% roztworów poszczególnych aminokwasów i białka jaja kurzego i dla każdego z nich wykonać wszystkie reakcje charakterystyczne. Reakcja ksantoproteinowa

Bardziej szczegółowo

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp W przypadku trudno rozpuszczalnej soli, mimo osiągnięcia stanu nasycenia, jej stężenie w roztworze jest bardzo małe i przyjmuje się, że ta

Bardziej szczegółowo

Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych

Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1. Wstęp Określenie próbka biologiczna jest

Bardziej szczegółowo

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, 02-097 Warszawa IZOLACJA DNA Z HODOWLI KOMÓRKOWEJ.

Bardziej szczegółowo

IZOLACJA KWASÓW NUKLEINOWYCH WARUNKI ZALICZENIA PRZEDMIOTU- 7 ECTS PRZEDMIOT PROGOWY!!!

IZOLACJA KWASÓW NUKLEINOWYCH WARUNKI ZALICZENIA PRZEDMIOTU- 7 ECTS PRZEDMIOT PROGOWY!!! WARUNKI ZALICZENIA PRZEDMIOTU- 7 ECTS PRZEDMIOT PROGOWY!!! W1-4p W2-4p W3-4p W4-4p W5-4p W6-4p W7-4p W8-4p W9-4p W10-4p min 21p wyjściówka I 40p wyjściówka II 40p egzamin I egzamin II min 21p 60p 60p min

Bardziej szczegółowo

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek

Bardziej szczegółowo

ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.

ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi. ĆWICZENIE I - BIAŁKA Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi. Odczynniki: - wodny 1% roztwór siarczanu(vi) miedzi(ii), - 10% wodny

Bardziej szczegółowo

Otrzymany w pkt. 8 osad, zawieszony w 2 ml wody destylowanej rozpipetować do 4 szklanych probówek po ok. 0.5 ml do każdej.

Otrzymany w pkt. 8 osad, zawieszony w 2 ml wody destylowanej rozpipetować do 4 szklanych probówek po ok. 0.5 ml do każdej. Kwasy nukleinowe izolacja DNA, wykrywanie składników. Wymagane zagadnienia teoretyczne 1. Struktura, synteza i degradacja nukleotydów purynowych i pirymidynowych. 2. Regulacja syntezy nukleotydów. Podstawowe

Bardziej szczegółowo

DNA musi współdziałać z białkami!

DNA musi współdziałać z białkami! DNA musi współdziałać z białkami! Specyficzność oddziaływań między DNA a białkami wiążącymi DNA zależy od: zmian konformacyjnych wzdłuż cząsteczki DNA zróżnicowania struktury DNA wynikającego z sekwencji

Bardziej szczegółowo

Izolowanie DNA i RNA z komórek hodowlanych. Ocena jakości uzyskanego materiału

Izolowanie DNA i RNA z komórek hodowlanych. Ocena jakości uzyskanego materiału II ROK KIERUNEK WETERYNARIA UJCM INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH VIII Izolowanie DNA i RNA z komórek hodowlanych. Ocena jakości uzyskanego materiału 2013/2014 2 ĆWICZENIE VIII Preparatyka całkowitego

Bardziej szczegółowo

Novabeads Food DNA Kit

Novabeads Food DNA Kit Novabeads Food DNA Kit Novabeads Food DNA Kit jest nowej generacji narzędziem w technikach biologii molekularnej, umożliwiającym izolację DNA z produktów spożywczych wysoko przetworzonych. Metoda oparta

Bardziej szczegółowo

I BIOTECHNOLOGIA. 3-letnie studia stacjonarne I stopnia

I BIOTECHNOLOGIA. 3-letnie studia stacjonarne I stopnia I BIOTECHNOLOGIA 3-letnie studia stacjonarne I stopnia PRZEDMIOT: CHEMIA OGÓLNA Z ELEMENTAMI CHEMII FIZYCZNEJ Ćwiczenia laboratoryjne semestr pierwszy 30 godz. Program ćwiczeń laboratoryjnych będzie realizowany

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Genomic Maxi AX zestaw do izolacji genomowego DNA wersja 0616

Genomic Maxi AX zestaw do izolacji genomowego DNA wersja 0616 Genomic Maxi AX zestaw do izolacji genomowego DNA wersja 0616 10 izolacji Nr kat. 995-10 Pojemność kolumny do oczyszczania DNA wynosi 500 µg 1 Skład zestawu Składnik Ilość Temp. Przechowywania Kolumny

Bardziej szczegółowo

ĆWICZENIE 1. Aminokwasy

ĆWICZENIE 1. Aminokwasy ĆWICZENIE 1 Aminokwasy Przygotować 5 (lub więcej) 1% roztworów poszczególnych aminokwasów i białka jaja kurzego i dla każdego z nich wykonać wszystkie reakcje charakterystyczne. Reakcja ksantoproteinowa

Bardziej szczegółowo

Ćwiczenie 1. Izolacja genomowego DNA różnymi metodami

Ćwiczenie 1. Izolacja genomowego DNA różnymi metodami Ćwiczenie 1 Izolacja genomowego DNA różnymi metodami Praca laboratoryjna z użyciem materiału biologicznego wymaga szczególnej dbałości o prawidłowe wykonanie każdego etapu pracy, dlatego też tylko zastosowanie

Bardziej szczegółowo

KINETYKA HYDROLIZY SACHAROZY

KINETYKA HYDROLIZY SACHAROZY Ćwiczenie nr 2 KINETYKA HYDROLIZY SACHAROZY I. Kinetyka hydrolizy sacharozy reakcja chemiczna Zasada: Sacharoza w środowisku kwaśnym ulega hydrolizie z wytworzeniem -D-glukozy i -D-fruktozy. Jest to reakcja

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ BŁONĘ KOMÓRKOWĄ I. WSTĘP TEORETYCZNY Każda komórka, zarówno roślinna,

Bardziej szczegółowo

Genomic Midi AX. 20 izolacji

Genomic Midi AX. 20 izolacji Genomic Midi AX Uniwersalny zestaw o zwiększonej wydajności do izolacji genomowego DNA z różnych materiałów. Procedura z precypitacją DNA. wersja 0517 20 izolacji Nr kat. 895-20 Pojemność kolumny do oczyszczania

Bardziej szczegółowo

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Wprowadzenie: Większość lądowych organizmów kręgowych część jonów amonowych NH + 4, produktu rozpadu białek, wykorzystuje w biosyntezie

Bardziej szczegółowo

RT31-020, RT , MgCl 2. , random heksamerów X 6

RT31-020, RT , MgCl 2. , random heksamerów X 6 RT31-020, RT31-100 RT31-020, RT31-100 Zestaw TRANSCRIPTME RNA zawiera wszystkie niezbędne składniki do przeprowadzenia syntezy pierwszej nici cdna na matrycy mrna lub całkowitego RNA. Uzyskany jednoniciowy

Bardziej szczegółowo

Zestaw do izolacji plazmidowego DNA. Nr kat. EM01 Wersja zestawu:

Zestaw do izolacji plazmidowego DNA. Nr kat. EM01 Wersja zestawu: Zestaw do izolacji plazmidowego DNA Nr kat. EM01 Wersja zestawu: 1.2012 www.dnagdansk.com Nr kat. EM01 I. PRZEZNACZENIE ZESTAWU Zestaw EXTRACTME PLASMID DNA przeznaczony jest do szybkiej i wydajnej izolacji

Bardziej szczegółowo

Zestaw do izolacji plazmidowego DNA

Zestaw do izolacji plazmidowego DNA Nr kat. EM01 Wersja zestawu: 1.2014 Zestaw do izolacji plazmidowego DNA EXTRACTME jest zastrzeżonym znakiem towarowym firmy BLIRT S.A. www.dnagdansk.com Nr kat. EM01 I. PRZEZNACZENIE ZESTAWU Zestaw EXTRACTME

Bardziej szczegółowo

Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska

Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska Instrukcja do Ćwiczenia 14 Zastosowanie metod membranowych w oczyszczaniu ścieków Opracowała dr Elżbieta Megiel Celem ćwiczenia

Bardziej szczegółowo

KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA)

KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA) Ćwiczenie nr 2 KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA) ĆWICZENIE PRAKTYCZNE I. Kinetyka hydrolizy sacharozy reakcja chemiczna Zasada: Sacharoza w środowisku kwaśnym ulega hydrolizie

Bardziej szczegółowo

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II 10 października 2013: Elementarz biologii molekularnej www.bioalgorithms.info Wykład nr 2 BIOINFORMATYKA rok II Komórka: strukturalna i funkcjonalne jednostka organizmu żywego Jądro komórkowe: chroniona

Bardziej szczegółowo

Wykład 14 Biosynteza białek

Wykład 14 Biosynteza białek BIOCHEMIA Kierunek: Technologia Żywności i Żywienie Człowieka semestr III Wykład 14 Biosynteza białek WYDZIAŁ NAUK O ŻYWNOŚCI I RYBACTWA CENTRUM BIOIMMOBILIZACJI I INNOWACYJNYCH MATERIAŁÓW OPAKOWANIOWYCH

Bardziej szczegółowo

REAKCJE UTLENIAJĄCO-REDUKCYJNE

REAKCJE UTLENIAJĄCO-REDUKCYJNE 7 REAKCJE UTLENIAJĄCO-REDUKCYJNE CEL ĆWICZENIA Zapoznanie się z reakcjami redoks. Zakres obowiązującego materiału Chemia związków manganu. Ich właściwości red-ox. Pojęcie utleniania, redukcji oraz stopnia

Bardziej szczegółowo

HYDROLIZA SOLI. ROZTWORY BUFOROWE

HYDROLIZA SOLI. ROZTWORY BUFOROWE Ćwiczenie 9 semestr 2 HYDROLIZA SOLI. ROZTWORY BUFOROWE Obowiązujące zagadnienia: Hydroliza soli-anionowa, kationowa, teoria jonowa Arrheniusa, moc kwasów i zasad, równania hydrolizy soli, hydroliza wieloetapowa,

Bardziej szczegółowo

ODDZIAŁYWANIE KSENOBIOTYKÓW Z DNA

ODDZIAŁYWANIE KSENOBIOTYKÓW Z DNA Wydział Chemiczny olitechniki Gdańskiej Katedra Technologii Leków i Biochemii Biochemia DDZIAŁYWAIE KSEBITYKÓW Z DA Struktura DA DA, kwas deoksyrybonukleinowy, może być docelowym miejscem działania ksenobiotyku

Bardziej szczegółowo

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, 02-097 Warszawa tel. 22 572 0735, 606448502

Bardziej szczegółowo

PathogenFree DNA Isolation Kit Zestaw do izolacji DNA Instrukcja użytkownika

PathogenFree DNA Isolation Kit Zestaw do izolacji DNA Instrukcja użytkownika PathogenFree DNA Isolation Kit Zestaw do izolacji DNA Instrukcja użytkownika Spis treści 1. Zawartość 2 1.1 Składniki zestawu 2 2. Opis produktu 2 2.1 Założenia metody 2 2.2 Instrukcja 2 2.3 Specyfikacja

Bardziej szczegółowo

Czy żywność GMO jest bezpieczna?

Czy żywność GMO jest bezpieczna? Instytut Żywności i Żywienia dr n. med. Lucjan Szponar Czy żywność GMO jest bezpieczna? Warszawa, 21 marca 2005 r. Od ponad połowy ubiegłego wieku, jedną z rozpoznanych tajemnic życia biologicznego wszystkich

Bardziej szczegółowo

1. Oznaczanie aktywności lipazy trzustkowej i jej zależności od stężenia enzymu oraz żółci jako modulatora reakcji enzymatycznej.

1. Oznaczanie aktywności lipazy trzustkowej i jej zależności od stężenia enzymu oraz żółci jako modulatora reakcji enzymatycznej. ĆWICZENIE OZNACZANIE AKTYWNOŚCI LIPAZY TRZUSTKOWEJ I JEJ ZALEŻNOŚCI OD STĘŻENIA ENZYMU ORAZ ŻÓŁCI JAKO MODULATORA REAKCJI ENZYMATYCZNEJ. INHIBICJA KOMPETYCYJNA DEHYDROGENAZY BURSZTYNIANOWEJ. 1. Oznaczanie

Bardziej szczegółowo

Dr. habil. Anna Salek International Bio-Consulting 1 Germany

Dr. habil. Anna Salek International Bio-Consulting 1 Germany 1 2 3 Drożdże są najprostszymi Eukariontami 4 Eucaryota Procaryota 5 6 Informacja genetyczna dla każdej komórki drożdży jest identyczna A zatem każda komórka koduje w DNA wszystkie swoje substancje 7 Przy

Bardziej szczegółowo

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu ĆWICZENIE 4 Oczyszczanie ścieków ze związków fosforu 1. Wprowadzenie Zbyt wysokie stężenia fosforu w wodach powierzchniowych stojących, spiętrzonych lub wolno płynących prowadzą do zwiększonego przyrostu

Bardziej szczegółowo

Gel-Out. 50 izolacji, 250 izolacji. Nr kat , Zestaw do izolacji DNA z żelu agarozowego. wersja 0617

Gel-Out. 50 izolacji, 250 izolacji. Nr kat , Zestaw do izolacji DNA z żelu agarozowego. wersja 0617 Gel-Out Zestaw do izolacji DNA z żelu agarozowego. wersja 0617 50 izolacji, 250 izolacji Nr kat. 023-50, 023-250 Pojemność kolumny do izolacji DNA - do 20 µg DNA, minimalna pojemność - 2 µg DNA (przy zawartości

Bardziej szczegółowo

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie dwóch kationów obok siebie metodą miareczkowania spektrofotometrycznego (bez maskowania) jest możliwe, gdy spełnione są

Bardziej szczegółowo

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH 1 Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny. Chemiczna stabilność leków jest ważnym terapeutycznym problemem W przypadku chemicznej niestabilności

Bardziej szczegółowo

Laboratorium 8. Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych

Laboratorium 8. Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych Laboratorium 8 Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych Literatura zalecana: Jakubowska A., Ocena toksyczności wybranych cieczy jonowych. Rozprawa doktorska, str. 28 31.

Bardziej szczegółowo

KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody:

KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody: KREW: 1. Oznaczenie stężenia Hb Metoda cyjanmethemoglobinowa: Hemoglobina i niektóre jej pochodne są utleniane przez K3 [Fe(CN)6]do methemoglobiny, a następnie przekształcane pod wpływem KCN w trwały związek

Bardziej szczegółowo

Powodzenie reakcji PCR wymaga właściwego doboru szeregu parametrów:

Powodzenie reakcji PCR wymaga właściwego doboru szeregu parametrów: Powodzenie reakcji PCR wymaga właściwego doboru szeregu parametrów: dobór warunków samej reakcji PCR (temperatury, czas trwania cykli, ilości cykli itp.) dobór odpowiednich starterów do reakcji amplifikacji

Bardziej szczegółowo

Oznaczanie RNA w materiale roślinnym

Oznaczanie RNA w materiale roślinnym znaczanie RA w materiale roślinnym rowadzący: mgr inż. Marta Grec 1. Wstęp teoretyczny RA oraz DA, nazywane kwasami nukleinowymi, są długimi liniowymi polimerami, w których monomery stanowią nukleotydy

Bardziej szczegółowo

Genomic Midi AX Direct zestaw do izolacji genomowego DNA (procedura bez precypitacji) wersja 1215

Genomic Midi AX Direct zestaw do izolacji genomowego DNA (procedura bez precypitacji) wersja 1215 Genomic Midi AX Direct zestaw do izolacji genomowego DNA (procedura bez precypitacji) wersja 1215 20 izolacji Nr kat. 895-20D Pojemność kolumny do oczyszczania DNA wynosi 100 µg 1 Skład zestawu Składnik

Bardziej szczegółowo

Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii. Biologia Komórki - laboratorium PORÓWNANIE METOD DEZINTEGRACJI KOMÓREK

Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii. Biologia Komórki - laboratorium PORÓWNANIE METOD DEZINTEGRACJI KOMÓREK Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii Biologia Komórki - laboratorium PORÓWNANIE METOD DEZINTEGRACJI KOMÓREK WSTĘP Aby wyizolować białka otrzymane np. w systemach

Bardziej szczegółowo

Prokariota i Eukariota

Prokariota i Eukariota Prokariota i Eukariota W komórkach organizmów żywych ilość DNA jest zazwyczaj stała i charakterystyczna dla danego gatunku. ILOŚĆ DNA PRZYPADAJĄCA NA APARAT GENETYCZNY WZRASTA WRAZ Z BARDZIEJ FILOGENETYCZNIE

Bardziej szczegółowo

Ćwiczenie 4. Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne

Ćwiczenie 4. Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne Klasyczna Analiza Jakościowa Organiczna, Ćw. 4 - Identyfikacja wybranych cukrów Ćwiczenie 4 Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne Zagadnienia teoretyczne: 1. Budowa

Bardziej szczegółowo

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW. RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW. Zagadnienia: Zjawisko dysocjacji: stała i stopień dysocjacji Elektrolity słabe i mocne Efekt wspólnego jonu Reakcje strącania osadów Iloczyn rozpuszczalności Odczynnik

Bardziej szczegółowo

Techniki molekularne ćw. 1 1 z 6

Techniki molekularne ćw. 1 1 z 6 Techniki molekularne ćw. 1 1 z 6 Instrukcja do ćwiczeń Nr 1. Temat: Izolacja całkowitego DNA z tkanki ssaczej metodą wiązania DNA do kolumny krzemionkowej oraz spektrofotometryczna ocena jego czystości

Bardziej szczegółowo

TaqNovaHS. Polimeraza DNA RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925

TaqNovaHS. Polimeraza DNA RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925 TaqNovaHS RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925 RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925 TaqNovaHS Polimeraza TaqNovaHS jest mieszaniną termostabilnej polimerazy DNA

Bardziej szczegółowo

Oznaczanie SO 2 w powietrzu atmosferycznym

Oznaczanie SO 2 w powietrzu atmosferycznym Ćwiczenie 6 Oznaczanie SO w powietrzu atmosferycznym Dwutlenek siarki bezwodnik kwasu siarkowego jest najbardziej rozpowszechnionym zanieczyszczeniem gazowym, występującym w powietrzu atmosferycznym. Głównym

Bardziej szczegółowo

Badanie właściwości związków powierzchniowo czynnych

Badanie właściwości związków powierzchniowo czynnych POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ ORGANICZNEJ I PETROCHEMII INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: Badanie właściwości związków powierzchniowo czynnych Laboratorium z

Bardziej szczegółowo

Biologia Molekularna ĆWICZENIE I PREPARATYKA RNA

Biologia Molekularna ĆWICZENIE I PREPARATYKA RNA Biologia Molekularna ĆWICZENIE I PREPARATYKA RNA ĆWICZENIE I (RNA) W komórkach występują trzy główne rodzaje RNA: mrna, trna, rrna. Największą pulę RNA stanowi rrna kodujące podjednostki rybosomów (u Eukariota

Bardziej szczegółowo

Recykling surowcowy odpadowego PET (politereftalanu etylenu)

Recykling surowcowy odpadowego PET (politereftalanu etylenu) Laboratorium: Powstawanie i utylizacja zanieczyszczeń i odpadów Makrokierunek Zarządzanie Środowiskiem INSTRUKCJA DO ĆWICZENIA 24 Recykling surowcowy odpadowego PET (politereftalanu etylenu) 1 I. Cel ćwiczenia

Bardziej szczegółowo

ZAKRES TREŚCI: 1. budowa chemiczna organizmów 3. lokalizacja DNA w komórce 2. budowa i funkcjonowanie komórki 4. budowa i właściwości DNA.

ZAKRES TREŚCI: 1. budowa chemiczna organizmów 3. lokalizacja DNA w komórce 2. budowa i funkcjonowanie komórki 4. budowa i właściwości DNA. Zajęcia terenowe: Zajęcia w klasie: ZAKRES TREŚCI: 1. budowa chemiczna organizmów 3. lokalizacja DNA w komórce 2. budowa i funkcjonowanie komórki 4. budowa i właściwości DNA. Poziom nauczania oraz odniesienie

Bardziej szczegółowo

E.coli Transformer Zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli

E.coli Transformer Zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli E.coli Transformer Zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli Wersja 0211 6x40 transformacji Nr kat. 4020-240 Zestaw zawiera komplet odczynników do przygotowania sześciu

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie chlorków metodą spektrofotometryczną z tiocyjanianem rtęci(ii)

Bardziej szczegółowo

WŁAŚCIWOŚCI KOLIGATYWNE ROZTWORÓW

WŁAŚCIWOŚCI KOLIGATYWNE ROZTWORÓW Ćwiczenie nr 1 WŁAŚCIWOŚCI KOLIGATYWNE ROZTWORÓW I. Pomiar ciśnienia osmotycznego ĆWICZENIA PRAKTYCZNE Ciśnienie osmotyczne - różnica ciśnień wywieranych na błonę półprzepuszczalną przez dwie ciecze, które

Bardziej szczegółowo

Ćwiczenie 1. Sporządzanie roztworów, rozcieńczanie i określanie stężeń

Ćwiczenie 1. Sporządzanie roztworów, rozcieńczanie i określanie stężeń Ćwiczenie 1 Sporządzanie roztworów, rozcieńczanie i określanie stężeń Stężenie roztworu określa ilość substancji (wyrażoną w jednostkach masy lub objętości) zawartą w określonej jednostce objętości lub

Bardziej szczegółowo

Badanie składników kwasów nukleinowych

Badanie składników kwasów nukleinowych Badanie składników kwasów nukleinowych Cel ćwiczenia Ćwiczenie ma na celu poznanie niektórych reakcji barwnych charakterystycznych dla kwasów nukleinowych. Na ćwiczeniu zostaną wykonane reakcje pozwalające

Bardziej szczegółowo

Zestaw przeznaczony jest do całkowitej izolacji RNA z bakterii, drożdży, hodowli komórkowych, tkanek oraz krwi świeżej (nie mrożonej).

Zestaw przeznaczony jest do całkowitej izolacji RNA z bakterii, drożdży, hodowli komórkowych, tkanek oraz krwi świeżej (nie mrożonej). Total RNA Mini Plus Zestaw do izolacji całkowitego RNA. Procedura izolacji nie wymaga użycia chloroformu wersja 0517 25 izolacji, 100 izolacji Nr kat. 036-25, 036-100 Zestaw przeznaczony jest do całkowitej

Bardziej szczegółowo

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna Laboratorium 5 Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Szybkość reakcji enzymatycznej zależy przede wszystkim od stężenia substratu

Bardziej szczegółowo

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ ĆWICZENIE 2 Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc jony

Bardziej szczegółowo

ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp.

ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym,

Bardziej szczegółowo

Ćwiczenie 5 PREPARATYKA DNA Z JĄDER KOMÓRKOWYCH IZOLOWANYCH Z ETIOLOWANYCH SIEWEK PSZENICY. Część doświadczalna obejmuje:

Ćwiczenie 5 PREPARATYKA DNA Z JĄDER KOMÓRKOWYCH IZOLOWANYCH Z ETIOLOWANYCH SIEWEK PSZENICY. Część doświadczalna obejmuje: Ćwiczenie 5 PREPARATYKA DNA Z JĄDER KOMÓRKOWYCH IZOLOWANYCH Z ETIOLOWANYCH SIEWEK PSZENICY Część doświadczalna obejmuje: izolowanie jąder komórkowych z etiolowanych siewek pszenicy preparatykę DNA z wyizolowanych

Bardziej szczegółowo

KATALIZA I KINETYKA CHEMICZNA

KATALIZA I KINETYKA CHEMICZNA 9 KATALIZA I KINETYKA CHEMICZNA CEL ĆWICZENIA Zapoznanie studenta z procesami katalitycznymi oraz wpływem stężenia, temperatury i obecności katalizatora na szybkość reakcji chemicznej. Zakres obowiązującego

Bardziej szczegółowo

1. Właściwości białek

1. Właściwości białek 1. Właściwości białek a. 1. Cele lekcji i. a) Wiadomości Uczeń zna: Uczeń: właściwości białek, proces denaturacji białek, reakcje charakterystyczne dla białek. ii. b) Umiejętności rozróżnia reakcje charakterystyczne

Bardziej szczegółowo

Zestaw do oczyszczania DNA po reakcjach enzymatycznych. Nr kat. EM03 Wersja zestawu:

Zestaw do oczyszczania DNA po reakcjach enzymatycznych. Nr kat. EM03 Wersja zestawu: Zestaw do oczyszczania DNA po reakcjach enzymatycznych Nr kat. EM03 Wersja zestawu: 1.2012 I. PRZEZNACZENIE ZESTAWU Zestaw EXTRACTME DNA CLEAN-UP przeznaczony jest do szybkiego i wydajnego oczyszczania

Bardziej szczegółowo

Laboratorium 3 Toksykologia żywności

Laboratorium 3 Toksykologia żywności Laboratorium 3 Toksykologia żywności Literatura zalecana: Orzeł D., Biernat J. (red.) 2012. Wybrane zagadnienia z toksykologii żywności. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu. Wrocław. Str.:

Bardziej szczegółowo

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej Metoda: Spektrofotometria UV-Vis Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studenta z fotometryczną metodą badania stanów równowagi

Bardziej szczegółowo

E.coli Transformer Kit

E.coli Transformer Kit E.coli Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Escherichia coli. Metoda chemiczna. wersja 1117 6 x 40 transformacji Nr kat. 4020-240 Zestaw zawiera komplet odczynników

Bardziej szczegółowo

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN CZĘŚĆ TEORETYCZNA Mechanizmy promujące wzrost rośli (PGP) Metody badań PGP CZĘŚĆ PRAKTYCZNA 1. Mechanizmy promujące wzrost roślin. Odczyt. a) Wytwarzanie

Bardziej szczegółowo

Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, Warszawa. Zakład Biologii Molekularnej

Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, Warszawa. Zakład Biologii Molekularnej Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, 02-097 Warszawa 1 Ćwiczenie 1 Izolacja oraz

Bardziej szczegółowo

Ćwiczenia laboratoryjne 2

Ćwiczenia laboratoryjne 2 Ćwiczenia laboratoryjne 2 Ćwiczenie 5: Wytrącanie siarczków grupy II Uwaga: Ćwiczenie wykonać w dwóch zespołach (grupach). A. Przygotuj w oddzielnych probówkach niewielką ilość roztworów zawierających

Bardziej szczegółowo

Inżynieria Środowiska

Inżynieria Środowiska ROZTWORY BUFOROWE Roztworami buforowymi nazywamy takie roztwory, w których stężenie jonów wodorowych nie ulega większym zmianom ani pod wpływem rozcieńczania wodą, ani pod wpływem dodatku nieznacznych

Bardziej szczegółowo

OZNACZANIE AKTYWNOŚCI ALKALICZNEJ DIFOSFATAZY (PIROFOSFATAZY)

OZNACZANIE AKTYWNOŚCI ALKALICZNEJ DIFOSFATAZY (PIROFOSFATAZY) Ćwiczenie 8 OZNACZANIE AKTYWNOŚCI ALKALICZNEJ DIFOSFATAZY (PIROFOSFATAZY) Część doświadczalna obejmuje: - sączenie Ŝelowe ekstraktu uzyskanego z bielma niedojrzałych nasion kukurydzy - oznaczanie aktywności

Bardziej szczegółowo

WŁASNOŚCI FIZYKOCHEMICZNE BIAŁEK. 1. Oznaczanie punktu izoelektrycznego białka

WŁASNOŚCI FIZYKOCHEMICZNE BIAŁEK. 1. Oznaczanie punktu izoelektrycznego białka 12. WŁASNOŚCI FIZYKOCHEMICZNE BIAŁEK 1. Oznaczanie punktu izoelektrycznego białka Oznaczenie opiera się na najniŝszej rozpuszczalności białek, w tym analizowanej kazeiny, w środowisku o wartości ph równej

Bardziej szczegółowo

III A. Roztwory i reakcje zachodzące w roztworach wodnych

III A. Roztwory i reakcje zachodzące w roztworach wodnych III A. Roztwory i reakcje zachodzące w roztworach wodnych III-A Przygotowywanie roztworów o różnym stężeniu III-A.1. Przygotowanie naważki substancji III-A.2. Przygotowanie 70 g 10% roztworu NaCl III-A.3.

Bardziej szczegółowo

Ćwiczenie II Roztwory Buforowe

Ćwiczenie II Roztwory Buforowe Ćwiczenie wykonać w parach lub trójkach. Ćwiczenie II Roztwory Buforowe A. Sporządzić roztwór buforu octanowego lub amonowego o określonym ph (podaje prowadzący ćwiczenia) Bufor Octanowy 1. Do zlewki wlej

Bardziej szczegółowo

Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości

Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawową wiedzą dotyczącą budowy, funkcji i właściwości glikogenu jak również

Bardziej szczegółowo

Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną

Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną ĆWICZENIE 5 OZNACZANIE AKTYWNOŚCI -AMYLAZY SŁODU METODĄ KOLORYMETRYCZNĄ Enzymy

Bardziej szczegółowo

ĆWICZENIA Z BIOCHEMII

ĆWICZENIA Z BIOCHEMII ĆWICZENIA Z BIOCHEMII D U STUDENTfiW WYDZIAŁU LEKARSKIEGO Pod redakcją Piotra Laidlera, Barbary Piekarskiej, Marii Wróbel WYDAWNICTWO UNIWERSYTETU JAGIELLOŃSKIEGO ĆWICZENIA Z BIOCHEMII DLA STUDENTÓW WYDZIAŁU

Bardziej szczegółowo

ĆWICZENIE 4. Roztwory i ich właściwości

ĆWICZENIE 4. Roztwory i ich właściwości I. Roztwory rzeczywiste ĆWICZENIE 4 Roztwory i ich właściwości 1. Sporządzanie roztworu CuSO 4 o określonym stężeniu procentowym - wykonać w zespołach 2-osobowych W celu sporządzenia 25 lub 50 ml 10% m/v

Bardziej szczegółowo

4. Równowagi w układach heterogenicznych.

4. Równowagi w układach heterogenicznych. Do doświadczeń stosować suche szkło i sprzęt laboratoryjny. Po użyciu szkło i sprzęt laboratoryjny należy wstępnie opłukać, a po zakończonych eksperymentach dokładnie umyć (przy użyciu detergentów) i pozostawić

Bardziej szczegółowo

Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny.

Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny. 1 Ćwiczenie 7. Wyznaczanie stałej szybkości oraz parametrów termodynamicznych reakcji hydrolizy aspiryny. Chemiczna stabilność leków jest ważnym terapeutycznym problemem W przypadku chemicznej niestabilności

Bardziej szczegółowo

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to:

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to: KWASY I WODOROTLENKI 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to: 1. kwas siarkowy (IV), kwas siarkowy (VI), kwas azotowy, 2. kwas siarkowy (VI), kwas siarkowy (IV), kwas azotowy (V), 3. kwas siarkowodorowy,

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Izoterma rozpuszczalności w układzie trójskładnikowym ćwiczenie nr 28 Zakres zagadnień obowiązujących do ćwiczenia 1. Stan równowagi układu i rodzaje równowag

Bardziej szczegółowo

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M) Wodorotlenki Definicja - Wodorotlenkami nazywamy związki chemiczne, zbudowane z kationu metalu (zazwyczaj) (M) i anionu wodorotlenowego (OH - ) Ogólny wzór wodorotlenków: M(OH) n M oznacza symbol metalu.

Bardziej szczegółowo

Genomic Maxi AX Direct

Genomic Maxi AX Direct Genomic Maxi AX Direct Uniwersalny zestaw o zwiększonej wydajności do izolacji genomowego DNA z różnych materiałów. Procedura bez etapu precypitacji. wersja 0517 10 izolacji Nr kat. 995-10D Pojemność kolumny

Bardziej szczegółowo

ĆWICZENIE NR 4 OTRZYMYWANIE PREPARATÓW RADIOCHEMICZNIE CZYSTYCH.

ĆWICZENIE NR 4 OTRZYMYWANIE PREPARATÓW RADIOCHEMICZNIE CZYSTYCH. ĆWICZENIE NR 4 OTRZYMYWANIE PREPARATÓW RADIOCHEMICZNIE CZYSTYCH. Nośnikowe metody wydzielania izotopów promieniotwórczych W badaniach radiochemicznych ma się zwykle do czynienia z bardzo małymi ilościami

Bardziej szczegółowo

ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych

ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych ĆWICZEIE B: znaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości rozpuszczalnego w wodzie chromu (VI) w próbce cementu korzystając

Bardziej szczegółowo

PRAWO DZIAŁANIA MAS I REGUŁA PRZEKORY

PRAWO DZIAŁANIA MAS I REGUŁA PRZEKORY 12 PRAWO DZIAŁANIA MAS I REGUŁA PRZEKORY CEL ĆWICZENIA Zapoznanie studentów z wpływem zmiany parametrów stanu (temperatura, stężenie, ciśnienie) na położenie równowagi chemicznej w reakcjach odwracalnych.

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH. Ćwiczenie nr 6. Adam Pawełczyk

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH. Ćwiczenie nr 6. Adam Pawełczyk POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH Ćwiczenie nr 6 Adam Pawełczyk Instrukcja do ćwiczeń laboratoryjnych USUWANIE SUBSTANCJI POŻYWKOWYCH ZE ŚCIEKÓW PRZEMYSŁOWYCH

Bardziej szczegółowo

Badanie termostabilności oraz wpływu aktywatorów i inhibitorów na działanie α-amylazy [EC ]

Badanie termostabilności oraz wpływu aktywatorów i inhibitorów na działanie α-amylazy [EC ] Badanie termostabilności oraz wpływu aktywatorów i inhibitorów na działanie α-amylazy [EC 3.2.1.1.] Termostabilność enzymów Dla większości enzymów zmiany denaturacyjne zachodzą bardzo intensywnie powyżej

Bardziej szczegółowo

Ćwiczenie numer 6. Analiza próbek spożywczych na obecność markerów GMO

Ćwiczenie numer 6. Analiza próbek spożywczych na obecność markerów GMO Ćwiczenie numer 6 Analiza próbek spożywczych na obecność markerów GMO 1. Informacje wstępne -screening GMO -metoda CTAB -qpcr 2. Izolacja DNA z soi metodą CTAB 3. Oznaczenie ilościowe i jakościowe DNA

Bardziej szczegółowo

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco: HYDROLIZA SOLI Hydroliza to reakcja chemiczna zachodząca między jonami słabo zdysocjowanej wody i jonami dobrze zdysocjowanej soli słabego kwasu lub słabej zasady. Reakcji hydrolizy mogą ulegać następujące

Bardziej szczegółowo

Saccharomyces Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Saccharomyces cerevisiae. Metoda chemiczna.

Saccharomyces Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Saccharomyces cerevisiae. Metoda chemiczna. Saccharomyces Transformer Kit zestaw do przygotowywania i transformacji komórek kompetentnych Saccharomyces cerevisiae. Metoda chemiczna. wersja 0916 6 x 20 transformacji Nr kat. 4010-120 Zestaw zawiera

Bardziej szczegółowo